![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > nfof | GIF version |
Description: Hypothesis builder for function operation. (Contributed by Mario Carneiro, 20-Jul-2014.) |
Ref | Expression |
---|---|
nfof.1 | ⊢ Ⅎ𝑥𝑅 |
Ref | Expression |
---|---|
nfof | ⊢ Ⅎ𝑥 ∘𝑓 𝑅 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-of 6132 | . 2 ⊢ ∘𝑓 𝑅 = (𝑢 ∈ V, 𝑣 ∈ V ↦ (𝑤 ∈ (dom 𝑢 ∩ dom 𝑣) ↦ ((𝑢‘𝑤)𝑅(𝑣‘𝑤)))) | |
2 | nfcv 2336 | . . 3 ⊢ Ⅎ𝑥V | |
3 | nfcv 2336 | . . . 4 ⊢ Ⅎ𝑥(dom 𝑢 ∩ dom 𝑣) | |
4 | nfcv 2336 | . . . . 5 ⊢ Ⅎ𝑥(𝑢‘𝑤) | |
5 | nfof.1 | . . . . 5 ⊢ Ⅎ𝑥𝑅 | |
6 | nfcv 2336 | . . . . 5 ⊢ Ⅎ𝑥(𝑣‘𝑤) | |
7 | 4, 5, 6 | nfov 5949 | . . . 4 ⊢ Ⅎ𝑥((𝑢‘𝑤)𝑅(𝑣‘𝑤)) |
8 | 3, 7 | nfmpt 4122 | . . 3 ⊢ Ⅎ𝑥(𝑤 ∈ (dom 𝑢 ∩ dom 𝑣) ↦ ((𝑢‘𝑤)𝑅(𝑣‘𝑤))) |
9 | 2, 2, 8 | nfmpo 5988 | . 2 ⊢ Ⅎ𝑥(𝑢 ∈ V, 𝑣 ∈ V ↦ (𝑤 ∈ (dom 𝑢 ∩ dom 𝑣) ↦ ((𝑢‘𝑤)𝑅(𝑣‘𝑤)))) |
10 | 1, 9 | nfcxfr 2333 | 1 ⊢ Ⅎ𝑥 ∘𝑓 𝑅 |
Colors of variables: wff set class |
Syntax hints: Ⅎwnfc 2323 Vcvv 2760 ∩ cin 3153 ↦ cmpt 4091 dom cdm 4660 ‘cfv 5255 (class class class)co 5919 ∈ cmpo 5921 ∘𝑓 cof 6130 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2175 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-rex 2478 df-v 2762 df-un 3158 df-sn 3625 df-pr 3626 df-op 3628 df-uni 3837 df-br 4031 df-opab 4092 df-mpt 4093 df-iota 5216 df-fv 5263 df-ov 5922 df-oprab 5923 df-mpo 5924 df-of 6132 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |