Proof of Theorem 1tonninf
Step | Hyp | Ref
| Expression |
1 | | fxnn0nninf.i |
. . . . 5
⊢ 𝐼 = ((𝐹 ∘ ◡𝐺) ∪ {〈+∞, (ω ×
{1o})〉}) |
2 | 1 | fveq1i 5487 |
. . . 4
⊢ (𝐼‘1) = (((𝐹 ∘ ◡𝐺) ∪ {〈+∞, (ω ×
{1o})〉})‘1) |
3 | | 1nn0 9130 |
. . . . . 6
⊢ 1 ∈
ℕ0 |
4 | | nn0xnn0 9181 |
. . . . . 6
⊢ (1 ∈
ℕ0 → 1 ∈
ℕ0*) |
5 | 3, 4 | ax-mp 5 |
. . . . 5
⊢ 1 ∈
ℕ0* |
6 | | nn0nepnf 9185 |
. . . . . . 7
⊢ (1 ∈
ℕ0 → 1 ≠ +∞) |
7 | 3, 6 | ax-mp 5 |
. . . . . 6
⊢ 1 ≠
+∞ |
8 | 7 | necomi 2421 |
. . . . 5
⊢ +∞
≠ 1 |
9 | | fvunsng 5679 |
. . . . 5
⊢ ((1
∈ ℕ0* ∧ +∞ ≠ 1) → (((𝐹 ∘ ◡𝐺) ∪ {〈+∞, (ω ×
{1o})〉})‘1) = ((𝐹 ∘ ◡𝐺)‘1)) |
10 | 5, 8, 9 | mp2an 423 |
. . . 4
⊢ (((𝐹 ∘ ◡𝐺) ∪ {〈+∞, (ω ×
{1o})〉})‘1) = ((𝐹 ∘ ◡𝐺)‘1) |
11 | | fxnn0nninf.g |
. . . . . . . 8
⊢ 𝐺 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0) |
12 | 11 | frechashgf1o 10363 |
. . . . . . 7
⊢ 𝐺:ω–1-1-onto→ℕ0 |
13 | | f1ocnv 5445 |
. . . . . . 7
⊢ (𝐺:ω–1-1-onto→ℕ0 → ◡𝐺:ℕ0–1-1-onto→ω) |
14 | 12, 13 | ax-mp 5 |
. . . . . 6
⊢ ◡𝐺:ℕ0–1-1-onto→ω |
15 | | f1of 5432 |
. . . . . 6
⊢ (◡𝐺:ℕ0–1-1-onto→ω → ◡𝐺:ℕ0⟶ω) |
16 | 14, 15 | ax-mp 5 |
. . . . 5
⊢ ◡𝐺:ℕ0⟶ω |
17 | | fvco3 5557 |
. . . . 5
⊢ ((◡𝐺:ℕ0⟶ω ∧ 1
∈ ℕ0) → ((𝐹 ∘ ◡𝐺)‘1) = (𝐹‘(◡𝐺‘1))) |
18 | 16, 3, 17 | mp2an 423 |
. . . 4
⊢ ((𝐹 ∘ ◡𝐺)‘1) = (𝐹‘(◡𝐺‘1)) |
19 | 2, 10, 18 | 3eqtri 2190 |
. . 3
⊢ (𝐼‘1) = (𝐹‘(◡𝐺‘1)) |
20 | | df-1o 6384 |
. . . . . . 7
⊢
1o = suc ∅ |
21 | 20 | fveq2i 5489 |
. . . . . 6
⊢ (𝐺‘1o) = (𝐺‘suc
∅) |
22 | | 0zd 9203 |
. . . . . . . . 9
⊢ (⊤
→ 0 ∈ ℤ) |
23 | | peano1 4571 |
. . . . . . . . . 10
⊢ ∅
∈ ω |
24 | 23 | a1i 9 |
. . . . . . . . 9
⊢ (⊤
→ ∅ ∈ ω) |
25 | 22, 11, 24 | frec2uzsucd 10336 |
. . . . . . . 8
⊢ (⊤
→ (𝐺‘suc
∅) = ((𝐺‘∅) + 1)) |
26 | 25 | mptru 1352 |
. . . . . . 7
⊢ (𝐺‘suc ∅) = ((𝐺‘∅) +
1) |
27 | 22, 11 | frec2uz0d 10334 |
. . . . . . . . 9
⊢ (⊤
→ (𝐺‘∅) =
0) |
28 | 27 | mptru 1352 |
. . . . . . . 8
⊢ (𝐺‘∅) =
0 |
29 | 28 | oveq1i 5852 |
. . . . . . 7
⊢ ((𝐺‘∅) + 1) = (0 +
1) |
30 | 26, 29 | eqtri 2186 |
. . . . . 6
⊢ (𝐺‘suc ∅) = (0 +
1) |
31 | | 0p1e1 8971 |
. . . . . 6
⊢ (0 + 1) =
1 |
32 | 21, 30, 31 | 3eqtri 2190 |
. . . . 5
⊢ (𝐺‘1o) =
1 |
33 | | 1onn 6488 |
. . . . . 6
⊢
1o ∈ ω |
34 | | f1ocnvfv 5747 |
. . . . . 6
⊢ ((𝐺:ω–1-1-onto→ℕ0 ∧ 1o ∈
ω) → ((𝐺‘1o) = 1 → (◡𝐺‘1) = 1o)) |
35 | 12, 33, 34 | mp2an 423 |
. . . . 5
⊢ ((𝐺‘1o) = 1 →
(◡𝐺‘1) = 1o) |
36 | 32, 35 | ax-mp 5 |
. . . 4
⊢ (◡𝐺‘1) = 1o |
37 | 36 | fveq2i 5489 |
. . 3
⊢ (𝐹‘(◡𝐺‘1)) = (𝐹‘1o) |
38 | | eleq2 2230 |
. . . . . . 7
⊢ (𝑛 = 1o → (𝑖 ∈ 𝑛 ↔ 𝑖 ∈ 1o)) |
39 | 38 | ifbid 3541 |
. . . . . 6
⊢ (𝑛 = 1o → if(𝑖 ∈ 𝑛, 1o, ∅) = if(𝑖 ∈ 1o,
1o, ∅)) |
40 | 39 | mpteq2dv 4073 |
. . . . 5
⊢ (𝑛 = 1o → (𝑖 ∈ ω ↦ if(𝑖 ∈ 𝑛, 1o, ∅)) = (𝑖 ∈ ω ↦ if(𝑖 ∈ 1o,
1o, ∅))) |
41 | | fxnn0nninf.f |
. . . . 5
⊢ 𝐹 = (𝑛 ∈ ω ↦ (𝑖 ∈ ω ↦ if(𝑖 ∈ 𝑛, 1o, ∅))) |
42 | | omex 4570 |
. . . . . 6
⊢ ω
∈ V |
43 | 42 | mptex 5711 |
. . . . 5
⊢ (𝑖 ∈ ω ↦ if(𝑖 ∈ 𝑛, 1o, ∅)) ∈
V |
44 | 40, 41, 43 | fvmpt3i 5566 |
. . . 4
⊢
(1o ∈ ω → (𝐹‘1o) = (𝑖 ∈ ω ↦ if(𝑖 ∈ 1o, 1o,
∅))) |
45 | 33, 44 | ax-mp 5 |
. . 3
⊢ (𝐹‘1o) = (𝑖 ∈ ω ↦ if(𝑖 ∈ 1o,
1o, ∅)) |
46 | 19, 37, 45 | 3eqtri 2190 |
. 2
⊢ (𝐼‘1) = (𝑖 ∈ ω ↦ if(𝑖 ∈ 1o, 1o,
∅)) |
47 | | el1o 6405 |
. . . 4
⊢ (𝑖 ∈ 1o ↔
𝑖 =
∅) |
48 | | ifbi 3540 |
. . . 4
⊢ ((𝑖 ∈ 1o ↔
𝑖 = ∅) →
if(𝑖 ∈ 1o,
1o, ∅) = if(𝑖 = ∅, 1o,
∅)) |
49 | 47, 48 | ax-mp 5 |
. . 3
⊢ if(𝑖 ∈ 1o,
1o, ∅) = if(𝑖 = ∅, 1o,
∅) |
50 | 49 | mpteq2i 4069 |
. 2
⊢ (𝑖 ∈ ω ↦ if(𝑖 ∈ 1o,
1o, ∅)) = (𝑖 ∈ ω ↦ if(𝑖 = ∅, 1o,
∅)) |
51 | | eqeq1 2172 |
. . . 4
⊢ (𝑖 = 𝑥 → (𝑖 = ∅ ↔ 𝑥 = ∅)) |
52 | 51 | ifbid 3541 |
. . 3
⊢ (𝑖 = 𝑥 → if(𝑖 = ∅, 1o, ∅) =
if(𝑥 = ∅,
1o, ∅)) |
53 | 52 | cbvmptv 4078 |
. 2
⊢ (𝑖 ∈ ω ↦ if(𝑖 = ∅, 1o,
∅)) = (𝑥 ∈
ω ↦ if(𝑥 =
∅, 1o, ∅)) |
54 | 46, 50, 53 | 3eqtri 2190 |
1
⊢ (𝐼‘1) = (𝑥 ∈ ω ↦ if(𝑥 = ∅, 1o,
∅)) |