| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > snexg | GIF version | ||
| Description: A singleton whose element exists is a set. The 𝐴 ∈ V case of Theorem 7.12 of [Quine] p. 51, proved using only Extensionality, Power Set, and Separation. Replacement is not needed. (Contributed by Jim Kingdon, 1-Sep-2018.) |
| Ref | Expression |
|---|---|
| snexg | ⊢ (𝐴 ∈ 𝑉 → {𝐴} ∈ V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pwexg 4214 | . 2 ⊢ (𝐴 ∈ 𝑉 → 𝒫 𝐴 ∈ V) | |
| 2 | snsspw 3795 | . . 3 ⊢ {𝐴} ⊆ 𝒫 𝐴 | |
| 3 | ssexg 4173 | . . 3 ⊢ (({𝐴} ⊆ 𝒫 𝐴 ∧ 𝒫 𝐴 ∈ V) → {𝐴} ∈ V) | |
| 4 | 2, 3 | mpan 424 | . 2 ⊢ (𝒫 𝐴 ∈ V → {𝐴} ∈ V) |
| 5 | 1, 4 | syl 14 | 1 ⊢ (𝐴 ∈ 𝑉 → {𝐴} ∈ V) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∈ wcel 2167 Vcvv 2763 ⊆ wss 3157 𝒫 cpw 3606 {csn 3623 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-14 2170 ax-ext 2178 ax-sep 4152 ax-pow 4208 |
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-v 2765 df-in 3163 df-ss 3170 df-pw 3608 df-sn 3629 |
| This theorem is referenced by: snex 4219 notnotsnex 4221 exmidsssnc 4237 snelpwi 4246 opexg 4262 opm 4268 tpexg 4480 op1stbg 4515 sucexb 4534 elxp4 5158 elxp5 5159 opabex3d 6187 opabex3 6188 1stvalg 6209 2ndvalg 6210 mpoexxg 6277 cnvf1o 6292 brtpos2 6318 tfr0dm 6389 tfrlemisucaccv 6392 tfrlemibxssdm 6394 tfrlemibfn 6395 tfr1onlemsucaccv 6408 tfr1onlembxssdm 6410 tfr1onlembfn 6411 tfrcllemsucaccv 6421 tfrcllembxssdm 6423 tfrcllembfn 6424 fvdiagfn 6761 ixpsnf1o 6804 mapsnf1o 6805 xpsnen2g 6897 zfz1isolem1 10949 climconst2 11473 ennnfonelemp1 12648 setsvalg 12733 setsex 12735 setsslid 12754 strle1g 12809 1strbas 12820 pwsval 12993 pwsbas 12994 pwssnf1o 13000 imasex 13007 imasival 13008 imasbas 13009 imasplusg 13010 imasmulr 13011 mgm1 13072 igsumvalx 13091 sgrp1 13113 mnd1 13157 mnd1id 13158 grp1 13308 grp1inv 13309 mulgnngsum 13333 triv1nsgd 13424 ring1 13691 znval 14268 znle 14269 znbaslemnn 14271 znbas 14276 znzrhval 14279 znzrhfo 14280 psrval 14296 psrbasg 14303 psrplusgg 14306 |
| Copyright terms: Public domain | W3C validator |