ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xnn0xr GIF version

Theorem xnn0xr 9370
Description: An extended nonnegative integer is an extended real. (Contributed by AV, 10-Dec-2020.)
Assertion
Ref Expression
xnn0xr (𝐴 ∈ ℕ0*𝐴 ∈ ℝ*)

Proof of Theorem xnn0xr
StepHypRef Expression
1 elxnn0 9367 . 2 (𝐴 ∈ ℕ0* ↔ (𝐴 ∈ ℕ0𝐴 = +∞))
2 nn0re 9311 . . . 4 (𝐴 ∈ ℕ0𝐴 ∈ ℝ)
32rexrd 8129 . . 3 (𝐴 ∈ ℕ0𝐴 ∈ ℝ*)
4 pnfxr 8132 . . . 4 +∞ ∈ ℝ*
5 eleq1 2269 . . . 4 (𝐴 = +∞ → (𝐴 ∈ ℝ* ↔ +∞ ∈ ℝ*))
64, 5mpbiri 168 . . 3 (𝐴 = +∞ → 𝐴 ∈ ℝ*)
73, 6jaoi 718 . 2 ((𝐴 ∈ ℕ0𝐴 = +∞) → 𝐴 ∈ ℝ*)
81, 7sylbi 121 1 (𝐴 ∈ ℕ0*𝐴 ∈ ℝ*)
Colors of variables: wff set class
Syntax hints:  wi 4  wo 710   = wceq 1373  wcel 2177  +∞cpnf 8111  *cxr 8113  0cn0 9302  0*cxnn0 9365
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-sep 4166  ax-pow 4222  ax-un 4484  ax-cnex 8023  ax-resscn 8024  ax-1re 8026  ax-addrcl 8029  ax-rnegex 8041
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ral 2490  df-rex 2491  df-v 2775  df-un 3171  df-in 3173  df-ss 3180  df-pw 3619  df-sn 3640  df-pr 3641  df-uni 3853  df-int 3888  df-pnf 8116  df-xr 8118  df-inn 9044  df-n0 9303  df-xnn0 9366
This theorem is referenced by:  xnn0xrnemnf  9377  xnn0dcle  9931  xnn0letri  9932
  Copyright terms: Public domain W3C validator