ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfof GIF version

Theorem nfof 5877
Description: Hypothesis builder for function operation. (Contributed by Mario Carneiro, 20-Jul-2014.)
Hypothesis
Ref Expression
nfof.1 𝑥𝑅
Assertion
Ref Expression
nfof 𝑥𝑓 𝑅

Proof of Theorem nfof
Dummy variables 𝑢 𝑣 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-of 5872 . 2 𝑓 𝑅 = (𝑢 ∈ V, 𝑣 ∈ V ↦ (𝑤 ∈ (dom 𝑢 ∩ dom 𝑣) ↦ ((𝑢𝑤)𝑅(𝑣𝑤))))
2 nfcv 2229 . . 3 𝑥V
3 nfcv 2229 . . . 4 𝑥(dom 𝑢 ∩ dom 𝑣)
4 nfcv 2229 . . . . 5 𝑥(𝑢𝑤)
5 nfof.1 . . . . 5 𝑥𝑅
6 nfcv 2229 . . . . 5 𝑥(𝑣𝑤)
74, 5, 6nfov 5695 . . . 4 𝑥((𝑢𝑤)𝑅(𝑣𝑤))
83, 7nfmpt 3938 . . 3 𝑥(𝑤 ∈ (dom 𝑢 ∩ dom 𝑣) ↦ ((𝑢𝑤)𝑅(𝑣𝑤)))
92, 2, 8nfmpt2 5733 . 2 𝑥(𝑢 ∈ V, 𝑣 ∈ V ↦ (𝑤 ∈ (dom 𝑢 ∩ dom 𝑣) ↦ ((𝑢𝑤)𝑅(𝑣𝑤))))
101, 9nfcxfr 2226 1 𝑥𝑓 𝑅
Colors of variables: wff set class
Syntax hints:  wnfc 2216  Vcvv 2622  cin 3001  cmpt 3907  dom cdm 4454  cfv 5030  (class class class)co 5668  cmpt2 5670  𝑓 cof 5870
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 666  ax-5 1382  ax-7 1383  ax-gen 1384  ax-ie1 1428  ax-ie2 1429  ax-8 1441  ax-10 1442  ax-11 1443  ax-i12 1444  ax-bndl 1445  ax-4 1446  ax-17 1465  ax-i9 1469  ax-ial 1473  ax-i5r 1474  ax-ext 2071
This theorem depends on definitions:  df-bi 116  df-3an 927  df-tru 1293  df-nf 1396  df-sb 1694  df-clab 2076  df-cleq 2082  df-clel 2085  df-nfc 2218  df-rex 2366  df-v 2624  df-un 3006  df-sn 3458  df-pr 3459  df-op 3461  df-uni 3662  df-br 3854  df-opab 3908  df-mpt 3909  df-iota 4995  df-fv 5038  df-ov 5671  df-oprab 5672  df-mpt2 5673  df-of 5872
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator