ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xnn0xr GIF version

Theorem xnn0xr 9445
Description: An extended nonnegative integer is an extended real. (Contributed by AV, 10-Dec-2020.)
Assertion
Ref Expression
xnn0xr (𝐴 ∈ ℕ0*𝐴 ∈ ℝ*)

Proof of Theorem xnn0xr
StepHypRef Expression
1 elxnn0 9442 . 2 (𝐴 ∈ ℕ0* ↔ (𝐴 ∈ ℕ0𝐴 = +∞))
2 nn0re 9386 . . . 4 (𝐴 ∈ ℕ0𝐴 ∈ ℝ)
32rexrd 8204 . . 3 (𝐴 ∈ ℕ0𝐴 ∈ ℝ*)
4 pnfxr 8207 . . . 4 +∞ ∈ ℝ*
5 eleq1 2292 . . . 4 (𝐴 = +∞ → (𝐴 ∈ ℝ* ↔ +∞ ∈ ℝ*))
64, 5mpbiri 168 . . 3 (𝐴 = +∞ → 𝐴 ∈ ℝ*)
73, 6jaoi 721 . 2 ((𝐴 ∈ ℕ0𝐴 = +∞) → 𝐴 ∈ ℝ*)
81, 7sylbi 121 1 (𝐴 ∈ ℕ0*𝐴 ∈ ℝ*)
Colors of variables: wff set class
Syntax hints:  wi 4  wo 713   = wceq 1395  wcel 2200  +∞cpnf 8186  *cxr 8188  0cn0 9377  0*cxnn0 9440
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-pow 4258  ax-un 4524  ax-cnex 8098  ax-resscn 8099  ax-1re 8101  ax-addrcl 8104  ax-rnegex 8116
This theorem depends on definitions:  df-bi 117  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-v 2801  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-uni 3889  df-int 3924  df-pnf 8191  df-xr 8193  df-inn 9119  df-n0 9378  df-xnn0 9441
This theorem is referenced by:  xnn0xrnemnf  9452  xnn0dcle  10006  xnn0letri  10007
  Copyright terms: Public domain W3C validator