| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > xnn0xr | GIF version | ||
| Description: An extended nonnegative integer is an extended real. (Contributed by AV, 10-Dec-2020.) |
| Ref | Expression |
|---|---|
| xnn0xr | ⊢ (𝐴 ∈ ℕ0* → 𝐴 ∈ ℝ*) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elxnn0 9402 | . 2 ⊢ (𝐴 ∈ ℕ0* ↔ (𝐴 ∈ ℕ0 ∨ 𝐴 = +∞)) | |
| 2 | nn0re 9346 | . . . 4 ⊢ (𝐴 ∈ ℕ0 → 𝐴 ∈ ℝ) | |
| 3 | 2 | rexrd 8164 | . . 3 ⊢ (𝐴 ∈ ℕ0 → 𝐴 ∈ ℝ*) |
| 4 | pnfxr 8167 | . . . 4 ⊢ +∞ ∈ ℝ* | |
| 5 | eleq1 2272 | . . . 4 ⊢ (𝐴 = +∞ → (𝐴 ∈ ℝ* ↔ +∞ ∈ ℝ*)) | |
| 6 | 4, 5 | mpbiri 168 | . . 3 ⊢ (𝐴 = +∞ → 𝐴 ∈ ℝ*) |
| 7 | 3, 6 | jaoi 720 | . 2 ⊢ ((𝐴 ∈ ℕ0 ∨ 𝐴 = +∞) → 𝐴 ∈ ℝ*) |
| 8 | 1, 7 | sylbi 121 | 1 ⊢ (𝐴 ∈ ℕ0* → 𝐴 ∈ ℝ*) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∨ wo 712 = wceq 1375 ∈ wcel 2180 +∞cpnf 8146 ℝ*cxr 8148 ℕ0cn0 9337 ℕ0*cxnn0 9400 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 713 ax-5 1473 ax-7 1474 ax-gen 1475 ax-ie1 1519 ax-ie2 1520 ax-8 1530 ax-10 1531 ax-11 1532 ax-i12 1533 ax-bndl 1535 ax-4 1536 ax-17 1552 ax-i9 1556 ax-ial 1560 ax-i5r 1561 ax-13 2182 ax-14 2183 ax-ext 2191 ax-sep 4181 ax-pow 4237 ax-un 4501 ax-cnex 8058 ax-resscn 8059 ax-1re 8061 ax-addrcl 8064 ax-rnegex 8076 |
| This theorem depends on definitions: df-bi 117 df-tru 1378 df-nf 1487 df-sb 1789 df-clab 2196 df-cleq 2202 df-clel 2205 df-nfc 2341 df-ral 2493 df-rex 2494 df-v 2781 df-un 3181 df-in 3183 df-ss 3190 df-pw 3631 df-sn 3652 df-pr 3653 df-uni 3868 df-int 3903 df-pnf 8151 df-xr 8153 df-inn 9079 df-n0 9338 df-xnn0 9401 |
| This theorem is referenced by: xnn0xrnemnf 9412 xnn0dcle 9966 xnn0letri 9967 |
| Copyright terms: Public domain | W3C validator |