![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > snexg | GIF version |
Description: A singleton whose element exists is a set. The 𝐴 ∈ V case of Theorem 7.12 of [Quine] p. 51, proved using only Extensionality, Power Set, and Separation. Replacement is not needed. (Contributed by Jim Kingdon, 1-Sep-2018.) |
Ref | Expression |
---|---|
snexg | ⊢ (𝐴 ∈ 𝑉 → {𝐴} ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pwexg 4210 | . 2 ⊢ (𝐴 ∈ 𝑉 → 𝒫 𝐴 ∈ V) | |
2 | snsspw 3791 | . . 3 ⊢ {𝐴} ⊆ 𝒫 𝐴 | |
3 | ssexg 4169 | . . 3 ⊢ (({𝐴} ⊆ 𝒫 𝐴 ∧ 𝒫 𝐴 ∈ V) → {𝐴} ∈ V) | |
4 | 2, 3 | mpan 424 | . 2 ⊢ (𝒫 𝐴 ∈ V → {𝐴} ∈ V) |
5 | 1, 4 | syl 14 | 1 ⊢ (𝐴 ∈ 𝑉 → {𝐴} ∈ V) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∈ wcel 2164 Vcvv 2760 ⊆ wss 3154 𝒫 cpw 3602 {csn 3619 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-14 2167 ax-ext 2175 ax-sep 4148 ax-pow 4204 |
This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-v 2762 df-in 3160 df-ss 3167 df-pw 3604 df-sn 3625 |
This theorem is referenced by: snex 4215 notnotsnex 4217 exmidsssnc 4233 snelpwi 4242 opexg 4258 opm 4264 tpexg 4476 op1stbg 4511 sucexb 4530 elxp4 5154 elxp5 5155 opabex3d 6175 opabex3 6176 1stvalg 6197 2ndvalg 6198 mpoexxg 6265 cnvf1o 6280 brtpos2 6306 tfr0dm 6377 tfrlemisucaccv 6380 tfrlemibxssdm 6382 tfrlemibfn 6383 tfr1onlemsucaccv 6396 tfr1onlembxssdm 6398 tfr1onlembfn 6399 tfrcllemsucaccv 6409 tfrcllembxssdm 6411 tfrcllembfn 6412 fvdiagfn 6749 ixpsnf1o 6792 mapsnf1o 6793 xpsnen2g 6885 zfz1isolem1 10914 climconst2 11437 ennnfonelemp1 12566 setsvalg 12651 setsex 12653 setsslid 12672 strle1g 12727 1strbas 12738 imasex 12891 imasival 12892 imasbas 12893 imasplusg 12894 imasmulr 12895 mgm1 12956 igsumvalx 12975 sgrp1 12997 mnd1 13030 mnd1id 13031 grp1 13181 grp1inv 13182 mulgnngsum 13200 triv1nsgd 13291 ring1 13558 znval 14135 znle 14136 znbaslemnn 14138 znbas 14143 znzrhval 14146 znzrhfo 14147 psrval 14163 psrbasg 14170 psrplusgg 14173 |
Copyright terms: Public domain | W3C validator |