ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  1tonninf GIF version

Theorem 1tonninf 10375
Description: The mapping of one into is a sequence which is a one followed by zeroes. (Contributed by Jim Kingdon, 17-Jul-2022.)
Hypotheses
Ref Expression
fxnn0nninf.g 𝐺 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0)
fxnn0nninf.f 𝐹 = (𝑛 ∈ ω ↦ (𝑖 ∈ ω ↦ if(𝑖𝑛, 1o, ∅)))
fxnn0nninf.i 𝐼 = ((𝐹𝐺) ∪ {⟨+∞, (ω × {1o})⟩})
Assertion
Ref Expression
1tonninf (𝐼‘1) = (𝑥 ∈ ω ↦ if(𝑥 = ∅, 1o, ∅))
Distinct variable groups:   𝑖,𝑛   𝑥,𝑖
Allowed substitution hints:   𝐹(𝑥,𝑖,𝑛)   𝐺(𝑥,𝑖,𝑛)   𝐼(𝑥,𝑖,𝑛)

Proof of Theorem 1tonninf
StepHypRef Expression
1 fxnn0nninf.i . . . . 5 𝐼 = ((𝐹𝐺) ∪ {⟨+∞, (ω × {1o})⟩})
21fveq1i 5487 . . . 4 (𝐼‘1) = (((𝐹𝐺) ∪ {⟨+∞, (ω × {1o})⟩})‘1)
3 1nn0 9130 . . . . . 6 1 ∈ ℕ0
4 nn0xnn0 9181 . . . . . 6 (1 ∈ ℕ0 → 1 ∈ ℕ0*)
53, 4ax-mp 5 . . . . 5 1 ∈ ℕ0*
6 nn0nepnf 9185 . . . . . . 7 (1 ∈ ℕ0 → 1 ≠ +∞)
73, 6ax-mp 5 . . . . . 6 1 ≠ +∞
87necomi 2421 . . . . 5 +∞ ≠ 1
9 fvunsng 5679 . . . . 5 ((1 ∈ ℕ0* ∧ +∞ ≠ 1) → (((𝐹𝐺) ∪ {⟨+∞, (ω × {1o})⟩})‘1) = ((𝐹𝐺)‘1))
105, 8, 9mp2an 423 . . . 4 (((𝐹𝐺) ∪ {⟨+∞, (ω × {1o})⟩})‘1) = ((𝐹𝐺)‘1)
11 fxnn0nninf.g . . . . . . . 8 𝐺 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0)
1211frechashgf1o 10363 . . . . . . 7 𝐺:ω–1-1-onto→ℕ0
13 f1ocnv 5445 . . . . . . 7 (𝐺:ω–1-1-onto→ℕ0𝐺:ℕ01-1-onto→ω)
1412, 13ax-mp 5 . . . . . 6 𝐺:ℕ01-1-onto→ω
15 f1of 5432 . . . . . 6 (𝐺:ℕ01-1-onto→ω → 𝐺:ℕ0⟶ω)
1614, 15ax-mp 5 . . . . 5 𝐺:ℕ0⟶ω
17 fvco3 5557 . . . . 5 ((𝐺:ℕ0⟶ω ∧ 1 ∈ ℕ0) → ((𝐹𝐺)‘1) = (𝐹‘(𝐺‘1)))
1816, 3, 17mp2an 423 . . . 4 ((𝐹𝐺)‘1) = (𝐹‘(𝐺‘1))
192, 10, 183eqtri 2190 . . 3 (𝐼‘1) = (𝐹‘(𝐺‘1))
20 df-1o 6384 . . . . . . 7 1o = suc ∅
2120fveq2i 5489 . . . . . 6 (𝐺‘1o) = (𝐺‘suc ∅)
22 0zd 9203 . . . . . . . . 9 (⊤ → 0 ∈ ℤ)
23 peano1 4571 . . . . . . . . . 10 ∅ ∈ ω
2423a1i 9 . . . . . . . . 9 (⊤ → ∅ ∈ ω)
2522, 11, 24frec2uzsucd 10336 . . . . . . . 8 (⊤ → (𝐺‘suc ∅) = ((𝐺‘∅) + 1))
2625mptru 1352 . . . . . . 7 (𝐺‘suc ∅) = ((𝐺‘∅) + 1)
2722, 11frec2uz0d 10334 . . . . . . . . 9 (⊤ → (𝐺‘∅) = 0)
2827mptru 1352 . . . . . . . 8 (𝐺‘∅) = 0
2928oveq1i 5852 . . . . . . 7 ((𝐺‘∅) + 1) = (0 + 1)
3026, 29eqtri 2186 . . . . . 6 (𝐺‘suc ∅) = (0 + 1)
31 0p1e1 8971 . . . . . 6 (0 + 1) = 1
3221, 30, 313eqtri 2190 . . . . 5 (𝐺‘1o) = 1
33 1onn 6488 . . . . . 6 1o ∈ ω
34 f1ocnvfv 5747 . . . . . 6 ((𝐺:ω–1-1-onto→ℕ0 ∧ 1o ∈ ω) → ((𝐺‘1o) = 1 → (𝐺‘1) = 1o))
3512, 33, 34mp2an 423 . . . . 5 ((𝐺‘1o) = 1 → (𝐺‘1) = 1o)
3632, 35ax-mp 5 . . . 4 (𝐺‘1) = 1o
3736fveq2i 5489 . . 3 (𝐹‘(𝐺‘1)) = (𝐹‘1o)
38 eleq2 2230 . . . . . . 7 (𝑛 = 1o → (𝑖𝑛𝑖 ∈ 1o))
3938ifbid 3541 . . . . . 6 (𝑛 = 1o → if(𝑖𝑛, 1o, ∅) = if(𝑖 ∈ 1o, 1o, ∅))
4039mpteq2dv 4073 . . . . 5 (𝑛 = 1o → (𝑖 ∈ ω ↦ if(𝑖𝑛, 1o, ∅)) = (𝑖 ∈ ω ↦ if(𝑖 ∈ 1o, 1o, ∅)))
