ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfof GIF version

Theorem nfof 6222
Description: Hypothesis builder for function operation. (Contributed by Mario Carneiro, 20-Jul-2014.)
Hypothesis
Ref Expression
nfof.1 𝑥𝑅
Assertion
Ref Expression
nfof 𝑥𝑓 𝑅

Proof of Theorem nfof
Dummy variables 𝑢 𝑣 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-of 6216 . 2 𝑓 𝑅 = (𝑢 ∈ V, 𝑣 ∈ V ↦ (𝑤 ∈ (dom 𝑢 ∩ dom 𝑣) ↦ ((𝑢𝑤)𝑅(𝑣𝑤))))
2 nfcv 2372 . . 3 𝑥V
3 nfcv 2372 . . . 4 𝑥(dom 𝑢 ∩ dom 𝑣)
4 nfcv 2372 . . . . 5 𝑥(𝑢𝑤)
5 nfof.1 . . . . 5 𝑥𝑅
6 nfcv 2372 . . . . 5 𝑥(𝑣𝑤)
74, 5, 6nfov 6030 . . . 4 𝑥((𝑢𝑤)𝑅(𝑣𝑤))
83, 7nfmpt 4175 . . 3 𝑥(𝑤 ∈ (dom 𝑢 ∩ dom 𝑣) ↦ ((𝑢𝑤)𝑅(𝑣𝑤)))
92, 2, 8nfmpo 6072 . 2 𝑥(𝑢 ∈ V, 𝑣 ∈ V ↦ (𝑤 ∈ (dom 𝑢 ∩ dom 𝑣) ↦ ((𝑢𝑤)𝑅(𝑣𝑤))))
101, 9nfcxfr 2369 1 𝑥𝑓 𝑅
Colors of variables: wff set class
Syntax hints:  wnfc 2359  Vcvv 2799  cin 3196  cmpt 4144  dom cdm 4718  cfv 5317  (class class class)co 6000  cmpo 6002  𝑓 cof 6214
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-rex 2514  df-v 2801  df-un 3201  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-br 4083  df-opab 4145  df-mpt 4146  df-iota 5277  df-fv 5325  df-ov 6003  df-oprab 6004  df-mpo 6005  df-of 6216
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator