ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  p0ex GIF version

Theorem p0ex 4240
Description: The power set of the empty set (the ordinal 1) is a set. (Contributed by NM, 23-Dec-1993.)
Assertion
Ref Expression
p0ex {∅} ∈ V

Proof of Theorem p0ex
StepHypRef Expression
1 pw0 3786 . 2 𝒫 ∅ = {∅}
2 0ex 4179 . . 3 ∅ ∈ V
32pwex 4235 . 2 𝒫 ∅ ∈ V
41, 3eqeltrri 2280 1 {∅} ∈ V
Colors of variables: wff set class
Syntax hints:  wcel 2177  Vcvv 2773  c0 3464  𝒫 cpw 3621  {csn 3638
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-14 2180  ax-ext 2188  ax-sep 4170  ax-nul 4178  ax-pow 4226
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-v 2775  df-dif 3172  df-in 3176  df-ss 3183  df-nul 3465  df-pw 3623  df-sn 3644
This theorem is referenced by:  pp0ex  4241  undifexmid  4245  exmidexmid  4248  exmidundif  4258  exmidundifim  4259  exmid1stab  4260  ordtriexmidlem  4575  ontr2exmid  4581  onsucsssucexmid  4583  onsucelsucexmid  4586  regexmidlemm  4588  ordsoexmid  4618  ordtri2or2exmid  4627  ontri2orexmidim  4628  opthprc  4734  acexmidlema  5948  acexmidlem2  5954  tposexg  6357  2dom  6911  map1  6918  endisj  6934  ssfiexmid  6988  domfiexmid  6990  exmidpw  7020  exmidpw2en  7024  djuex  7160  exmidomni  7259  exmidonfinlem  7317  exmidfodomrlemr  7326  exmidfodomrlemrALT  7327  exmidaclem  7336  pw1dom2  7358  pw1ne1  7360  sbthom  16106
  Copyright terms: Public domain W3C validator