ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xnn0xr GIF version

Theorem xnn0xr 9405
Description: An extended nonnegative integer is an extended real. (Contributed by AV, 10-Dec-2020.)
Assertion
Ref Expression
xnn0xr (𝐴 ∈ ℕ0*𝐴 ∈ ℝ*)

Proof of Theorem xnn0xr
StepHypRef Expression
1 elxnn0 9402 . 2 (𝐴 ∈ ℕ0* ↔ (𝐴 ∈ ℕ0𝐴 = +∞))
2 nn0re 9346 . . . 4 (𝐴 ∈ ℕ0𝐴 ∈ ℝ)
32rexrd 8164 . . 3 (𝐴 ∈ ℕ0𝐴 ∈ ℝ*)
4 pnfxr 8167 . . . 4 +∞ ∈ ℝ*
5 eleq1 2272 . . . 4 (𝐴 = +∞ → (𝐴 ∈ ℝ* ↔ +∞ ∈ ℝ*))
64, 5mpbiri 168 . . 3 (𝐴 = +∞ → 𝐴 ∈ ℝ*)
73, 6jaoi 720 . 2 ((𝐴 ∈ ℕ0𝐴 = +∞) → 𝐴 ∈ ℝ*)
81, 7sylbi 121 1 (𝐴 ∈ ℕ0*𝐴 ∈ ℝ*)
Colors of variables: wff set class
Syntax hints:  wi 4  wo 712   = wceq 1375  wcel 2180  +∞cpnf 8146  *cxr 8148  0cn0 9337  0*cxnn0 9400
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 713  ax-5 1473  ax-7 1474  ax-gen 1475  ax-ie1 1519  ax-ie2 1520  ax-8 1530  ax-10 1531  ax-11 1532  ax-i12 1533  ax-bndl 1535  ax-4 1536  ax-17 1552  ax-i9 1556  ax-ial 1560  ax-i5r 1561  ax-13 2182  ax-14 2183  ax-ext 2191  ax-sep 4181  ax-pow 4237  ax-un 4501  ax-cnex 8058  ax-resscn 8059  ax-1re 8061  ax-addrcl 8064  ax-rnegex 8076
This theorem depends on definitions:  df-bi 117  df-tru 1378  df-nf 1487  df-sb 1789  df-clab 2196  df-cleq 2202  df-clel 2205  df-nfc 2341  df-ral 2493  df-rex 2494  df-v 2781  df-un 3181  df-in 3183  df-ss 3190  df-pw 3631  df-sn 3652  df-pr 3653  df-uni 3868  df-int 3903  df-pnf 8151  df-xr 8153  df-inn 9079  df-n0 9338  df-xnn0 9401
This theorem is referenced by:  xnn0xrnemnf  9412  xnn0dcle  9966  xnn0letri  9967
  Copyright terms: Public domain W3C validator