ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xnn0xadd0 GIF version

Theorem xnn0xadd0 10059
Description: The sum of two extended nonnegative integers is 0 iff each of the two extended nonnegative integers is 0. (Contributed by AV, 14-Dec-2020.)
Assertion
Ref Expression
xnn0xadd0 ((𝐴 ∈ ℕ0*𝐵 ∈ ℕ0*) → ((𝐴 +𝑒 𝐵) = 0 ↔ (𝐴 = 0 ∧ 𝐵 = 0)))

Proof of Theorem xnn0xadd0
StepHypRef Expression
1 elxnn0 9430 . . . 4 (𝐴 ∈ ℕ0* ↔ (𝐴 ∈ ℕ0𝐴 = +∞))
2 elxnn0 9430 . . . . . . 7 (𝐵 ∈ ℕ0* ↔ (𝐵 ∈ ℕ0𝐵 = +∞))
3 nn0re 9374 . . . . . . . . . . . . 13 (𝐴 ∈ ℕ0𝐴 ∈ ℝ)
4 nn0re 9374 . . . . . . . . . . . . 13 (𝐵 ∈ ℕ0𝐵 ∈ ℝ)
5 rexadd 10044 . . . . . . . . . . . . 13 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 +𝑒 𝐵) = (𝐴 + 𝐵))
63, 4, 5syl2an 289 . . . . . . . . . . . 12 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ0) → (𝐴 +𝑒 𝐵) = (𝐴 + 𝐵))
76eqeq1d 2238 . . . . . . . . . . 11 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ0) → ((𝐴 +𝑒 𝐵) = 0 ↔ (𝐴 + 𝐵) = 0))
8 nn0ge0 9390 . . . . . . . . . . . . 13 (𝐴 ∈ ℕ0 → 0 ≤ 𝐴)
93, 8jca 306 . . . . . . . . . . . 12 (𝐴 ∈ ℕ0 → (𝐴 ∈ ℝ ∧ 0 ≤ 𝐴))
10 nn0ge0 9390 . . . . . . . . . . . . 13 (𝐵 ∈ ℕ0 → 0 ≤ 𝐵)
114, 10jca 306 . . . . . . . . . . . 12 (𝐵 ∈ ℕ0 → (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵))
12 add20 8617 . . . . . . . . . . . 12 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) → ((𝐴 + 𝐵) = 0 ↔ (𝐴 = 0 ∧ 𝐵 = 0)))
139, 11, 12syl2an 289 . . . . . . . . . . 11 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ0) → ((𝐴 + 𝐵) = 0 ↔ (𝐴 = 0 ∧ 𝐵 = 0)))
147, 13bitrd 188 . . . . . . . . . 10 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ0) → ((𝐴 +𝑒 𝐵) = 0 ↔ (𝐴 = 0 ∧ 𝐵 = 0)))
1514biimpd 144 . . . . . . . . 9 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ0) → ((𝐴 +𝑒 𝐵) = 0 → (𝐴 = 0 ∧ 𝐵 = 0)))
1615expcom 116 . . . . . . . 8 (𝐵 ∈ ℕ0 → (𝐴 ∈ ℕ0 → ((𝐴 +𝑒 𝐵) = 0 → (𝐴 = 0 ∧ 𝐵 = 0))))
17 oveq2 6008 . . . . . . . . . . . . 13 (𝐵 = +∞ → (𝐴 +𝑒 𝐵) = (𝐴 +𝑒 +∞))
1817eqeq1d 2238 . . . . . . . . . . . 12 (𝐵 = +∞ → ((𝐴 +𝑒 𝐵) = 0 ↔ (𝐴 +𝑒 +∞) = 0))
1918adantr 276 . . . . . . . . . . 11 ((𝐵 = +∞ ∧ 𝐴 ∈ ℕ0) → ((𝐴 +𝑒 𝐵) = 0 ↔ (𝐴 +𝑒 +∞) = 0))
20 nn0xnn0 9432 . . . . . . . . . . . . . 14 (𝐴 ∈ ℕ0𝐴 ∈ ℕ0*)
21 xnn0xrnemnf 9440 . . . . . . . . . . . . . 14 (𝐴 ∈ ℕ0* → (𝐴 ∈ ℝ*𝐴 ≠ -∞))
22 xaddpnf1 10038 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℝ*𝐴 ≠ -∞) → (𝐴 +𝑒 +∞) = +∞)
2320, 21, 223syl 17 . . . . . . . . . . . . 13 (𝐴 ∈ ℕ0 → (𝐴 +𝑒 +∞) = +∞)
2423adantl 277 . . . . . . . . . . . 12 ((𝐵 = +∞ ∧ 𝐴 ∈ ℕ0) → (𝐴 +𝑒 +∞) = +∞)
2524eqeq1d 2238 . . . . . . . . . . 11 ((𝐵 = +∞ ∧ 𝐴 ∈ ℕ0) → ((𝐴 +𝑒 +∞) = 0 ↔ +∞ = 0))
2619, 25bitrd 188 . . . . . . . . . 10 ((𝐵 = +∞ ∧ 𝐴 ∈ ℕ0) → ((𝐴 +𝑒 𝐵) = 0 ↔ +∞ = 0))
27 0re 8142 . . . . . . . . . . . . 13 0 ∈ ℝ
28 renepnf 8190 . . . . . . . . . . . . 13 (0 ∈ ℝ → 0 ≠ +∞)
2927, 28ax-mp 5 . . . . . . . . . . . 12 0 ≠ +∞
3029nesymi 2446 . . . . . . . . . . 11 ¬ +∞ = 0
3130pm2.21i 649 . . . . . . . . . 10 (+∞ = 0 → (𝐴 = 0 ∧ 𝐵 = 0))
3226, 31biimtrdi 163 . . . . . . . . 9 ((𝐵 = +∞ ∧ 𝐴 ∈ ℕ0) → ((𝐴 +𝑒 𝐵) = 0 → (𝐴 = 0 ∧ 𝐵 = 0)))
3332ex 115 . . . . . . . 8 (𝐵 = +∞ → (𝐴 ∈ ℕ0 → ((𝐴 +𝑒 𝐵) = 0 → (𝐴 = 0 ∧ 𝐵 = 0))))
3416, 33jaoi 721 . . . . . . 7 ((𝐵 ∈ ℕ0𝐵 = +∞) → (𝐴 ∈ ℕ0 → ((𝐴 +𝑒 𝐵) = 0 → (𝐴 = 0 ∧ 𝐵 = 0))))
352, 34sylbi 121 . . . . . 6 (𝐵 ∈ ℕ0* → (𝐴 ∈ ℕ0 → ((𝐴 +𝑒 𝐵) = 0 → (𝐴 = 0 ∧ 𝐵 = 0))))
3635com12 30 . . . . 5 (𝐴 ∈ ℕ0 → (𝐵 ∈ ℕ0* → ((𝐴 +𝑒 𝐵) = 0 → (𝐴 = 0 ∧ 𝐵 = 0))))
37 oveq1 6007 . . . . . . . . 9 (𝐴 = +∞ → (𝐴 +𝑒 𝐵) = (+∞ +𝑒 𝐵))
3837eqeq1d 2238 . . . . . . . 8 (𝐴 = +∞ → ((𝐴 +𝑒 𝐵) = 0 ↔ (+∞ +𝑒 𝐵) = 0))
39 xnn0xrnemnf 9440 . . . . . . . . . 10 (𝐵 ∈ ℕ0* → (𝐵 ∈ ℝ*𝐵 ≠ -∞))
40 xaddpnf2 10039 . . . . . . . . . 10 ((𝐵 ∈ ℝ*𝐵 ≠ -∞) → (+∞ +𝑒 𝐵) = +∞)
4139, 40syl 14 . . . . . . . . 9 (𝐵 ∈ ℕ0* → (+∞ +𝑒 𝐵) = +∞)
4241eqeq1d 2238 . . . . . . . 8 (𝐵 ∈ ℕ0* → ((+∞ +𝑒 𝐵) = 0 ↔ +∞ = 0))
4338, 42sylan9bb 462 . . . . . . 7 ((𝐴 = +∞ ∧ 𝐵 ∈ ℕ0*) → ((𝐴 +𝑒 𝐵) = 0 ↔ +∞ = 0))
4443, 31biimtrdi 163 . . . . . 6 ((𝐴 = +∞ ∧ 𝐵 ∈ ℕ0*) → ((𝐴 +𝑒 𝐵) = 0 → (𝐴 = 0 ∧ 𝐵 = 0)))
