![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > nfof | GIF version |
Description: Hypothesis builder for function operation. (Contributed by Mario Carneiro, 20-Jul-2014.) |
Ref | Expression |
---|---|
nfof.1 | ⊢ Ⅎ𝑥𝑅 |
Ref | Expression |
---|---|
nfof | ⊢ Ⅎ𝑥 ∘𝑓 𝑅 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-of 6083 | . 2 ⊢ ∘𝑓 𝑅 = (𝑢 ∈ V, 𝑣 ∈ V ↦ (𝑤 ∈ (dom 𝑢 ∩ dom 𝑣) ↦ ((𝑢‘𝑤)𝑅(𝑣‘𝑤)))) | |
2 | nfcv 2319 | . . 3 ⊢ Ⅎ𝑥V | |
3 | nfcv 2319 | . . . 4 ⊢ Ⅎ𝑥(dom 𝑢 ∩ dom 𝑣) | |
4 | nfcv 2319 | . . . . 5 ⊢ Ⅎ𝑥(𝑢‘𝑤) | |
5 | nfof.1 | . . . . 5 ⊢ Ⅎ𝑥𝑅 | |
6 | nfcv 2319 | . . . . 5 ⊢ Ⅎ𝑥(𝑣‘𝑤) | |
7 | 4, 5, 6 | nfov 5905 | . . . 4 ⊢ Ⅎ𝑥((𝑢‘𝑤)𝑅(𝑣‘𝑤)) |
8 | 3, 7 | nfmpt 4096 | . . 3 ⊢ Ⅎ𝑥(𝑤 ∈ (dom 𝑢 ∩ dom 𝑣) ↦ ((𝑢‘𝑤)𝑅(𝑣‘𝑤))) |
9 | 2, 2, 8 | nfmpo 5944 | . 2 ⊢ Ⅎ𝑥(𝑢 ∈ V, 𝑣 ∈ V ↦ (𝑤 ∈ (dom 𝑢 ∩ dom 𝑣) ↦ ((𝑢‘𝑤)𝑅(𝑣‘𝑤)))) |
10 | 1, 9 | nfcxfr 2316 | 1 ⊢ Ⅎ𝑥 ∘𝑓 𝑅 |
Colors of variables: wff set class |
Syntax hints: Ⅎwnfc 2306 Vcvv 2738 ∩ cin 3129 ↦ cmpt 4065 dom cdm 4627 ‘cfv 5217 (class class class)co 5875 ∈ cmpo 5877 ∘𝑓 cof 6081 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-ext 2159 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-nf 1461 df-sb 1763 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-rex 2461 df-v 2740 df-un 3134 df-sn 3599 df-pr 3600 df-op 3602 df-uni 3811 df-br 4005 df-opab 4066 df-mpt 4067 df-iota 5179 df-fv 5225 df-ov 5878 df-oprab 5879 df-mpo 5880 df-of 6083 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |