| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > xnn0xr | GIF version | ||
| Description: An extended nonnegative integer is an extended real. (Contributed by AV, 10-Dec-2020.) |
| Ref | Expression |
|---|---|
| xnn0xr | ⊢ (𝐴 ∈ ℕ0* → 𝐴 ∈ ℝ*) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elxnn0 9367 | . 2 ⊢ (𝐴 ∈ ℕ0* ↔ (𝐴 ∈ ℕ0 ∨ 𝐴 = +∞)) | |
| 2 | nn0re 9311 | . . . 4 ⊢ (𝐴 ∈ ℕ0 → 𝐴 ∈ ℝ) | |
| 3 | 2 | rexrd 8129 | . . 3 ⊢ (𝐴 ∈ ℕ0 → 𝐴 ∈ ℝ*) |
| 4 | pnfxr 8132 | . . . 4 ⊢ +∞ ∈ ℝ* | |
| 5 | eleq1 2269 | . . . 4 ⊢ (𝐴 = +∞ → (𝐴 ∈ ℝ* ↔ +∞ ∈ ℝ*)) | |
| 6 | 4, 5 | mpbiri 168 | . . 3 ⊢ (𝐴 = +∞ → 𝐴 ∈ ℝ*) |
| 7 | 3, 6 | jaoi 718 | . 2 ⊢ ((𝐴 ∈ ℕ0 ∨ 𝐴 = +∞) → 𝐴 ∈ ℝ*) |
| 8 | 1, 7 | sylbi 121 | 1 ⊢ (𝐴 ∈ ℕ0* → 𝐴 ∈ ℝ*) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∨ wo 710 = wceq 1373 ∈ wcel 2177 +∞cpnf 8111 ℝ*cxr 8113 ℕ0cn0 9302 ℕ0*cxnn0 9365 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-sep 4166 ax-pow 4222 ax-un 4484 ax-cnex 8023 ax-resscn 8024 ax-1re 8026 ax-addrcl 8029 ax-rnegex 8041 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ral 2490 df-rex 2491 df-v 2775 df-un 3171 df-in 3173 df-ss 3180 df-pw 3619 df-sn 3640 df-pr 3641 df-uni 3853 df-int 3888 df-pnf 8116 df-xr 8118 df-inn 9044 df-n0 9303 df-xnn0 9366 |
| This theorem is referenced by: xnn0xrnemnf 9377 xnn0dcle 9931 xnn0letri 9932 |
| Copyright terms: Public domain | W3C validator |