| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nfof | GIF version | ||
| Description: Hypothesis builder for function operation. (Contributed by Mario Carneiro, 20-Jul-2014.) |
| Ref | Expression |
|---|---|
| nfof.1 | ⊢ Ⅎ𝑥𝑅 |
| Ref | Expression |
|---|---|
| nfof | ⊢ Ⅎ𝑥 ∘𝑓 𝑅 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-of 6170 | . 2 ⊢ ∘𝑓 𝑅 = (𝑢 ∈ V, 𝑣 ∈ V ↦ (𝑤 ∈ (dom 𝑢 ∩ dom 𝑣) ↦ ((𝑢‘𝑤)𝑅(𝑣‘𝑤)))) | |
| 2 | nfcv 2349 | . . 3 ⊢ Ⅎ𝑥V | |
| 3 | nfcv 2349 | . . . 4 ⊢ Ⅎ𝑥(dom 𝑢 ∩ dom 𝑣) | |
| 4 | nfcv 2349 | . . . . 5 ⊢ Ⅎ𝑥(𝑢‘𝑤) | |
| 5 | nfof.1 | . . . . 5 ⊢ Ⅎ𝑥𝑅 | |
| 6 | nfcv 2349 | . . . . 5 ⊢ Ⅎ𝑥(𝑣‘𝑤) | |
| 7 | 4, 5, 6 | nfov 5986 | . . . 4 ⊢ Ⅎ𝑥((𝑢‘𝑤)𝑅(𝑣‘𝑤)) |
| 8 | 3, 7 | nfmpt 4143 | . . 3 ⊢ Ⅎ𝑥(𝑤 ∈ (dom 𝑢 ∩ dom 𝑣) ↦ ((𝑢‘𝑤)𝑅(𝑣‘𝑤))) |
| 9 | 2, 2, 8 | nfmpo 6026 | . 2 ⊢ Ⅎ𝑥(𝑢 ∈ V, 𝑣 ∈ V ↦ (𝑤 ∈ (dom 𝑢 ∩ dom 𝑣) ↦ ((𝑢‘𝑤)𝑅(𝑣‘𝑤)))) |
| 10 | 1, 9 | nfcxfr 2346 | 1 ⊢ Ⅎ𝑥 ∘𝑓 𝑅 |
| Colors of variables: wff set class |
| Syntax hints: Ⅎwnfc 2336 Vcvv 2773 ∩ cin 3169 ↦ cmpt 4112 dom cdm 4682 ‘cfv 5279 (class class class)co 5956 ∈ cmpo 5958 ∘𝑓 cof 6168 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2188 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-rex 2491 df-v 2775 df-un 3174 df-sn 3643 df-pr 3644 df-op 3646 df-uni 3856 df-br 4051 df-opab 4113 df-mpt 4114 df-iota 5240 df-fv 5287 df-ov 5959 df-oprab 5960 df-mpo 5961 df-of 6170 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |