![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > snexg | GIF version |
Description: A singleton whose element exists is a set. The 𝐴 ∈ V case of Theorem 7.12 of [Quine] p. 51, proved using only Extensionality, Power Set, and Separation. Replacement is not needed. (Contributed by Jim Kingdon, 1-Sep-2018.) |
Ref | Expression |
---|---|
snexg | ⊢ (𝐴 ∈ 𝑉 → {𝐴} ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pwexg 4209 | . 2 ⊢ (𝐴 ∈ 𝑉 → 𝒫 𝐴 ∈ V) | |
2 | snsspw 3790 | . . 3 ⊢ {𝐴} ⊆ 𝒫 𝐴 | |
3 | ssexg 4168 | . . 3 ⊢ (({𝐴} ⊆ 𝒫 𝐴 ∧ 𝒫 𝐴 ∈ V) → {𝐴} ∈ V) | |
4 | 2, 3 | mpan 424 | . 2 ⊢ (𝒫 𝐴 ∈ V → {𝐴} ∈ V) |
5 | 1, 4 | syl 14 | 1 ⊢ (𝐴 ∈ 𝑉 → {𝐴} ∈ V) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∈ wcel 2164 Vcvv 2760 ⊆ wss 3153 𝒫 cpw 3601 {csn 3618 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-14 2167 ax-ext 2175 ax-sep 4147 ax-pow 4203 |
This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-v 2762 df-in 3159 df-ss 3166 df-pw 3603 df-sn 3624 |
This theorem is referenced by: snex 4214 notnotsnex 4216 exmidsssnc 4232 snelpwi 4241 opexg 4257 opm 4263 tpexg 4475 op1stbg 4510 sucexb 4529 elxp4 5153 elxp5 5154 opabex3d 6173 opabex3 6174 1stvalg 6195 2ndvalg 6196 mpoexxg 6263 cnvf1o 6278 brtpos2 6304 tfr0dm 6375 tfrlemisucaccv 6378 tfrlemibxssdm 6380 tfrlemibfn 6381 tfr1onlemsucaccv 6394 tfr1onlembxssdm 6396 tfr1onlembfn 6397 tfrcllemsucaccv 6407 tfrcllembxssdm 6409 tfrcllembfn 6410 fvdiagfn 6747 ixpsnf1o 6790 mapsnf1o 6791 xpsnen2g 6883 zfz1isolem1 10911 climconst2 11434 ennnfonelemp1 12563 setsvalg 12648 setsex 12650 setsslid 12669 strle1g 12724 1strbas 12735 imasex 12888 imasival 12889 imasbas 12890 imasplusg 12891 imasmulr 12892 mgm1 12953 igsumvalx 12972 sgrp1 12994 mnd1 13027 mnd1id 13028 grp1 13178 grp1inv 13179 mulgnngsum 13197 triv1nsgd 13288 ring1 13555 znval 14124 znle 14125 znbaslemnn 14127 znbas 14132 znzrhval 14135 znzrhfo 14136 psrval 14152 psrbasg 14159 psrplusgg 14162 |
Copyright terms: Public domain | W3C validator |