| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > snexg | GIF version | ||
| Description: A singleton whose element exists is a set. The 𝐴 ∈ V case of Theorem 7.12 of [Quine] p. 51, proved using only Extensionality, Power Set, and Separation. Replacement is not needed. (Contributed by Jim Kingdon, 1-Sep-2018.) |
| Ref | Expression |
|---|---|
| snexg | ⊢ (𝐴 ∈ 𝑉 → {𝐴} ∈ V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pwexg 4224 | . 2 ⊢ (𝐴 ∈ 𝑉 → 𝒫 𝐴 ∈ V) | |
| 2 | snsspw 3805 | . . 3 ⊢ {𝐴} ⊆ 𝒫 𝐴 | |
| 3 | ssexg 4183 | . . 3 ⊢ (({𝐴} ⊆ 𝒫 𝐴 ∧ 𝒫 𝐴 ∈ V) → {𝐴} ∈ V) | |
| 4 | 2, 3 | mpan 424 | . 2 ⊢ (𝒫 𝐴 ∈ V → {𝐴} ∈ V) |
| 5 | 1, 4 | syl 14 | 1 ⊢ (𝐴 ∈ 𝑉 → {𝐴} ∈ V) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∈ wcel 2176 Vcvv 2772 ⊆ wss 3166 𝒫 cpw 3616 {csn 3633 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-14 2179 ax-ext 2187 ax-sep 4162 ax-pow 4218 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-v 2774 df-in 3172 df-ss 3179 df-pw 3618 df-sn 3639 |
| This theorem is referenced by: snex 4229 notnotsnex 4231 exmidsssnc 4247 snelpwi 4256 opexg 4272 opm 4278 tpexg 4491 op1stbg 4526 sucexb 4545 elxp4 5170 elxp5 5171 opabex3d 6206 opabex3 6207 1stvalg 6228 2ndvalg 6229 mpoexxg 6296 cnvf1o 6311 brtpos2 6337 tfr0dm 6408 tfrlemisucaccv 6411 tfrlemibxssdm 6413 tfrlemibfn 6414 tfr1onlemsucaccv 6427 tfr1onlembxssdm 6429 tfr1onlembfn 6430 tfrcllemsucaccv 6440 tfrcllembxssdm 6442 tfrcllembfn 6443 fvdiagfn 6780 ixpsnf1o 6823 mapsnf1o 6824 xpsnen2g 6924 zfz1isolem1 10985 climconst2 11602 ennnfonelemp1 12777 setsvalg 12862 setsex 12864 setsslid 12883 strle1g 12938 1strbas 12949 pwsval 13123 pwsbas 13124 pwssnf1o 13130 imasex 13137 imasival 13138 imasbas 13139 imasplusg 13140 imasmulr 13141 mgm1 13202 igsumvalx 13221 sgrp1 13243 mnd1 13287 mnd1id 13288 grp1 13438 grp1inv 13439 mulgnngsum 13463 triv1nsgd 13554 ring1 13821 znval 14398 znle 14399 znbaslemnn 14401 znbas 14406 znzrhval 14409 znzrhfo 14410 psrval 14428 psrbasg 14436 psrplusgg 14440 |
| Copyright terms: Public domain | W3C validator |