ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  1tonninf GIF version

Theorem 1tonninf 10213
Description: The mapping of one into is a sequence which is a one followed by zeroes. (Contributed by Jim Kingdon, 17-Jul-2022.)
Hypotheses
Ref Expression
fxnn0nninf.g 𝐺 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0)
fxnn0nninf.f 𝐹 = (𝑛 ∈ ω ↦ (𝑖 ∈ ω ↦ if(𝑖𝑛, 1o, ∅)))
fxnn0nninf.i 𝐼 = ((𝐹𝐺) ∪ {⟨+∞, (ω × {1o})⟩})
Assertion
Ref Expression
1tonninf (𝐼‘1) = (𝑥 ∈ ω ↦ if(𝑥 = ∅, 1o, ∅))
Distinct variable groups:   𝑖,𝑛   𝑥,𝑖
Allowed substitution hints:   𝐹(𝑥,𝑖,𝑛)   𝐺(𝑥,𝑖,𝑛)   𝐼(𝑥,𝑖,𝑛)

Proof of Theorem 1tonninf
StepHypRef Expression
1 fxnn0nninf.i . . . . 5 𝐼 = ((𝐹𝐺) ∪ {⟨+∞, (ω × {1o})⟩})
21fveq1i 5422 . . . 4 (𝐼‘1) = (((𝐹𝐺) ∪ {⟨+∞, (ω × {1o})⟩})‘1)
3 1nn0 8993 . . . . . 6 1 ∈ ℕ0
4 nn0xnn0 9044 . . . . . 6 (1 ∈ ℕ0 → 1 ∈ ℕ0*)
53, 4ax-mp 5 . . . . 5 1 ∈ ℕ0*
6 nn0nepnf 9048 . . . . . . 7 (1 ∈ ℕ0 → 1 ≠ +∞)
73, 6ax-mp 5 . . . . . 6 1 ≠ +∞
87necomi 2393 . . . . 5 +∞ ≠ 1
9 fvunsng 5614 . . . . 5 ((1 ∈ ℕ0* ∧ +∞ ≠ 1) → (((𝐹𝐺) ∪ {⟨+∞, (ω × {1o})⟩})‘1) = ((𝐹𝐺)‘1))
105, 8, 9mp2an 422 . . . 4 (((𝐹𝐺) ∪ {⟨+∞, (ω × {1o})⟩})‘1) = ((𝐹𝐺)‘1)
11 fxnn0nninf.g . . . . . . . 8 𝐺 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0)
1211frechashgf1o 10201 . . . . . . 7 𝐺:ω–1-1-onto→ℕ0
13 f1ocnv 5380 . . . . . . 7 (𝐺:ω–1-1-onto→ℕ0𝐺:ℕ01-1-onto→ω)
1412, 13ax-mp 5 . . . . . 6 𝐺:ℕ01-1-onto→ω
15 f1of 5367 . . . . . 6 (𝐺:ℕ01-1-onto→ω → 𝐺:ℕ0⟶ω)
1614, 15ax-mp 5 . . . . 5 𝐺:ℕ0⟶ω
17 fvco3 5492 . . . . 5 ((𝐺:ℕ0⟶ω ∧ 1 ∈ ℕ0) → ((𝐹𝐺)‘1) = (𝐹‘(𝐺‘1)))
1816, 3, 17mp2an 422 . . . 4 ((𝐹𝐺)‘1) = (𝐹‘(𝐺‘1))
192, 10, 183eqtri 2164 . . 3 (𝐼‘1) = (𝐹‘(𝐺‘1))
20 df-1o 6313 . . . . . . 7 1o = suc ∅
2120fveq2i 5424 . . . . . 6 (𝐺‘1o) = (𝐺‘suc ∅)
22 0zd 9066 . . . . . . . . 9 (⊤ → 0 ∈ ℤ)
23 peano1 4508 . . . . . . . . . 10 ∅ ∈ ω
2423a1i 9 . . . . . . . . 9 (⊤ → ∅ ∈ ω)
2522, 11, 24frec2uzsucd 10174 . . . . . . . 8 (⊤ → (𝐺‘suc ∅) = ((𝐺‘∅) + 1))
2625mptru 1340 . . . . . . 7 (𝐺‘suc ∅) = ((𝐺‘∅) + 1)
2722, 11frec2uz0d 10172 . . . . . . . . 9 (⊤ → (𝐺‘∅) = 0)
2827mptru 1340 . . . . . . . 8 (𝐺‘∅) = 0
2928oveq1i 5784 . . . . . . 7 ((𝐺‘∅) + 1) = (0 + 1)
3026, 29eqtri 2160 . . . . . 6 (𝐺‘suc ∅) = (0 + 1)
31 0p1e1 8834 . . . . . 6 (0 + 1) = 1
3221, 30, 313eqtri 2164 . . . . 5 (𝐺‘1o) = 1
33 1onn 6416 . . . . . 6 1o ∈ ω
34 f1ocnvfv 5680 . . . . . 6 ((𝐺:ω–1-1-onto→ℕ0 ∧ 1o ∈ ω) → ((𝐺‘1o) = 1 → (𝐺‘1) = 1o))
3512, 33, 34mp2an 422 . . . . 5 ((𝐺‘1o) = 1 → (𝐺‘1) = 1o)
3632, 35ax-mp 5 . . . 4 (𝐺‘1) = 1o
3736fveq2i 5424 . . 3 (𝐹‘(𝐺‘1)) = (𝐹‘1o)
38 eleq2 2203 . . . . . . 7 (𝑛 = 1o → (𝑖𝑛𝑖 ∈ 1o))
3938ifbid 3493 . . . . . 6 (𝑛 = 1o → if(𝑖𝑛, 1o, ∅) = if(𝑖 ∈ 1o, 1o, ∅))
4039mpteq2dv 4019 . . . . 5 (𝑛 = 1o → (𝑖 ∈ ω ↦ if(𝑖𝑛, 1o, ∅)) = (𝑖 ∈ ω ↦ if(𝑖 ∈ 1o, 1o, ∅)))
41 fxnn0nninf.f . . . . 5 𝐹 = (𝑛 ∈ ω ↦ (𝑖 ∈ ω ↦ if(𝑖𝑛, 1o, ∅)))
42 omex 4507 . . . . . 6 ω ∈ V
4342mptex 5646 . . . . 5 (𝑖 ∈ ω ↦ if(𝑖𝑛, 1o, ∅)) ∈ V
4440, 41, 43fvmpt3i 5501 . . . 4 (1o ∈ ω → (𝐹‘1o) = (𝑖 ∈ ω ↦ if(𝑖 ∈ 1o, 1o, ∅)))
4533, 44ax-mp 5 . . 3 (𝐹‘1o) = (𝑖 ∈ ω ↦ if(𝑖 ∈ 1o, 1o, ∅))
4619, 37, 453eqtri 2164 . 2 (𝐼‘1) = (𝑖 ∈ ω ↦ if(𝑖 ∈ 1o, 1o, ∅))
47 el1o 6334 . . . 4 (𝑖 ∈ 1o𝑖 = ∅)
48 ifbi 3492 . . . 4 ((𝑖 ∈ 1o𝑖 = ∅) → if(𝑖 ∈ 1o, 1o, ∅) = if(𝑖 = ∅, 1o, ∅))
4947, 48ax-mp 5 . . 3 if(𝑖 ∈ 1o, 1o, ∅) = if(𝑖 = ∅, 1o, ∅)
5049mpteq2i 4015 . 2 (𝑖 ∈ ω ↦ if(𝑖 ∈ 1o, 1o, ∅)) = (𝑖 ∈ ω ↦ if(𝑖 = ∅, 1o, ∅))
51 eqeq1 2146 . . . 4 (𝑖 = 𝑥 → (𝑖 = ∅ ↔ 𝑥 = ∅))
5251ifbid 3493 . . 3 (𝑖 = 𝑥 → if(𝑖 = ∅, 1o, ∅) = if(𝑥 = ∅, 1o, ∅))
5352cbvmptv 4024 . 2 (𝑖 ∈ ω ↦ if(𝑖 = ∅, 1o, ∅)) = (𝑥 ∈ ω ↦ if(𝑥 = ∅, 1o, ∅))
5446, 50, 533eqtri 2164 1 (𝐼‘1) = (𝑥 ∈ ω ↦ if(𝑥 = ∅, 1o, ∅))
Colors of variables: wff set class
Syntax hints:  wi 4  wb 104   = wceq 1331  wtru 1332  wcel 1480  wne 2308  cun 3069  c0 3363  ifcif 3474  {csn 3527  cop 3530  cmpt 3989  suc csuc 4287  ωcom 4504   × cxp 4537  ccnv 4538  ccom 4543  wf 5119  1-1-ontowf1o 5122  cfv 5123  (class class class)co 5774  freccfrec 6287  1oc1o 6306  0cc0 7620  1c1 7621   + caddc 7623  +∞cpnf 7797  0cn0 8977  0*cxnn0 9040  cz 9054
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-coll 4043  ax-sep 4046  ax-nul 4054  ax-pow 4098  ax-pr 4131  ax-un 4355  ax-setind 4452  ax-iinf 4502  ax-cnex 7711  ax-resscn 7712  ax-1cn 7713  ax-1re 7714  ax-icn 7715  ax-addcl 7716  ax-addrcl 7717  ax-mulcl 7718  ax-addcom 7720  ax-addass 7722  ax-distr 7724  ax-i2m1 7725  ax-0lt1 7726  ax-0id 7728  ax-rnegex 7729  ax-cnre 7731  ax-pre-ltirr 7732  ax-pre-ltwlin 7733  ax-pre-lttrn 7734  ax-pre-ltadd 7736
This theorem depends on definitions:  df-bi 116  df-3or 963  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-nel 2404  df-ral 2421  df-rex 2422  df-reu 2423  df-rab 2425  df-v 2688  df-sbc 2910  df-csb 3004  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-nul 3364  df-if 3475  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-int 3772  df-iun 3815  df-br 3930  df-opab 3990  df-mpt 3991  df-tr 4027  df-id 4215  df-iord 4288  df-on 4290  df-ilim 4291  df-suc 4293  df-iom 4505  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-rn 4550  df-res 4551  df-ima 4552  df-iota 5088  df-fun 5125  df-fn 5126  df-f 5127  df-f1 5128  df-fo 5129  df-f1o 5130  df-fv 5131  df-riota 5730  df-ov 5777  df-oprab 5778  df-mpo 5779  df-recs 6202  df-frec 6288  df-1o 6313  df-pnf 7802  df-mnf 7803  df-xr 7804  df-ltxr 7805  df-le 7806  df-sub 7935  df-neg 7936  df-inn 8721  df-n0 8978  df-xnn0 9041  df-z 9055  df-uz 9327
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator