| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > xnn0xr | GIF version | ||
| Description: An extended nonnegative integer is an extended real. (Contributed by AV, 10-Dec-2020.) |
| Ref | Expression |
|---|---|
| xnn0xr | ⊢ (𝐴 ∈ ℕ0* → 𝐴 ∈ ℝ*) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elxnn0 9442 | . 2 ⊢ (𝐴 ∈ ℕ0* ↔ (𝐴 ∈ ℕ0 ∨ 𝐴 = +∞)) | |
| 2 | nn0re 9386 | . . . 4 ⊢ (𝐴 ∈ ℕ0 → 𝐴 ∈ ℝ) | |
| 3 | 2 | rexrd 8204 | . . 3 ⊢ (𝐴 ∈ ℕ0 → 𝐴 ∈ ℝ*) |
| 4 | pnfxr 8207 | . . . 4 ⊢ +∞ ∈ ℝ* | |
| 5 | eleq1 2292 | . . . 4 ⊢ (𝐴 = +∞ → (𝐴 ∈ ℝ* ↔ +∞ ∈ ℝ*)) | |
| 6 | 4, 5 | mpbiri 168 | . . 3 ⊢ (𝐴 = +∞ → 𝐴 ∈ ℝ*) |
| 7 | 3, 6 | jaoi 721 | . 2 ⊢ ((𝐴 ∈ ℕ0 ∨ 𝐴 = +∞) → 𝐴 ∈ ℝ*) |
| 8 | 1, 7 | sylbi 121 | 1 ⊢ (𝐴 ∈ ℕ0* → 𝐴 ∈ ℝ*) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∨ wo 713 = wceq 1395 ∈ wcel 2200 +∞cpnf 8186 ℝ*cxr 8188 ℕ0cn0 9377 ℕ0*cxnn0 9440 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4202 ax-pow 4258 ax-un 4524 ax-cnex 8098 ax-resscn 8099 ax-1re 8101 ax-addrcl 8104 ax-rnegex 8116 |
| This theorem depends on definitions: df-bi 117 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-v 2801 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-uni 3889 df-int 3924 df-pnf 8191 df-xr 8193 df-inn 9119 df-n0 9378 df-xnn0 9441 |
| This theorem is referenced by: xnn0xrnemnf 9452 xnn0dcle 10006 xnn0letri 10007 |
| Copyright terms: Public domain | W3C validator |