ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nn0nepnfd GIF version

Theorem nn0nepnfd 9442
Description: No standard nonnegative integer equals positive infinity, deduction form. (Contributed by AV, 10-Dec-2020.)
Hypothesis
Ref Expression
nn0xnn0d.1 (𝜑𝐴 ∈ ℕ0)
Assertion
Ref Expression
nn0nepnfd (𝜑𝐴 ≠ +∞)

Proof of Theorem nn0nepnfd
StepHypRef Expression
1 nn0xnn0d.1 . 2 (𝜑𝐴 ∈ ℕ0)
2 nn0nepnf 9440 . 2 (𝐴 ∈ ℕ0𝐴 ≠ +∞)
31, 2syl 14 1 (𝜑𝐴 ≠ +∞)
Colors of variables: wff set class
Syntax hints:  wi 4  wcel 2200  wne 2400  +∞cpnf 8178  0cn0 9369
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-un 4524  ax-cnex 8090  ax-resscn 8091  ax-1re 8093  ax-addrcl 8096  ax-rnegex 8108
This theorem depends on definitions:  df-bi 117  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-rab 2517  df-v 2801  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-uni 3889  df-int 3924  df-pnf 8183  df-inn 9111  df-n0 9370
This theorem is referenced by:  nninfctlemfo  12561
  Copyright terms: Public domain W3C validator