| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > p0ex | GIF version | ||
| Description: The power set of the empty set (the ordinal 1) is a set. (Contributed by NM, 23-Dec-1993.) |
| Ref | Expression |
|---|---|
| p0ex | ⊢ {∅} ∈ V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pw0 3814 | . 2 ⊢ 𝒫 ∅ = {∅} | |
| 2 | 0ex 4210 | . . 3 ⊢ ∅ ∈ V | |
| 3 | 2 | pwex 4266 | . 2 ⊢ 𝒫 ∅ ∈ V |
| 4 | 1, 3 | eqeltrri 2303 | 1 ⊢ {∅} ∈ V |
| Colors of variables: wff set class |
| Syntax hints: ∈ wcel 2200 Vcvv 2799 ∅c0 3491 𝒫 cpw 3649 {csn 3666 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-14 2203 ax-ext 2211 ax-sep 4201 ax-nul 4209 ax-pow 4257 |
| This theorem depends on definitions: df-bi 117 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-v 2801 df-dif 3199 df-in 3203 df-ss 3210 df-nul 3492 df-pw 3651 df-sn 3672 |
| This theorem is referenced by: pp0ex 4272 undifexmid 4276 exmidexmid 4279 exmidundif 4289 exmidundifim 4290 exmid1stab 4291 ordtriexmidlem 4610 ontr2exmid 4616 onsucsssucexmid 4618 onsucelsucexmid 4621 regexmidlemm 4623 ordsoexmid 4653 ordtri2or2exmid 4662 ontri2orexmidim 4663 opthprc 4769 acexmidlema 5991 acexmidlem2 5997 tposexg 6402 2dom 6956 map1 6963 endisj 6979 ssfiexmid 7034 domfiexmid 7036 exmidpw 7066 exmidpw2en 7070 djuex 7206 exmidomni 7305 exmidonfinlem 7367 exmidfodomrlemr 7376 exmidfodomrlemrALT 7377 exmidaclem 7386 pw1dom2 7408 pw1ne1 7410 sbthom 16353 |
| Copyright terms: Public domain | W3C validator |