| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nfof | GIF version | ||
| Description: Hypothesis builder for function operation. (Contributed by Mario Carneiro, 20-Jul-2014.) |
| Ref | Expression |
|---|---|
| nfof.1 | ⊢ Ⅎ𝑥𝑅 |
| Ref | Expression |
|---|---|
| nfof | ⊢ Ⅎ𝑥 ∘𝑓 𝑅 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-of 6135 | . 2 ⊢ ∘𝑓 𝑅 = (𝑢 ∈ V, 𝑣 ∈ V ↦ (𝑤 ∈ (dom 𝑢 ∩ dom 𝑣) ↦ ((𝑢‘𝑤)𝑅(𝑣‘𝑤)))) | |
| 2 | nfcv 2339 | . . 3 ⊢ Ⅎ𝑥V | |
| 3 | nfcv 2339 | . . . 4 ⊢ Ⅎ𝑥(dom 𝑢 ∩ dom 𝑣) | |
| 4 | nfcv 2339 | . . . . 5 ⊢ Ⅎ𝑥(𝑢‘𝑤) | |
| 5 | nfof.1 | . . . . 5 ⊢ Ⅎ𝑥𝑅 | |
| 6 | nfcv 2339 | . . . . 5 ⊢ Ⅎ𝑥(𝑣‘𝑤) | |
| 7 | 4, 5, 6 | nfov 5952 | . . . 4 ⊢ Ⅎ𝑥((𝑢‘𝑤)𝑅(𝑣‘𝑤)) |
| 8 | 3, 7 | nfmpt 4125 | . . 3 ⊢ Ⅎ𝑥(𝑤 ∈ (dom 𝑢 ∩ dom 𝑣) ↦ ((𝑢‘𝑤)𝑅(𝑣‘𝑤))) |
| 9 | 2, 2, 8 | nfmpo 5991 | . 2 ⊢ Ⅎ𝑥(𝑢 ∈ V, 𝑣 ∈ V ↦ (𝑤 ∈ (dom 𝑢 ∩ dom 𝑣) ↦ ((𝑢‘𝑤)𝑅(𝑣‘𝑤)))) |
| 10 | 1, 9 | nfcxfr 2336 | 1 ⊢ Ⅎ𝑥 ∘𝑓 𝑅 |
| Colors of variables: wff set class |
| Syntax hints: Ⅎwnfc 2326 Vcvv 2763 ∩ cin 3156 ↦ cmpt 4094 dom cdm 4663 ‘cfv 5258 (class class class)co 5922 ∈ cmpo 5924 ∘𝑓 cof 6133 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-rex 2481 df-v 2765 df-un 3161 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-br 4034 df-opab 4095 df-mpt 4096 df-iota 5219 df-fv 5266 df-ov 5925 df-oprab 5926 df-mpo 5927 df-of 6135 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |