Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > nfof | GIF version |
Description: Hypothesis builder for function operation. (Contributed by Mario Carneiro, 20-Jul-2014.) |
Ref | Expression |
---|---|
nfof.1 | ⊢ Ⅎ𝑥𝑅 |
Ref | Expression |
---|---|
nfof | ⊢ Ⅎ𝑥 ∘𝑓 𝑅 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-of 6050 | . 2 ⊢ ∘𝑓 𝑅 = (𝑢 ∈ V, 𝑣 ∈ V ↦ (𝑤 ∈ (dom 𝑢 ∩ dom 𝑣) ↦ ((𝑢‘𝑤)𝑅(𝑣‘𝑤)))) | |
2 | nfcv 2308 | . . 3 ⊢ Ⅎ𝑥V | |
3 | nfcv 2308 | . . . 4 ⊢ Ⅎ𝑥(dom 𝑢 ∩ dom 𝑣) | |
4 | nfcv 2308 | . . . . 5 ⊢ Ⅎ𝑥(𝑢‘𝑤) | |
5 | nfof.1 | . . . . 5 ⊢ Ⅎ𝑥𝑅 | |
6 | nfcv 2308 | . . . . 5 ⊢ Ⅎ𝑥(𝑣‘𝑤) | |
7 | 4, 5, 6 | nfov 5872 | . . . 4 ⊢ Ⅎ𝑥((𝑢‘𝑤)𝑅(𝑣‘𝑤)) |
8 | 3, 7 | nfmpt 4074 | . . 3 ⊢ Ⅎ𝑥(𝑤 ∈ (dom 𝑢 ∩ dom 𝑣) ↦ ((𝑢‘𝑤)𝑅(𝑣‘𝑤))) |
9 | 2, 2, 8 | nfmpo 5911 | . 2 ⊢ Ⅎ𝑥(𝑢 ∈ V, 𝑣 ∈ V ↦ (𝑤 ∈ (dom 𝑢 ∩ dom 𝑣) ↦ ((𝑢‘𝑤)𝑅(𝑣‘𝑤)))) |
10 | 1, 9 | nfcxfr 2305 | 1 ⊢ Ⅎ𝑥 ∘𝑓 𝑅 |
Colors of variables: wff set class |
Syntax hints: Ⅎwnfc 2295 Vcvv 2726 ∩ cin 3115 ↦ cmpt 4043 dom cdm 4604 ‘cfv 5188 (class class class)co 5842 ∈ cmpo 5844 ∘𝑓 cof 6048 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-rex 2450 df-v 2728 df-un 3120 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-br 3983 df-opab 4044 df-mpt 4045 df-iota 5153 df-fv 5196 df-ov 5845 df-oprab 5846 df-mpo 5847 df-of 6050 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |