ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  1tonninf GIF version

Theorem 1tonninf 10515
Description: The mapping of one into is a sequence which is a one followed by zeroes. (Contributed by Jim Kingdon, 17-Jul-2022.)
Hypotheses
Ref Expression
fxnn0nninf.g 𝐺 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0)
fxnn0nninf.f 𝐹 = (𝑛 ∈ ω ↦ (𝑖 ∈ ω ↦ if(𝑖𝑛, 1o, ∅)))
fxnn0nninf.i 𝐼 = ((𝐹𝐺) ∪ {⟨+∞, (ω × {1o})⟩})
Assertion
Ref Expression
1tonninf (𝐼‘1) = (𝑥 ∈ ω ↦ if(𝑥 = ∅, 1o, ∅))
Distinct variable groups:   𝑖,𝑛   𝑥,𝑖
Allowed substitution hints:   𝐹(𝑥,𝑖,𝑛)   𝐺(𝑥,𝑖,𝑛)   𝐼(𝑥,𝑖,𝑛)

Proof of Theorem 1tonninf
StepHypRef Expression
1 fxnn0nninf.i . . . . 5 𝐼 = ((𝐹𝐺) ∪ {⟨+∞, (ω × {1o})⟩})
21fveq1i 5556 . . . 4 (𝐼‘1) = (((𝐹𝐺) ∪ {⟨+∞, (ω × {1o})⟩})‘1)
3 1nn0 9259 . . . . . 6 1 ∈ ℕ0
4 nn0xnn0 9310 . . . . . 6 (1 ∈ ℕ0 → 1 ∈ ℕ0*)
53, 4ax-mp 5 . . . . 5 1 ∈ ℕ0*
6 nn0nepnf 9314 . . . . . . 7 (1 ∈ ℕ0 → 1 ≠ +∞)
73, 6ax-mp 5 . . . . . 6 1 ≠ +∞
87necomi 2449 . . . . 5 +∞ ≠ 1
9 fvunsng 5753 . . . . 5 ((1 ∈ ℕ0* ∧ +∞ ≠ 1) → (((𝐹𝐺) ∪ {⟨+∞, (ω × {1o})⟩})‘1) = ((𝐹𝐺)‘1))
105, 8, 9mp2an 426 . . . 4 (((𝐹𝐺) ∪ {⟨+∞, (ω × {1o})⟩})‘1) = ((𝐹𝐺)‘1)
11 fxnn0nninf.g . . . . . . . 8 𝐺 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0)
1211frechashgf1o 10502 . . . . . . 7 𝐺:ω–1-1-onto→ℕ0
13 f1ocnv 5514 . . . . . . 7 (𝐺:ω–1-1-onto→ℕ0𝐺:ℕ01-1-onto→ω)
1412, 13ax-mp 5 . . . . . 6 𝐺:ℕ01-1-onto→ω
15 f1of 5501 . . . . . 6 (𝐺:ℕ01-1-onto→ω → 𝐺:ℕ0⟶ω)
1614, 15ax-mp 5 . . . . 5 𝐺:ℕ0⟶ω
17 fvco3 5629 . . . . 5 ((𝐺:ℕ0⟶ω ∧ 1 ∈ ℕ0) → ((𝐹𝐺)‘1) = (𝐹‘(𝐺‘1)))
1816, 3, 17mp2an 426 . . . 4 ((𝐹𝐺)‘1) = (𝐹‘(𝐺‘1))
192, 10, 183eqtri 2218 . . 3 (𝐼‘1) = (𝐹‘(𝐺‘1))
20 df-1o 6471 . . . . . . 7 1o = suc ∅
2120fveq2i 5558 . . . . . 6 (𝐺‘1o) = (𝐺‘suc ∅)
22 0zd 9332 . . . . . . . . 9 (⊤ → 0 ∈ ℤ)
23 peano1 4627 . . . . . . . . . 10 ∅ ∈ ω
2423a1i 9 . . . . . . . . 9 (⊤ → ∅ ∈ ω)
2522, 11, 24frec2uzsucd 10475 . . . . . . . 8 (⊤ → (𝐺‘suc ∅) = ((𝐺‘∅) + 1))
2625mptru 1373 . . . . . . 7 (𝐺‘suc ∅) = ((𝐺‘∅) + 1)
2722, 11frec2uz0d 10473 . . . . . . . . 9 (⊤ → (𝐺‘∅) = 0)
2827mptru 1373 . . . . . . . 8 (𝐺‘∅) = 0
2928oveq1i 5929 . . . . . . 7 ((𝐺‘∅) + 1) = (0 + 1)
3026, 29eqtri 2214 . . . . . 6 (𝐺‘suc ∅) = (0 + 1)
31 0p1e1 9098 . . . . . 6 (0 + 1) = 1
3221, 30, 313eqtri 2218 . . . . 5 (𝐺‘1o) = 1
33 1onn 6575 . . . . . 6 1o ∈ ω
34 f1ocnvfv 5823 . . . . . 6 ((𝐺:ω–1-1-onto→ℕ0 ∧ 1o ∈ ω) → ((𝐺‘1o) = 1 → (𝐺‘1) = 1o))
3512, 33, 34mp2an 426 . . . . 5 ((𝐺‘1o) = 1 → (𝐺‘1) = 1o)
3632, 35ax-mp 5 . . . 4 (𝐺‘1) = 1o
3736fveq2i 5558 . . 3 (𝐹‘(𝐺‘1)) = (𝐹‘1o)
38 eleq2 2257 . . . . . . 7 (𝑛 = 1o → (𝑖𝑛𝑖 ∈ 1o))
3938ifbid 3579 . . . . . 6 (𝑛 = 1o → if(𝑖𝑛, 1o, ∅) = if(𝑖 ∈ 1o, 1o, ∅))
4039mpteq2dv 4121 . . . . 5 (𝑛 = 1o → (𝑖 ∈ ω ↦ if(𝑖𝑛, 1o, ∅)) = (𝑖 ∈ ω ↦ if(𝑖 ∈ 1o, 1o, ∅)))
41 fxnn0nninf.f . . . . 5 𝐹 = (𝑛 ∈ ω ↦ (𝑖 ∈ ω ↦ if(𝑖𝑛, 1o, ∅)))
42 omex 4626 . . . . . 6 ω ∈ V
4342mptex 5785 . . . . 5 (𝑖 ∈ ω ↦ if(𝑖𝑛, 1o, ∅)) ∈ V
4440, 41, 43fvmpt3i 5638 . . . 4 (1o ∈ ω → (𝐹‘1o) = (𝑖 ∈ ω ↦ if(𝑖 ∈ 1o, 1o, ∅)))
4533, 44ax-mp 5 . . 3 (𝐹‘1o) = (𝑖 ∈ ω ↦ if(𝑖 ∈ 1o, 1o, ∅))
4619, 37, 453eqtri 2218 . 2 (𝐼‘1) = (𝑖 ∈ ω ↦ if(𝑖 ∈ 1o, 1o, ∅))
47 el1o 6492 . . . 4 (𝑖 ∈ 1o𝑖 = ∅)
48 ifbi 3578 . . . 4 ((𝑖 ∈ 1o𝑖 = ∅) → if(𝑖 ∈ 1o, 1o, ∅) = if(𝑖 = ∅, 1o, ∅))
4947, 48ax-mp 5 . . 3 if(𝑖 ∈ 1o, 1o, ∅) = if(𝑖 = ∅, 1o, ∅)
5049mpteq2i 4117 . 2 (𝑖 ∈ ω ↦ if(𝑖 ∈ 1o, 1o, ∅)) = (𝑖 ∈ ω ↦ if(𝑖 = ∅, 1o, ∅))
51 eqeq1 2200 . . . 4 (𝑖 = 𝑥 → (𝑖 = ∅ ↔ 𝑥 = ∅))
5251ifbid 3579 . . 3 (𝑖 = 𝑥 → if(𝑖 = ∅, 1o, ∅) = if(𝑥 = ∅, 1o, ∅))
5352cbvmptv 4126 . 2 (𝑖 ∈ ω ↦ if(𝑖 = ∅, 1o, ∅)) = (𝑥 ∈ ω ↦ if(𝑥 = ∅, 1o, ∅))
5446, 50, 533eqtri 2218 1 (𝐼‘1) = (𝑥 ∈ ω ↦ if(𝑥 = ∅, 1o, ∅))
Colors of variables: wff set class
Syntax hints:  wi 4  wb 105   = wceq 1364  wtru 1365  wcel 2164  wne 2364  cun 3152  c0 3447  ifcif 3558  {csn 3619  cop 3622  cmpt 4091  suc csuc 4397  ωcom 4623   × cxp 4658  ccnv 4659  ccom 4664  wf 5251  1-1-ontowf1o 5254  cfv 5255  (class class class)co 5919  freccfrec 6445  1oc1o 6464  0cc0 7874  1c1 7875   + caddc 7877  +∞cpnf 8053  0cn0 9243  0*cxnn0 9306  cz 9320
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4145  ax-sep 4148  ax-nul 4156  ax-pow 4204  ax-pr 4239  ax-un 4465  ax-setind 4570  ax-iinf 4621  ax-cnex 7965  ax-resscn 7966  ax-1cn 7967  ax-1re 7968  ax-icn 7969  ax-addcl 7970  ax-addrcl 7971  ax-mulcl 7972  ax-addcom 7974  ax-addass 7976  ax-distr 7978  ax-i2m1 7979  ax-0lt1 7980  ax-0id 7982  ax-rnegex 7983  ax-cnre 7985  ax-pre-ltirr 7986  ax-pre-ltwlin 7987  ax-pre-lttrn 7988  ax-pre-ltadd 7990
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rab 2481  df-v 2762  df-sbc 2987  df-csb 3082  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-nul 3448  df-if 3559  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-int 3872  df-iun 3915  df-br 4031  df-opab 4092  df-mpt 4093  df-tr 4129  df-id 4325  df-iord 4398  df-on 4400  df-ilim 4401  df-suc 4403  df-iom 4624  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-rn 4671  df-res 4672  df-ima 4673  df-iota 5216  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-riota 5874  df-ov 5922  df-oprab 5923  df-mpo 5924  df-recs 6360  df-frec 6446  df-1o 6471  df-pnf 8058  df-mnf 8059  df-xr 8060  df-ltxr 8061  df-le 8062  df-sub 8194  df-neg 8195  df-inn 8985  df-n0 9244  df-xnn0 9307  df-z 9321  df-uz 9596
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator