ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  opabex3d GIF version

Theorem opabex3d 6178
Description: Existence of an ordered pair abstraction, deduction version. (Contributed by Alexander van der Vekens, 19-Oct-2017.)
Hypotheses
Ref Expression
opabex3d.1 (𝜑𝐴 ∈ V)
opabex3d.2 ((𝜑𝑥𝐴) → {𝑦𝜓} ∈ V)
Assertion
Ref Expression
opabex3d (𝜑 → {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝜓)} ∈ V)
Distinct variable groups:   𝑥,𝐴,𝑦   𝜑,𝑥
Allowed substitution hints:   𝜑(𝑦)   𝜓(𝑥,𝑦)

Proof of Theorem opabex3d
Dummy variables 𝑣 𝑤 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 19.42v 1921 . . . . . 6 (∃𝑦(𝑥𝐴 ∧ (𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝜓)) ↔ (𝑥𝐴 ∧ ∃𝑦(𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝜓)))
2 an12 561 . . . . . . 7 ((𝑧 = ⟨𝑥, 𝑦⟩ ∧ (𝑥𝐴𝜓)) ↔ (𝑥𝐴 ∧ (𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝜓)))
32exbii 1619 . . . . . 6 (∃𝑦(𝑧 = ⟨𝑥, 𝑦⟩ ∧ (𝑥𝐴𝜓)) ↔ ∃𝑦(𝑥𝐴 ∧ (𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝜓)))
4 elxp 4680 . . . . . . . 8 (𝑧 ∈ ({𝑥} × {𝑦𝜓}) ↔ ∃𝑣𝑤(𝑧 = ⟨𝑣, 𝑤⟩ ∧ (𝑣 ∈ {𝑥} ∧ 𝑤 ∈ {𝑦𝜓})))
5 excom 1678 . . . . . . . . 9 (∃𝑣𝑤(𝑧 = ⟨𝑣, 𝑤⟩ ∧ (𝑣 ∈ {𝑥} ∧ 𝑤 ∈ {𝑦𝜓})) ↔ ∃𝑤𝑣(𝑧 = ⟨𝑣, 𝑤⟩ ∧ (𝑣 ∈ {𝑥} ∧ 𝑤 ∈ {𝑦𝜓})))
6 an12 561 . . . . . . . . . . . . 13 ((𝑧 = ⟨𝑣, 𝑤⟩ ∧ (𝑣 ∈ {𝑥} ∧ 𝑤 ∈ {𝑦𝜓})) ↔ (𝑣 ∈ {𝑥} ∧ (𝑧 = ⟨𝑣, 𝑤⟩ ∧ 𝑤 ∈ {𝑦𝜓})))
7 velsn 3639 . . . . . . . . . . . . . 14 (𝑣 ∈ {𝑥} ↔ 𝑣 = 𝑥)
87anbi1i 458 . . . . . . . . . . . . 13 ((𝑣 ∈ {𝑥} ∧ (𝑧 = ⟨𝑣, 𝑤⟩ ∧ 𝑤 ∈ {𝑦𝜓})) ↔ (𝑣 = 𝑥 ∧ (𝑧 = ⟨𝑣, 𝑤⟩ ∧ 𝑤 ∈ {𝑦𝜓})))
96, 8bitri 184 . . . . . . . . . . . 12 ((𝑧 = ⟨𝑣, 𝑤⟩ ∧ (𝑣 ∈ {𝑥} ∧ 𝑤 ∈ {𝑦𝜓})) ↔ (𝑣 = 𝑥 ∧ (𝑧 = ⟨𝑣, 𝑤⟩ ∧ 𝑤 ∈ {𝑦𝜓})))
109exbii 1619 . . . . . . . . . . 11 (∃𝑣(𝑧 = ⟨𝑣, 𝑤⟩ ∧ (𝑣 ∈ {𝑥} ∧ 𝑤 ∈ {𝑦𝜓})) ↔ ∃𝑣(𝑣 = 𝑥 ∧ (𝑧 = ⟨𝑣, 𝑤⟩ ∧ 𝑤 ∈ {𝑦𝜓})))
11 vex 2766 . . . . . . . . . . . 12 𝑥 ∈ V
12 opeq1 3808 . . . . . . . . . . . . . 14 (𝑣 = 𝑥 → ⟨𝑣, 𝑤⟩ = ⟨𝑥, 𝑤⟩)
1312eqeq2d 2208 . . . . . . . . . . . . 13 (𝑣 = 𝑥 → (𝑧 = ⟨𝑣, 𝑤⟩ ↔ 𝑧 = ⟨𝑥, 𝑤⟩))
1413anbi1d 465 . . . . . . . . . . . 12 (𝑣 = 𝑥 → ((𝑧 = ⟨𝑣, 𝑤⟩ ∧ 𝑤 ∈ {𝑦𝜓}) ↔ (𝑧 = ⟨𝑥, 𝑤⟩ ∧ 𝑤 ∈ {𝑦𝜓})))
1511, 14ceqsexv 2802 . . . . . . . . . . 11 (∃𝑣(𝑣 = 𝑥 ∧ (𝑧 = ⟨𝑣, 𝑤⟩ ∧ 𝑤 ∈ {𝑦𝜓})) ↔ (𝑧 = ⟨𝑥, 𝑤⟩ ∧ 𝑤 ∈ {𝑦𝜓}))
1610, 15bitri 184 . . . . . . . . . 10 (∃𝑣(𝑧 = ⟨𝑣, 𝑤⟩ ∧ (𝑣 ∈ {𝑥} ∧ 𝑤 ∈ {𝑦𝜓})) ↔ (𝑧 = ⟨𝑥, 𝑤⟩ ∧ 𝑤 ∈ {𝑦𝜓}))
1716exbii 1619 . . . . . . . . 9 (∃𝑤𝑣(𝑧 = ⟨𝑣, 𝑤⟩ ∧ (𝑣 ∈ {𝑥} ∧ 𝑤 ∈ {𝑦𝜓})) ↔ ∃𝑤(𝑧 = ⟨𝑥, 𝑤⟩ ∧ 𝑤 ∈ {𝑦𝜓}))
185, 17bitri 184 . . . . . . . 8 (∃𝑣𝑤(𝑧 = ⟨𝑣, 𝑤⟩ ∧ (𝑣 ∈ {𝑥} ∧ 𝑤 ∈ {𝑦𝜓})) ↔ ∃𝑤(𝑧 = ⟨𝑥, 𝑤⟩ ∧ 𝑤 ∈ {𝑦𝜓}))
19 nfv 1542 . . . . . . . . . 10 𝑦 𝑧 = ⟨𝑥, 𝑤
20 nfsab1 2186 . . . . . . . . . 10 𝑦 𝑤 ∈ {𝑦𝜓}
2119, 20nfan 1579 . . . . . . . . 9 𝑦(𝑧 = ⟨𝑥, 𝑤⟩ ∧ 𝑤 ∈ {𝑦𝜓})
22 nfv 1542 . . . . . . . . 9 𝑤(𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝜓)
23 opeq2 3809 . . . . . . . . . . 11 (𝑤 = 𝑦 → ⟨𝑥, 𝑤⟩ = ⟨𝑥, 𝑦⟩)
2423eqeq2d 2208 . . . . . . . . . 10 (𝑤 = 𝑦 → (𝑧 = ⟨𝑥, 𝑤⟩ ↔ 𝑧 = ⟨𝑥, 𝑦⟩))
25 df-clab 2183 . . . . . . . . . . 11 (𝑤 ∈ {𝑦𝜓} ↔ [𝑤 / 𝑦]𝜓)
26 sbequ12 1785 . . . . . . . . . . . 12 (𝑦 = 𝑤 → (𝜓 ↔ [𝑤 / 𝑦]𝜓))
2726equcoms 1722 . . . . . . . . . . 11 (𝑤 = 𝑦 → (𝜓 ↔ [𝑤 / 𝑦]𝜓))
2825, 27bitr4id 199 . . . . . . . . . 10 (𝑤 = 𝑦 → (𝑤 ∈ {𝑦𝜓} ↔ 𝜓))
2924, 28anbi12d 473 . . . . . . . . 9 (𝑤 = 𝑦 → ((𝑧 = ⟨𝑥, 𝑤⟩ ∧ 𝑤 ∈ {𝑦𝜓}) ↔ (𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝜓)))
3021, 22, 29cbvex 1770 . . . . . . . 8 (∃𝑤(𝑧 = ⟨𝑥, 𝑤⟩ ∧ 𝑤 ∈ {𝑦𝜓}) ↔ ∃𝑦(𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝜓))
314, 18, 303bitri 206 . . . . . . 7 (𝑧 ∈ ({𝑥} × {𝑦𝜓}) ↔ ∃𝑦(𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝜓))
3231anbi2i 457 . . . . . 6 ((𝑥𝐴𝑧 ∈ ({𝑥} × {𝑦𝜓})) ↔ (𝑥𝐴 ∧ ∃𝑦(𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝜓)))
331, 3, 323bitr4ri 213 . . . . 5 ((𝑥𝐴𝑧 ∈ ({𝑥} × {𝑦𝜓})) ↔ ∃𝑦(𝑧 = ⟨𝑥, 𝑦⟩ ∧ (𝑥𝐴𝜓)))
3433exbii 1619 . . . 4 (∃𝑥(𝑥𝐴𝑧 ∈ ({𝑥} × {𝑦𝜓})) ↔ ∃𝑥𝑦(𝑧 = ⟨𝑥, 𝑦⟩ ∧ (𝑥𝐴𝜓)))
35 eliun 3920 . . . . 5 (𝑧 𝑥𝐴 ({𝑥} × {𝑦𝜓}) ↔ ∃𝑥𝐴 𝑧 ∈ ({𝑥} × {𝑦𝜓}))
36 df-rex 2481 . . . . 5 (∃𝑥𝐴 𝑧 ∈ ({𝑥} × {𝑦𝜓}) ↔ ∃𝑥(𝑥𝐴𝑧 ∈ ({𝑥} × {𝑦𝜓})))
3735, 36bitri 184 . . . 4 (𝑧 𝑥𝐴 ({𝑥} × {𝑦𝜓}) ↔ ∃𝑥(𝑥𝐴𝑧 ∈ ({𝑥} × {𝑦𝜓})))
38 elopab 4292 . . . 4 (𝑧 ∈ {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝜓)} ↔ ∃𝑥𝑦(𝑧 = ⟨𝑥, 𝑦⟩ ∧ (𝑥𝐴𝜓)))
3934, 37, 383bitr4i 212 . . 3 (𝑧 𝑥𝐴 ({𝑥} × {𝑦𝜓}) ↔ 𝑧 ∈ {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝜓)})
4039eqriv 2193 . 2 𝑥𝐴 ({𝑥} × {𝑦𝜓}) = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝜓)}
41 opabex3d.1 . . 3 (𝜑𝐴 ∈ V)
42 snexg 4217 . . . . . 6 (𝑥 ∈ V → {𝑥} ∈ V)
4311, 42ax-mp 5 . . . . 5 {𝑥} ∈ V
44 opabex3d.2 . . . . 5 ((𝜑𝑥𝐴) → {𝑦𝜓} ∈ V)
45 xpexg 4777 . . . . 5 (({𝑥} ∈ V ∧ {𝑦𝜓} ∈ V) → ({𝑥} × {𝑦𝜓}) ∈ V)
4643, 44, 45sylancr 414 . . . 4 ((𝜑𝑥𝐴) → ({𝑥} × {𝑦𝜓}) ∈ V)
4746ralrimiva 2570 . . 3 (𝜑 → ∀𝑥𝐴 ({𝑥} × {𝑦𝜓}) ∈ V)
48 iunexg 6176 . . 3 ((𝐴 ∈ V ∧ ∀𝑥𝐴 ({𝑥} × {𝑦𝜓}) ∈ V) → 𝑥𝐴 ({𝑥} × {𝑦𝜓}) ∈ V)
4941, 47, 48syl2anc 411 . 2 (𝜑 𝑥𝐴 ({𝑥} × {𝑦𝜓}) ∈ V)
5040, 49eqeltrrid 2284 1 (𝜑 → {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝜓)} ∈ V)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1364  wex 1506  [wsb 1776  wcel 2167  {cab 2182  wral 2475  wrex 2476  Vcvv 2763  {csn 3622  cop 3625   ciun 3916  {copab 4093   × cxp 4661
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4148  ax-sep 4151  ax-pow 4207  ax-pr 4242  ax-un 4468
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-reu 2482  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-un 3161  df-in 3163  df-ss 3170  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-iun 3918  df-br 4034  df-opab 4095  df-mpt 4096  df-id 4328  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-f1 5263  df-fo 5264  df-f1o 5265  df-fv 5266
This theorem is referenced by:  acfun  7274  ccfunen  7331  ovshftex  10984
  Copyright terms: Public domain W3C validator