| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > snexg | GIF version | ||
| Description: A singleton whose element exists is a set. The 𝐴 ∈ V case of Theorem 7.12 of [Quine] p. 51, proved using only Extensionality, Power Set, and Separation. Replacement is not needed. (Contributed by Jim Kingdon, 1-Sep-2018.) |
| Ref | Expression |
|---|---|
| snexg | ⊢ (𝐴 ∈ 𝑉 → {𝐴} ∈ V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pwexg 4240 | . 2 ⊢ (𝐴 ∈ 𝑉 → 𝒫 𝐴 ∈ V) | |
| 2 | snsspw 3818 | . . 3 ⊢ {𝐴} ⊆ 𝒫 𝐴 | |
| 3 | ssexg 4199 | . . 3 ⊢ (({𝐴} ⊆ 𝒫 𝐴 ∧ 𝒫 𝐴 ∈ V) → {𝐴} ∈ V) | |
| 4 | 2, 3 | mpan 424 | . 2 ⊢ (𝒫 𝐴 ∈ V → {𝐴} ∈ V) |
| 5 | 1, 4 | syl 14 | 1 ⊢ (𝐴 ∈ 𝑉 → {𝐴} ∈ V) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∈ wcel 2178 Vcvv 2776 ⊆ wss 3174 𝒫 cpw 3626 {csn 3643 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-14 2181 ax-ext 2189 ax-sep 4178 ax-pow 4234 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-v 2778 df-in 3180 df-ss 3187 df-pw 3628 df-sn 3649 |
| This theorem is referenced by: snex 4245 notnotsnex 4247 exmidsssnc 4263 snelpwg 4272 snelpwi 4273 opexg 4290 opm 4296 tpexg 4509 op1stbg 4544 sucexb 4563 elxp4 5189 elxp5 5190 opabex3d 6229 opabex3 6230 1stvalg 6251 2ndvalg 6252 mpoexxg 6319 cnvf1o 6334 brtpos2 6360 tfr0dm 6431 tfrlemisucaccv 6434 tfrlemibxssdm 6436 tfrlemibfn 6437 tfr1onlemsucaccv 6450 tfr1onlembxssdm 6452 tfr1onlembfn 6453 tfrcllemsucaccv 6463 tfrcllembxssdm 6465 tfrcllembfn 6466 fvdiagfn 6803 ixpsnf1o 6846 mapsnf1o 6847 xpsnen2g 6949 zfz1isolem1 11022 climconst2 11717 ennnfonelemp1 12892 setsvalg 12977 setsex 12979 setsslid 12998 strle1g 13053 1strbas 13064 pwsval 13238 pwsbas 13239 pwssnf1o 13245 imasex 13252 imasival 13253 imasbas 13254 imasplusg 13255 imasmulr 13256 mgm1 13317 igsumvalx 13336 sgrp1 13358 mnd1 13402 mnd1id 13403 grp1 13553 grp1inv 13554 mulgnngsum 13578 triv1nsgd 13669 ring1 13936 znval 14513 znle 14514 znbaslemnn 14516 znbas 14521 znzrhval 14524 znzrhfo 14525 psrval 14543 psrbasg 14551 psrplusgg 14555 upgr1eopdc 15831 |
| Copyright terms: Public domain | W3C validator |