ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  opabex3 GIF version

Theorem opabex3 6176
Description: Existence of an ordered pair abstraction. (Contributed by Jeff Madsen, 2-Sep-2009.)
Hypotheses
Ref Expression
opabex3.1 𝐴 ∈ V
opabex3.2 (𝑥𝐴 → {𝑦𝜑} ∈ V)
Assertion
Ref Expression
opabex3 {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝜑)} ∈ V
Distinct variable group:   𝑥,𝐴,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)

Proof of Theorem opabex3
Dummy variables 𝑣 𝑤 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 19.42v 1918 . . . . . 6 (∃𝑦(𝑥𝐴 ∧ (𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝜑)) ↔ (𝑥𝐴 ∧ ∃𝑦(𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝜑)))
2 an12 561 . . . . . . 7 ((𝑧 = ⟨𝑥, 𝑦⟩ ∧ (𝑥𝐴𝜑)) ↔ (𝑥𝐴 ∧ (𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝜑)))
32exbii 1616 . . . . . 6 (∃𝑦(𝑧 = ⟨𝑥, 𝑦⟩ ∧ (𝑥𝐴𝜑)) ↔ ∃𝑦(𝑥𝐴 ∧ (𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝜑)))
4 elxp 4677 . . . . . . . 8 (𝑧 ∈ ({𝑥} × {𝑦𝜑}) ↔ ∃𝑣𝑤(𝑧 = ⟨𝑣, 𝑤⟩ ∧ (𝑣 ∈ {𝑥} ∧ 𝑤 ∈ {𝑦𝜑})))
5 excom 1675 . . . . . . . . 9 (∃𝑣𝑤(𝑧 = ⟨𝑣, 𝑤⟩ ∧ (𝑣 ∈ {𝑥} ∧ 𝑤 ∈ {𝑦𝜑})) ↔ ∃𝑤𝑣(𝑧 = ⟨𝑣, 𝑤⟩ ∧ (𝑣 ∈ {𝑥} ∧ 𝑤 ∈ {𝑦𝜑})))
6 an12 561 . . . . . . . . . . . . 13 ((𝑧 = ⟨𝑣, 𝑤⟩ ∧ (𝑣 ∈ {𝑥} ∧ 𝑤 ∈ {𝑦𝜑})) ↔ (𝑣 ∈ {𝑥} ∧ (𝑧 = ⟨𝑣, 𝑤⟩ ∧ 𝑤 ∈ {𝑦𝜑})))
7 velsn 3636 . . . . . . . . . . . . . 14 (𝑣 ∈ {𝑥} ↔ 𝑣 = 𝑥)
87anbi1i 458 . . . . . . . . . . . . 13 ((𝑣 ∈ {𝑥} ∧ (𝑧 = ⟨𝑣, 𝑤⟩ ∧ 𝑤 ∈ {𝑦𝜑})) ↔ (𝑣 = 𝑥 ∧ (𝑧 = ⟨𝑣, 𝑤⟩ ∧ 𝑤 ∈ {𝑦𝜑})))
96, 8bitri 184 . . . . . . . . . . . 12 ((𝑧 = ⟨𝑣, 𝑤⟩ ∧ (𝑣 ∈ {𝑥} ∧ 𝑤 ∈ {𝑦𝜑})) ↔ (𝑣 = 𝑥 ∧ (𝑧 = ⟨𝑣, 𝑤⟩ ∧ 𝑤 ∈ {𝑦𝜑})))
109exbii 1616 . . . . . . . . . . 11 (∃𝑣(𝑧 = ⟨𝑣, 𝑤⟩ ∧ (𝑣 ∈ {𝑥} ∧ 𝑤 ∈ {𝑦𝜑})) ↔ ∃𝑣(𝑣 = 𝑥 ∧ (𝑧 = ⟨𝑣, 𝑤⟩ ∧ 𝑤 ∈ {𝑦𝜑})))
11 vex 2763 . . . . . . . . . . . 12 𝑥 ∈ V
12 opeq1 3805 . . . . . . . . . . . . . 14 (𝑣 = 𝑥 → ⟨𝑣, 𝑤⟩ = ⟨𝑥, 𝑤⟩)
1312eqeq2d 2205 . . . . . . . . . . . . 13 (𝑣 = 𝑥 → (𝑧 = ⟨𝑣, 𝑤⟩ ↔ 𝑧 = ⟨𝑥, 𝑤⟩))
1413anbi1d 465 . . . . . . . . . . . 12 (𝑣 = 𝑥 → ((𝑧 = ⟨𝑣, 𝑤⟩ ∧ 𝑤 ∈ {𝑦𝜑}) ↔ (𝑧 = ⟨𝑥, 𝑤⟩ ∧ 𝑤 ∈ {𝑦𝜑})))
1511, 14ceqsexv 2799 . . . . . . . . . . 11 (∃𝑣(𝑣 = 𝑥 ∧ (𝑧 = ⟨𝑣, 𝑤⟩ ∧ 𝑤 ∈ {𝑦𝜑})) ↔ (𝑧 = ⟨𝑥, 𝑤⟩ ∧ 𝑤 ∈ {𝑦𝜑}))
1610, 15bitri 184 . . . . . . . . . 10 (∃𝑣(𝑧 = ⟨𝑣, 𝑤⟩ ∧ (𝑣 ∈ {𝑥} ∧ 𝑤 ∈ {𝑦𝜑})) ↔ (𝑧 = ⟨𝑥, 𝑤⟩ ∧ 𝑤 ∈ {𝑦𝜑}))
1716exbii 1616 . . . . . . . . 9 (∃𝑤𝑣(𝑧 = ⟨𝑣, 𝑤⟩ ∧ (𝑣 ∈ {𝑥} ∧ 𝑤 ∈ {𝑦𝜑})) ↔ ∃𝑤(𝑧 = ⟨𝑥, 𝑤⟩ ∧ 𝑤 ∈ {𝑦𝜑}))
185, 17bitri 184 . . . . . . . 8 (∃𝑣𝑤(𝑧 = ⟨𝑣, 𝑤⟩ ∧ (𝑣 ∈ {𝑥} ∧ 𝑤 ∈ {𝑦𝜑})) ↔ ∃𝑤(𝑧 = ⟨𝑥, 𝑤⟩ ∧ 𝑤 ∈ {𝑦𝜑}))
19 nfv 1539 . . . . . . . . . 10 𝑦 𝑧 = ⟨𝑥, 𝑤
20 nfsab1 2183 . . . . . . . . . 10 𝑦 𝑤 ∈ {𝑦𝜑}
2119, 20nfan 1576 . . . . . . . . 9 𝑦(𝑧 = ⟨𝑥, 𝑤⟩ ∧ 𝑤 ∈ {𝑦𝜑})
22 nfv 1539 . . . . . . . . 9 𝑤(𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝜑)
23 opeq2 3806 . . . . . . . . . . 11 (𝑤 = 𝑦 → ⟨𝑥, 𝑤⟩ = ⟨𝑥, 𝑦⟩)
2423eqeq2d 2205 . . . . . . . . . 10 (𝑤 = 𝑦 → (𝑧 = ⟨𝑥, 𝑤⟩ ↔ 𝑧 = ⟨𝑥, 𝑦⟩))
25 df-clab 2180 . . . . . . . . . . 11 (𝑤 ∈ {𝑦𝜑} ↔ [𝑤 / 𝑦]𝜑)
26 sbequ12 1782 . . . . . . . . . . . 12 (𝑦 = 𝑤 → (𝜑 ↔ [𝑤 / 𝑦]𝜑))
2726equcoms 1719 . . . . . . . . . . 11 (𝑤 = 𝑦 → (𝜑 ↔ [𝑤 / 𝑦]𝜑))
2825, 27bitr4id 199 . . . . . . . . . 10 (𝑤 = 𝑦 → (𝑤 ∈ {𝑦𝜑} ↔ 𝜑))
2924, 28anbi12d 473 . . . . . . . . 9 (𝑤 = 𝑦 → ((𝑧 = ⟨𝑥, 𝑤⟩ ∧ 𝑤 ∈ {𝑦𝜑}) ↔ (𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝜑)))
3021, 22, 29cbvex 1767 . . . . . . . 8 (∃𝑤(𝑧 = ⟨𝑥, 𝑤⟩ ∧ 𝑤 ∈ {𝑦𝜑}) ↔ ∃𝑦(𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝜑))
314, 18, 303bitri 206 . . . . . . 7 (𝑧 ∈ ({𝑥} × {𝑦𝜑}) ↔ ∃𝑦(𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝜑))
3231anbi2i 457 . . . . . 6 ((𝑥𝐴𝑧 ∈ ({𝑥} × {𝑦𝜑})) ↔ (𝑥𝐴 ∧ ∃𝑦(𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝜑)))
331, 3, 323bitr4ri 213 . . . . 5 ((𝑥𝐴𝑧 ∈ ({𝑥} × {𝑦𝜑})) ↔ ∃𝑦(𝑧 = ⟨𝑥, 𝑦⟩ ∧ (𝑥𝐴𝜑)))
3433exbii 1616 . . . 4 (∃𝑥(𝑥𝐴𝑧 ∈ ({𝑥} × {𝑦𝜑})) ↔ ∃𝑥𝑦(𝑧 = ⟨𝑥, 𝑦⟩ ∧ (𝑥𝐴𝜑)))
35 eliun 3917 . . . . 5 (𝑧 𝑥𝐴 ({𝑥} × {𝑦𝜑}) ↔ ∃𝑥𝐴 𝑧 ∈ ({𝑥} × {𝑦𝜑}))
36 df-rex 2478 . . . . 5 (∃𝑥𝐴 𝑧 ∈ ({𝑥} × {𝑦𝜑}) ↔ ∃𝑥(𝑥𝐴𝑧 ∈ ({𝑥} × {𝑦𝜑})))
3735, 36bitri 184 . . . 4 (𝑧 𝑥𝐴 ({𝑥} × {𝑦𝜑}) ↔ ∃𝑥(𝑥𝐴𝑧 ∈ ({𝑥} × {𝑦𝜑})))
38 elopab 4289 . . . 4 (𝑧 ∈ {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝜑)} ↔ ∃𝑥𝑦(𝑧 = ⟨𝑥, 𝑦⟩ ∧ (𝑥𝐴𝜑)))
3934, 37, 383bitr4i 212 . . 3 (𝑧 𝑥𝐴 ({𝑥} × {𝑦𝜑}) ↔ 𝑧 ∈ {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝜑)})
4039eqriv 2190 . 2 𝑥𝐴 ({𝑥} × {𝑦𝜑}) = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝜑)}
41 opabex3.1 . . 3 𝐴 ∈ V
42 snexg 4214 . . . . . 6 (𝑥 ∈ V → {𝑥} ∈ V)
4311, 42ax-mp 5 . . . . 5 {𝑥} ∈ V
44 opabex3.2 . . . . 5 (𝑥𝐴 → {𝑦𝜑} ∈ V)
45 xpexg 4774 . . . . 5 (({𝑥} ∈ V ∧ {𝑦𝜑} ∈ V) → ({𝑥} × {𝑦𝜑}) ∈ V)
4643, 44, 45sylancr 414 . . . 4 (𝑥𝐴 → ({𝑥} × {𝑦𝜑}) ∈ V)
4746rgen 2547 . . 3 𝑥𝐴 ({𝑥} × {𝑦𝜑}) ∈ V
48 iunexg 6173 . . 3 ((𝐴 ∈ V ∧ ∀𝑥𝐴 ({𝑥} × {𝑦𝜑}) ∈ V) → 𝑥𝐴 ({𝑥} × {𝑦𝜑}) ∈ V)
4941, 47, 48mp2an 426 . 2 𝑥𝐴 ({𝑥} × {𝑦𝜑}) ∈ V
5040, 49eqeltrri 2267 1 {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝜑)} ∈ V
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1364  wex 1503  [wsb 1773  wcel 2164  {cab 2179  wral 2472  wrex 2473  Vcvv 2760  {csn 3619  cop 3622   ciun 3913  {copab 4090   × cxp 4658
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4145  ax-sep 4148  ax-pow 4204  ax-pr 4239  ax-un 4465
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-reu 2479  df-rab 2481  df-v 2762  df-sbc 2987  df-csb 3082  df-un 3158  df-in 3160  df-ss 3167  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-iun 3915  df-br 4031  df-opab 4092  df-mpt 4093  df-id 4325  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-rn 4671  df-res 4672  df-ima 4673  df-iota 5216  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator