![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > nfof | GIF version |
Description: Hypothesis builder for function operation. (Contributed by Mario Carneiro, 20-Jul-2014.) |
Ref | Expression |
---|---|
nfof.1 | ⊢ Ⅎ𝑥𝑅 |
Ref | Expression |
---|---|
nfof | ⊢ Ⅎ𝑥 ∘𝑓 𝑅 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-of 5872 | . 2 ⊢ ∘𝑓 𝑅 = (𝑢 ∈ V, 𝑣 ∈ V ↦ (𝑤 ∈ (dom 𝑢 ∩ dom 𝑣) ↦ ((𝑢‘𝑤)𝑅(𝑣‘𝑤)))) | |
2 | nfcv 2229 | . . 3 ⊢ Ⅎ𝑥V | |
3 | nfcv 2229 | . . . 4 ⊢ Ⅎ𝑥(dom 𝑢 ∩ dom 𝑣) | |
4 | nfcv 2229 | . . . . 5 ⊢ Ⅎ𝑥(𝑢‘𝑤) | |
5 | nfof.1 | . . . . 5 ⊢ Ⅎ𝑥𝑅 | |
6 | nfcv 2229 | . . . . 5 ⊢ Ⅎ𝑥(𝑣‘𝑤) | |
7 | 4, 5, 6 | nfov 5695 | . . . 4 ⊢ Ⅎ𝑥((𝑢‘𝑤)𝑅(𝑣‘𝑤)) |
8 | 3, 7 | nfmpt 3938 | . . 3 ⊢ Ⅎ𝑥(𝑤 ∈ (dom 𝑢 ∩ dom 𝑣) ↦ ((𝑢‘𝑤)𝑅(𝑣‘𝑤))) |
9 | 2, 2, 8 | nfmpt2 5733 | . 2 ⊢ Ⅎ𝑥(𝑢 ∈ V, 𝑣 ∈ V ↦ (𝑤 ∈ (dom 𝑢 ∩ dom 𝑣) ↦ ((𝑢‘𝑤)𝑅(𝑣‘𝑤)))) |
10 | 1, 9 | nfcxfr 2226 | 1 ⊢ Ⅎ𝑥 ∘𝑓 𝑅 |
Colors of variables: wff set class |
Syntax hints: Ⅎwnfc 2216 Vcvv 2622 ∩ cin 3001 ↦ cmpt 3907 dom cdm 4454 ‘cfv 5030 (class class class)co 5668 ↦ cmpt2 5670 ∘𝑓 cof 5870 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 666 ax-5 1382 ax-7 1383 ax-gen 1384 ax-ie1 1428 ax-ie2 1429 ax-8 1441 ax-10 1442 ax-11 1443 ax-i12 1444 ax-bndl 1445 ax-4 1446 ax-17 1465 ax-i9 1469 ax-ial 1473 ax-i5r 1474 ax-ext 2071 |
This theorem depends on definitions: df-bi 116 df-3an 927 df-tru 1293 df-nf 1396 df-sb 1694 df-clab 2076 df-cleq 2082 df-clel 2085 df-nfc 2218 df-rex 2366 df-v 2624 df-un 3006 df-sn 3458 df-pr 3459 df-op 3461 df-uni 3662 df-br 3854 df-opab 3908 df-mpt 3909 df-iota 4995 df-fv 5038 df-ov 5671 df-oprab 5672 df-mpt2 5673 df-of 5872 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |