Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > snexg | GIF version |
Description: A singleton whose element exists is a set. The 𝐴 ∈ V case of Theorem 7.12 of [Quine] p. 51, proved using only Extensionality, Power Set, and Separation. Replacement is not needed. (Contributed by Jim Kingdon, 1-Sep-2018.) |
Ref | Expression |
---|---|
snexg | ⊢ (𝐴 ∈ 𝑉 → {𝐴} ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pwexg 4159 | . 2 ⊢ (𝐴 ∈ 𝑉 → 𝒫 𝐴 ∈ V) | |
2 | snsspw 3744 | . . 3 ⊢ {𝐴} ⊆ 𝒫 𝐴 | |
3 | ssexg 4121 | . . 3 ⊢ (({𝐴} ⊆ 𝒫 𝐴 ∧ 𝒫 𝐴 ∈ V) → {𝐴} ∈ V) | |
4 | 2, 3 | mpan 421 | . 2 ⊢ (𝒫 𝐴 ∈ V → {𝐴} ∈ V) |
5 | 1, 4 | syl 14 | 1 ⊢ (𝐴 ∈ 𝑉 → {𝐴} ∈ V) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∈ wcel 2136 Vcvv 2726 ⊆ wss 3116 𝒫 cpw 3559 {csn 3576 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-pow 4153 |
This theorem depends on definitions: df-bi 116 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-v 2728 df-in 3122 df-ss 3129 df-pw 3561 df-sn 3582 |
This theorem is referenced by: snex 4164 notnotsnex 4166 exmidsssnc 4182 snelpwi 4190 opexg 4206 opm 4212 tpexg 4422 op1stbg 4457 sucexb 4474 elxp4 5091 elxp5 5092 opabex3d 6089 opabex3 6090 1stvalg 6110 2ndvalg 6111 mpoexxg 6178 cnvf1o 6193 brtpos2 6219 tfr0dm 6290 tfrlemisucaccv 6293 tfrlemibxssdm 6295 tfrlemibfn 6296 tfr1onlemsucaccv 6309 tfr1onlembxssdm 6311 tfr1onlembfn 6312 tfrcllemsucaccv 6322 tfrcllembxssdm 6324 tfrcllembfn 6325 fvdiagfn 6659 ixpsnf1o 6702 mapsnf1o 6703 xpsnen2g 6795 zfz1isolem1 10753 climconst2 11232 ennnfonelemp1 12339 setsvalg 12424 setsex 12426 setsslid 12444 strle1g 12485 1strbas 12494 mgm1 12601 |
Copyright terms: Public domain | W3C validator |