| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > snexg | GIF version | ||
| Description: A singleton whose element exists is a set. The 𝐴 ∈ V case of Theorem 7.12 of [Quine] p. 51, proved using only Extensionality, Power Set, and Separation. Replacement is not needed. (Contributed by Jim Kingdon, 1-Sep-2018.) |
| Ref | Expression |
|---|---|
| snexg | ⊢ (𝐴 ∈ 𝑉 → {𝐴} ∈ V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pwexg 4263 | . 2 ⊢ (𝐴 ∈ 𝑉 → 𝒫 𝐴 ∈ V) | |
| 2 | snsspw 3841 | . . 3 ⊢ {𝐴} ⊆ 𝒫 𝐴 | |
| 3 | ssexg 4222 | . . 3 ⊢ (({𝐴} ⊆ 𝒫 𝐴 ∧ 𝒫 𝐴 ∈ V) → {𝐴} ∈ V) | |
| 4 | 2, 3 | mpan 424 | . 2 ⊢ (𝒫 𝐴 ∈ V → {𝐴} ∈ V) |
| 5 | 1, 4 | syl 14 | 1 ⊢ (𝐴 ∈ 𝑉 → {𝐴} ∈ V) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∈ wcel 2200 Vcvv 2799 ⊆ wss 3197 𝒫 cpw 3649 {csn 3666 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-14 2203 ax-ext 2211 ax-sep 4201 ax-pow 4257 |
| This theorem depends on definitions: df-bi 117 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-v 2801 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 |
| This theorem is referenced by: snex 4268 notnotsnex 4270 exmidsssnc 4286 snelpwg 4295 snelpwi 4296 opexg 4313 opm 4319 tpexg 4534 op1stbg 4569 sucexb 4588 elxp4 5215 elxp5 5216 opabex3d 6264 opabex3 6265 1stvalg 6286 2ndvalg 6287 mpoexxg 6354 cnvf1o 6369 brtpos2 6395 tfr0dm 6466 tfrlemisucaccv 6469 tfrlemibxssdm 6471 tfrlemibfn 6472 tfr1onlemsucaccv 6485 tfr1onlembxssdm 6487 tfr1onlembfn 6488 tfrcllemsucaccv 6498 tfrcllembxssdm 6500 tfrcllembfn 6501 fvdiagfn 6838 ixpsnf1o 6881 mapsnf1o 6882 xpsnen2g 6984 zfz1isolem1 11057 climconst2 11797 ennnfonelemp1 12972 setsvalg 13057 setsex 13059 setsslid 13078 strle1g 13134 1strbas 13145 pwsval 13319 pwsbas 13320 pwssnf1o 13326 imasex 13333 imasival 13334 imasbas 13335 imasplusg 13336 imasmulr 13337 mgm1 13398 igsumvalx 13417 sgrp1 13439 mnd1 13483 mnd1id 13484 grp1 13634 grp1inv 13635 mulgnngsum 13659 triv1nsgd 13750 ring1 14017 znval 14594 znle 14595 znbaslemnn 14597 znbas 14602 znzrhval 14605 znzrhfo 14606 psrval 14624 psrbasg 14632 psrplusgg 14636 upgr1eopdc 15917 |
| Copyright terms: Public domain | W3C validator |