ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfmpo2 GIF version

Theorem nfmpo2 5990
Description: Bound-variable hypothesis builder for an operation in maps-to notation. (Contributed by NM, 27-Aug-2013.)
Assertion
Ref Expression
nfmpo2 𝑦(𝑥𝐴, 𝑦𝐵𝐶)

Proof of Theorem nfmpo2
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 df-mpo 5927 . 2 (𝑥𝐴, 𝑦𝐵𝐶) = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥𝐴𝑦𝐵) ∧ 𝑧 = 𝐶)}
2 nfoprab2 5972 . 2 𝑦{⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥𝐴𝑦𝐵) ∧ 𝑧 = 𝐶)}
31, 2nfcxfr 2336 1 𝑦(𝑥𝐴, 𝑦𝐵𝐶)
Colors of variables: wff set class
Syntax hints:  wa 104   = wceq 1364  wcel 2167  wnfc 2326  {coprab 5923  cmpo 5924
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-oprab 5926  df-mpo 5927
This theorem is referenced by:  ovmpos  6046  ov2gf  6047  ovmpodxf  6048  ovmpodf  6054  ovmpodv2  6056  xpcomco  6885  mapxpen  6909  cnmpt21  14527  cnmpt2t  14529  cnmptcom  14534
  Copyright terms: Public domain W3C validator