41 fxnn0nninf.f . . . . 5 𝐹 = (𝑛 ∈ ω ↦ (𝑖 ∈ ω ↦ if(𝑖𝑛, 1o, ∅)))
42 omex 4570 . . . . . 6 ω ∈ V
4342mptex 5711 . . . . 5 (𝑖 ∈ ω ↦ if(𝑖𝑛, 1o, ∅)) ∈ V
4440, 41, 43fvmpt3i 5566 . . . 4 (1o ∈ ω → (𝐹‘1o) = (𝑖 ∈ ω ↦ if(𝑖 ∈ 1o, 1o, ∅)))
4533, 44ax-mp 5 . . 3 (𝐹‘1o) = (𝑖 ∈ ω ↦ if(𝑖 ∈ 1o, 1o, ∅))
4619, 37, 453eqtri 2190 . 2 (𝐼‘1) = (𝑖 ∈ ω ↦ if(𝑖 ∈ 1o, 1o, ∅))
47 el1o 6405 . . . 4 (𝑖 ∈ 1o𝑖 = ∅)
48 ifbi 3540 . . . 4 ((𝑖 ∈ 1o𝑖 = ∅) → if(𝑖 ∈ 1o, 1o, ∅) = if(𝑖 = ∅, 1o, ∅))
4947, 48ax-mp 5 . . 3 if(𝑖 ∈ 1o, 1o, ∅) = if(𝑖 = ∅, 1o, ∅)
5049mpteq2i 4069 . 2 (𝑖 ∈ ω ↦ if(𝑖 ∈ 1o, 1o, ∅)) = (𝑖 ∈ ω ↦ if(𝑖 = ∅, 1o, ∅))
51 eqeq1 2172 . . . 4 (𝑖 = 𝑥 → (𝑖 = ∅ ↔ 𝑥 = ∅))
5251ifbid 3541 . . 3 (𝑖 = 𝑥 → if(𝑖 = ∅, 1o, ∅) = if(𝑥 = ∅, 1o, ∅))
5352cbvmptv 4078 . 2 (𝑖 ∈ ω ↦ if(𝑖 = ∅, 1o, ∅)) = (𝑥 ∈ ω ↦ if(𝑥 = ∅, 1o, ∅))
5446, 50, 533eqtri 2190 1 (𝐼‘1) = (𝑥 ∈ ω ↦ if(𝑥 = ∅, 1o, ∅))
Colors of variables: wff set class
Syntax hints:  wi 4  wb 104   = wceq 1343  wtru 1344  wcel 2136  wne 2336  cun 3114  c0 3409  ifcif 3520  {csn 3576  cop 3579  cmpt 4043  suc csuc 4343  ωcom 4567   × cxp 4602  ccnv 4603  ccom 4608  wf 5184  1-1-ontowf1o 5187  cfv 5188  (class class class)co 5842  freccfrec 6358  1oc1o 6377  0cc0 7753  1c1 7754   + caddc 7756  +∞cpnf 7930  0cn0 9114  0*cxnn0 9177  cz 9191
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-coll 4097  ax-sep 4100  ax-nul 4108  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-setind 4514  ax-iinf 4565  ax-cnex 7844  ax-resscn 7845  ax-1cn 7846  ax-1re 7847  ax-icn 7848  ax-addcl 7849  ax-addrcl 7850  ax-mulcl 7851  ax-addcom 7853  ax-addass 7855  ax-distr 7857  ax-i2m1 7858  ax-0lt1 7859  ax-0id 7861  ax-rnegex 7862  ax-cnre 7864  ax-pre-ltirr 7865  ax-pre-ltwlin 7866  ax-pre-lttrn 7867  ax-pre-ltadd 7869
This theorem depends on definitions:  df-bi 116  df-3or 969  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-nel 2432  df-ral 2449  df-rex 2450  df-reu 2451  df-rab 2453  df-v 2728  df-sbc 2952  df-csb 3046  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-nul 3410  df-if 3521  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-int 3825  df-iun 3868  df-br 3983  df-opab 4044  df-mpt 4045  df-tr 4081  df-id 4271  df-iord 4344  df-on 4346  df-ilim 4347  df-suc 4349  df-iom 4568  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-f1 5193  df-fo 5194  df-f1o 5195  df-fv 5196  df-riota 5798  df-ov 5845  df-oprab 5846  df-mpo 5847  df-recs 6273  df-frec 6359  df-1o 6384  df-pnf 7935  df-mnf 7936  df-xr 7937  df-ltxr 7938  df-le 7939  df-sub 8071  df-neg 8072  df-inn 8858  df-n0 9115  df-xnn0 9178  df-z 9192  df-uz 9467
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator