ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xnn0xr GIF version

Theorem xnn0xr 9246
Description: An extended nonnegative integer is an extended real. (Contributed by AV, 10-Dec-2020.)
Assertion
Ref Expression
xnn0xr (𝐴 ∈ ℕ0*𝐴 ∈ ℝ*)

Proof of Theorem xnn0xr
StepHypRef Expression
1 elxnn0 9243 . 2 (𝐴 ∈ ℕ0* ↔ (𝐴 ∈ ℕ0𝐴 = +∞))
2 nn0re 9187 . . . 4 (𝐴 ∈ ℕ0𝐴 ∈ ℝ)
32rexrd 8009 . . 3 (𝐴 ∈ ℕ0𝐴 ∈ ℝ*)
4 pnfxr 8012 . . . 4 +∞ ∈ ℝ*
5 eleq1 2240 . . . 4 (𝐴 = +∞ → (𝐴 ∈ ℝ* ↔ +∞ ∈ ℝ*))
64, 5mpbiri 168 . . 3 (𝐴 = +∞ → 𝐴 ∈ ℝ*)
73, 6jaoi 716 . 2 ((𝐴 ∈ ℕ0𝐴 = +∞) → 𝐴 ∈ ℝ*)
81, 7sylbi 121 1 (𝐴 ∈ ℕ0*𝐴 ∈ ℝ*)
Colors of variables: wff set class
Syntax hints:  wi 4  wo 708   = wceq 1353  wcel 2148  +∞cpnf 7991  *cxr 7993  0cn0 9178  0*cxnn0 9241
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4123  ax-pow 4176  ax-un 4435  ax-cnex 7904  ax-resscn 7905  ax-1re 7907  ax-addrcl 7910  ax-rnegex 7922
This theorem depends on definitions:  df-bi 117  df-tru 1356  df-nf 1461  df-sb 1763  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460  df-rex 2461  df-v 2741  df-un 3135  df-in 3137  df-ss 3144  df-pw 3579  df-sn 3600  df-pr 3601  df-uni 3812  df-int 3847  df-pnf 7996  df-xr 7998  df-inn 8922  df-n0 9179  df-xnn0 9242
This theorem is referenced by:  xnn0xrnemnf  9253  xnn0dcle  9804  xnn0letri  9805
  Copyright terms: Public domain W3C validator