4544ex 115 . . . . 5 (𝐴 = +∞ → (𝐵 ∈ ℕ0* → ((𝐴 +𝑒 𝐵) = 0 → (𝐴 = 0 ∧ 𝐵 = 0))))
4636, 45jaoi 721 . . . 4 ((𝐴 ∈ ℕ0𝐴 = +∞) → (𝐵 ∈ ℕ0* → ((𝐴 +𝑒 𝐵) = 0 → (𝐴 = 0 ∧ 𝐵 = 0))))
471, 46sylbi 121 . . 3 (𝐴 ∈ ℕ0* → (𝐵 ∈ ℕ0* → ((𝐴 +𝑒 𝐵) = 0 → (𝐴 = 0 ∧ 𝐵 = 0))))
4847imp 124 . 2 ((𝐴 ∈ ℕ0*𝐵 ∈ ℕ0*) → ((𝐴 +𝑒 𝐵) = 0 → (𝐴 = 0 ∧ 𝐵 = 0)))
49 oveq12 6009 . . 3 ((𝐴 = 0 ∧ 𝐵 = 0) → (𝐴 +𝑒 𝐵) = (0 +𝑒 0))
50 0xr 8189 . . . 4 0 ∈ ℝ*
51 xaddid1 10054 . . . 4 (0 ∈ ℝ* → (0 +𝑒 0) = 0)
5250, 51ax-mp 5 . . 3 (0 +𝑒 0) = 0
5349, 52eqtrdi 2278 . 2 ((𝐴 = 0 ∧ 𝐵 = 0) → (𝐴 +𝑒 𝐵) = 0)
5448, 53impbid1 142 1 ((𝐴 ∈ ℕ0*𝐵 ∈ ℕ0*) → ((𝐴 +𝑒 𝐵) = 0 ↔ (𝐴 = 0 ∧ 𝐵 = 0)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  wo 713   = wceq 1395  wcel 2200  wne 2400   class class class wbr 4082  (class class class)co 6000  cr 7994  0cc0 7995   + caddc 7998  +∞cpnf 8174  -∞cmnf 8175  *cxr 8176  cle 8178  0cn0 9365  0*cxnn0 9428   +𝑒 cxad 9962
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4201  ax-pow 4257  ax-pr 4292  ax-un 4523  ax-setind 4628  ax-cnex 8086  ax-resscn 8087  ax-1cn 8088  ax-1re 8089  ax-icn 8090  ax-addcl 8091  ax-addrcl 8092  ax-mulcl 8093  ax-addcom 8095  ax-addass 8097  ax-i2m1 8100  ax-0lt1 8101  ax-0id 8103  ax-rnegex 8104  ax-pre-ltirr 8107  ax-pre-ltwlin 8108  ax-pre-lttrn 8109  ax-pre-apti 8110  ax-pre-ltadd 8111
This theorem depends on definitions:  df-bi 117  df-dc 840  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-rab 2517  df-v 2801  df-sbc 3029  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-if 3603  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-int 3923  df-br 4083  df-opab 4145  df-id 4383  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-iota 5277  df-fun 5319  df-fv 5325  df-ov 6003  df-oprab 6004  df-mpo 6005  df-pnf 8179  df-mnf 8180  df-xr 8181  df-ltxr 8182  df-le 8183  df-inn 9107  df-n0 9366  df-xnn0 9429  df-xadd 9965
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator