Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > xnn0xr | GIF version |
Description: An extended nonnegative integer is an extended real. (Contributed by AV, 10-Dec-2020.) |
Ref | Expression |
---|---|
xnn0xr | ⊢ (𝐴 ∈ ℕ0* → 𝐴 ∈ ℝ*) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elxnn0 9179 | . 2 ⊢ (𝐴 ∈ ℕ0* ↔ (𝐴 ∈ ℕ0 ∨ 𝐴 = +∞)) | |
2 | nn0re 9123 | . . . 4 ⊢ (𝐴 ∈ ℕ0 → 𝐴 ∈ ℝ) | |
3 | 2 | rexrd 7948 | . . 3 ⊢ (𝐴 ∈ ℕ0 → 𝐴 ∈ ℝ*) |
4 | pnfxr 7951 | . . . 4 ⊢ +∞ ∈ ℝ* | |
5 | eleq1 2229 | . . . 4 ⊢ (𝐴 = +∞ → (𝐴 ∈ ℝ* ↔ +∞ ∈ ℝ*)) | |
6 | 4, 5 | mpbiri 167 | . . 3 ⊢ (𝐴 = +∞ → 𝐴 ∈ ℝ*) |
7 | 3, 6 | jaoi 706 | . 2 ⊢ ((𝐴 ∈ ℕ0 ∨ 𝐴 = +∞) → 𝐴 ∈ ℝ*) |
8 | 1, 7 | sylbi 120 | 1 ⊢ (𝐴 ∈ ℕ0* → 𝐴 ∈ ℝ*) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∨ wo 698 = wceq 1343 ∈ wcel 2136 +∞cpnf 7930 ℝ*cxr 7932 ℕ0cn0 9114 ℕ0*cxnn0 9177 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-pow 4153 ax-un 4411 ax-cnex 7844 ax-resscn 7845 ax-1re 7847 ax-addrcl 7850 ax-rnegex 7862 |
This theorem depends on definitions: df-bi 116 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-rex 2450 df-v 2728 df-un 3120 df-in 3122 df-ss 3129 df-pw 3561 df-sn 3582 df-pr 3583 df-uni 3790 df-int 3825 df-pnf 7935 df-xr 7937 df-inn 8858 df-n0 9115 df-xnn0 9178 |
This theorem is referenced by: xnn0xrnemnf 9189 xnn0dcle 9738 xnn0letri 9739 |
Copyright terms: Public domain | W3C validator |