| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nfof | GIF version | ||
| Description: Hypothesis builder for function operation. (Contributed by Mario Carneiro, 20-Jul-2014.) |
| Ref | Expression |
|---|---|
| nfof.1 | ⊢ Ⅎ𝑥𝑅 |
| Ref | Expression |
|---|---|
| nfof | ⊢ Ⅎ𝑥 ∘𝑓 𝑅 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-of 6216 | . 2 ⊢ ∘𝑓 𝑅 = (𝑢 ∈ V, 𝑣 ∈ V ↦ (𝑤 ∈ (dom 𝑢 ∩ dom 𝑣) ↦ ((𝑢‘𝑤)𝑅(𝑣‘𝑤)))) | |
| 2 | nfcv 2372 | . . 3 ⊢ Ⅎ𝑥V | |
| 3 | nfcv 2372 | . . . 4 ⊢ Ⅎ𝑥(dom 𝑢 ∩ dom 𝑣) | |
| 4 | nfcv 2372 | . . . . 5 ⊢ Ⅎ𝑥(𝑢‘𝑤) | |
| 5 | nfof.1 | . . . . 5 ⊢ Ⅎ𝑥𝑅 | |
| 6 | nfcv 2372 | . . . . 5 ⊢ Ⅎ𝑥(𝑣‘𝑤) | |
| 7 | 4, 5, 6 | nfov 6030 | . . . 4 ⊢ Ⅎ𝑥((𝑢‘𝑤)𝑅(𝑣‘𝑤)) |
| 8 | 3, 7 | nfmpt 4175 | . . 3 ⊢ Ⅎ𝑥(𝑤 ∈ (dom 𝑢 ∩ dom 𝑣) ↦ ((𝑢‘𝑤)𝑅(𝑣‘𝑤))) |
| 9 | 2, 2, 8 | nfmpo 6072 | . 2 ⊢ Ⅎ𝑥(𝑢 ∈ V, 𝑣 ∈ V ↦ (𝑤 ∈ (dom 𝑢 ∩ dom 𝑣) ↦ ((𝑢‘𝑤)𝑅(𝑣‘𝑤)))) |
| 10 | 1, 9 | nfcxfr 2369 | 1 ⊢ Ⅎ𝑥 ∘𝑓 𝑅 |
| Colors of variables: wff set class |
| Syntax hints: Ⅎwnfc 2359 Vcvv 2799 ∩ cin 3196 ↦ cmpt 4144 dom cdm 4718 ‘cfv 5317 (class class class)co 6000 ∈ cmpo 6002 ∘𝑓 cof 6214 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-rex 2514 df-v 2801 df-un 3201 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-br 4083 df-opab 4145 df-mpt 4146 df-iota 5277 df-fv 5325 df-ov 6003 df-oprab 6004 df-mpo 6005 df-of 6216 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |