| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > p0ex | GIF version | ||
| Description: The power set of the empty set (the ordinal 1) is a set. (Contributed by NM, 23-Dec-1993.) |
| Ref | Expression |
|---|---|
| p0ex | ⊢ {∅} ∈ V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pw0 3779 | . 2 ⊢ 𝒫 ∅ = {∅} | |
| 2 | 0ex 4170 | . . 3 ⊢ ∅ ∈ V | |
| 3 | 2 | pwex 4226 | . 2 ⊢ 𝒫 ∅ ∈ V |
| 4 | 1, 3 | eqeltrri 2278 | 1 ⊢ {∅} ∈ V |
| Colors of variables: wff set class |
| Syntax hints: ∈ wcel 2175 Vcvv 2771 ∅c0 3459 𝒫 cpw 3615 {csn 3632 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-14 2178 ax-ext 2186 ax-sep 4161 ax-nul 4169 ax-pow 4217 |
| This theorem depends on definitions: df-bi 117 df-tru 1375 df-nf 1483 df-sb 1785 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-v 2773 df-dif 3167 df-in 3171 df-ss 3178 df-nul 3460 df-pw 3617 df-sn 3638 |
| This theorem is referenced by: pp0ex 4232 undifexmid 4236 exmidexmid 4239 exmidundif 4249 exmidundifim 4250 exmid1stab 4251 ordtriexmidlem 4565 ontr2exmid 4571 onsucsssucexmid 4573 onsucelsucexmid 4576 regexmidlemm 4578 ordsoexmid 4608 ordtri2or2exmid 4617 ontri2orexmidim 4618 opthprc 4724 acexmidlema 5925 acexmidlem2 5931 tposexg 6334 2dom 6882 map1 6889 endisj 6901 ssfiexmid 6955 domfiexmid 6957 exmidpw 6987 exmidpw2en 6991 djuex 7127 exmidomni 7226 exmidonfinlem 7283 exmidfodomrlemr 7292 exmidfodomrlemrALT 7293 exmidaclem 7302 pw1dom2 7321 pw1ne1 7323 sbthom 15829 |
| Copyright terms: Public domain | W3C validator |