![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > pcxnn0cl | GIF version |
Description: Extended nonnegative integer closure of the general prime count function. (Contributed by Jim Kingdon, 13-Oct-2024.) |
Ref | Expression |
---|---|
pcxnn0cl | ⊢ ((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ) → (𝑃 pCnt 𝑁) ∈ ℕ0*) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pc0 12347 | . . . . 5 ⊢ (𝑃 ∈ ℙ → (𝑃 pCnt 0) = +∞) | |
2 | pnf0xnn0 9281 | . . . . 5 ⊢ +∞ ∈ ℕ0* | |
3 | 1, 2 | eqeltrdi 2280 | . . . 4 ⊢ (𝑃 ∈ ℙ → (𝑃 pCnt 0) ∈ ℕ0*) |
4 | 3 | adantr 276 | . . 3 ⊢ ((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ) → (𝑃 pCnt 0) ∈ ℕ0*) |
5 | oveq2 5908 | . . . 4 ⊢ (𝑁 = 0 → (𝑃 pCnt 𝑁) = (𝑃 pCnt 0)) | |
6 | 5 | eleq1d 2258 | . . 3 ⊢ (𝑁 = 0 → ((𝑃 pCnt 𝑁) ∈ ℕ0* ↔ (𝑃 pCnt 0) ∈ ℕ0*)) |
7 | 4, 6 | syl5ibrcom 157 | . 2 ⊢ ((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ) → (𝑁 = 0 → (𝑃 pCnt 𝑁) ∈ ℕ0*)) |
8 | pczcl 12341 | . . . 4 ⊢ ((𝑃 ∈ ℙ ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → (𝑃 pCnt 𝑁) ∈ ℕ0) | |
9 | 8 | nn0xnn0d 9283 | . . 3 ⊢ ((𝑃 ∈ ℙ ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → (𝑃 pCnt 𝑁) ∈ ℕ0*) |
10 | 9 | expr 375 | . 2 ⊢ ((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ) → (𝑁 ≠ 0 → (𝑃 pCnt 𝑁) ∈ ℕ0*)) |
11 | simpr 110 | . . . 4 ⊢ ((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ) → 𝑁 ∈ ℤ) | |
12 | 0z 9299 | . . . 4 ⊢ 0 ∈ ℤ | |
13 | zdceq 9363 | . . . 4 ⊢ ((𝑁 ∈ ℤ ∧ 0 ∈ ℤ) → DECID 𝑁 = 0) | |
14 | 11, 12, 13 | sylancl 413 | . . 3 ⊢ ((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ) → DECID 𝑁 = 0) |
15 | dcne 2371 | . . 3 ⊢ (DECID 𝑁 = 0 ↔ (𝑁 = 0 ∨ 𝑁 ≠ 0)) | |
16 | 14, 15 | sylib 122 | . 2 ⊢ ((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ) → (𝑁 = 0 ∨ 𝑁 ≠ 0)) |
17 | 7, 10, 16 | mpjaod 719 | 1 ⊢ ((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ) → (𝑃 pCnt 𝑁) ∈ ℕ0*) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ∨ wo 709 DECID wdc 835 = wceq 1364 ∈ wcel 2160 ≠ wne 2360 (class class class)co 5900 0cc0 7846 +∞cpnf 8024 ℕ0*cxnn0 9274 ℤcz 9288 ℙcprime 12150 pCnt cpc 12327 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2162 ax-14 2163 ax-ext 2171 ax-coll 4136 ax-sep 4139 ax-nul 4147 ax-pow 4195 ax-pr 4230 ax-un 4454 ax-setind 4557 ax-iinf 4608 ax-cnex 7937 ax-resscn 7938 ax-1cn 7939 ax-1re 7940 ax-icn 7941 ax-addcl 7942 ax-addrcl 7943 ax-mulcl 7944 ax-mulrcl 7945 ax-addcom 7946 ax-mulcom 7947 ax-addass 7948 ax-mulass 7949 ax-distr 7950 ax-i2m1 7951 ax-0lt1 7952 ax-1rid 7953 ax-0id 7954 ax-rnegex 7955 ax-precex 7956 ax-cnre 7957 ax-pre-ltirr 7958 ax-pre-ltwlin 7959 ax-pre-lttrn 7960 ax-pre-apti 7961 ax-pre-ltadd 7962 ax-pre-mulgt0 7963 ax-pre-mulext 7964 ax-arch 7965 ax-caucvg 7966 |
This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2041 df-mo 2042 df-clab 2176 df-cleq 2182 df-clel 2185 df-nfc 2321 df-ne 2361 df-nel 2456 df-ral 2473 df-rex 2474 df-reu 2475 df-rmo 2476 df-rab 2477 df-v 2754 df-sbc 2978 df-csb 3073 df-dif 3146 df-un 3148 df-in 3150 df-ss 3157 df-nul 3438 df-if 3550 df-pw 3595 df-sn 3616 df-pr 3617 df-op 3619 df-uni 3828 df-int 3863 df-iun 3906 df-br 4022 df-opab 4083 df-mpt 4084 df-tr 4120 df-id 4314 df-po 4317 df-iso 4318 df-iord 4387 df-on 4389 df-ilim 4390 df-suc 4392 df-iom 4611 df-xp 4653 df-rel 4654 df-cnv 4655 df-co 4656 df-dm 4657 df-rn 4658 df-res 4659 df-ima 4660 df-iota 5199 df-fun 5240 df-fn 5241 df-f 5242 df-f1 5243 df-fo 5244 df-f1o 5245 df-fv 5246 df-isom 5247 df-riota 5855 df-ov 5903 df-oprab 5904 df-mpo 5905 df-1st 6169 df-2nd 6170 df-recs 6334 df-frec 6420 df-1o 6445 df-2o 6446 df-er 6563 df-en 6771 df-sup 7017 df-inf 7018 df-pnf 8029 df-mnf 8030 df-xr 8031 df-ltxr 8032 df-le 8033 df-sub 8165 df-neg 8166 df-reap 8567 df-ap 8574 df-div 8665 df-inn 8955 df-2 9013 df-3 9014 df-4 9015 df-n0 9212 df-xnn0 9275 df-z 9289 df-uz 9564 df-q 9656 df-rp 9690 df-fz 10045 df-fzo 10179 df-fl 10307 df-mod 10360 df-seqfrec 10485 df-exp 10560 df-cj 10892 df-re 10893 df-im 10894 df-rsqrt 11048 df-abs 11049 df-dvds 11836 df-gcd 11985 df-prm 12151 df-pc 12328 |
This theorem is referenced by: pcgcd 12372 |
Copyright terms: Public domain | W3C validator |