Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > snexg | GIF version |
Description: A singleton whose element exists is a set. The 𝐴 ∈ V case of Theorem 7.12 of [Quine] p. 51, proved using only Extensionality, Power Set, and Separation. Replacement is not needed. (Contributed by Jim Kingdon, 1-Sep-2018.) |
Ref | Expression |
---|---|
snexg | ⊢ (𝐴 ∈ 𝑉 → {𝐴} ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pwexg 4166 | . 2 ⊢ (𝐴 ∈ 𝑉 → 𝒫 𝐴 ∈ V) | |
2 | snsspw 3751 | . . 3 ⊢ {𝐴} ⊆ 𝒫 𝐴 | |
3 | ssexg 4128 | . . 3 ⊢ (({𝐴} ⊆ 𝒫 𝐴 ∧ 𝒫 𝐴 ∈ V) → {𝐴} ∈ V) | |
4 | 2, 3 | mpan 422 | . 2 ⊢ (𝒫 𝐴 ∈ V → {𝐴} ∈ V) |
5 | 1, 4 | syl 14 | 1 ⊢ (𝐴 ∈ 𝑉 → {𝐴} ∈ V) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∈ wcel 2141 Vcvv 2730 ⊆ wss 3121 𝒫 cpw 3566 {csn 3583 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-14 2144 ax-ext 2152 ax-sep 4107 ax-pow 4160 |
This theorem depends on definitions: df-bi 116 df-tru 1351 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-v 2732 df-in 3127 df-ss 3134 df-pw 3568 df-sn 3589 |
This theorem is referenced by: snex 4171 notnotsnex 4173 exmidsssnc 4189 snelpwi 4197 opexg 4213 opm 4219 tpexg 4429 op1stbg 4464 sucexb 4481 elxp4 5098 elxp5 5099 opabex3d 6100 opabex3 6101 1stvalg 6121 2ndvalg 6122 mpoexxg 6189 cnvf1o 6204 brtpos2 6230 tfr0dm 6301 tfrlemisucaccv 6304 tfrlemibxssdm 6306 tfrlemibfn 6307 tfr1onlemsucaccv 6320 tfr1onlembxssdm 6322 tfr1onlembfn 6323 tfrcllemsucaccv 6333 tfrcllembxssdm 6335 tfrcllembfn 6336 fvdiagfn 6671 ixpsnf1o 6714 mapsnf1o 6715 xpsnen2g 6807 zfz1isolem1 10775 climconst2 11254 ennnfonelemp1 12361 setsvalg 12446 setsex 12448 setsslid 12466 strle1g 12508 1strbas 12517 mgm1 12624 sgrp1 12651 mnd1 12679 mnd1id 12680 |
Copyright terms: Public domain | W3C validator |