Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > p0ex | GIF version |
Description: The power set of the empty set (the ordinal 1) is a set. (Contributed by NM, 23-Dec-1993.) |
Ref | Expression |
---|---|
p0ex | ⊢ {∅} ∈ V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pw0 3727 | . 2 ⊢ 𝒫 ∅ = {∅} | |
2 | 0ex 4116 | . . 3 ⊢ ∅ ∈ V | |
3 | 2 | pwex 4169 | . 2 ⊢ 𝒫 ∅ ∈ V |
4 | 1, 3 | eqeltrri 2244 | 1 ⊢ {∅} ∈ V |
Colors of variables: wff set class |
Syntax hints: ∈ wcel 2141 Vcvv 2730 ∅c0 3414 𝒫 cpw 3566 {csn 3583 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-14 2144 ax-ext 2152 ax-sep 4107 ax-nul 4115 ax-pow 4160 |
This theorem depends on definitions: df-bi 116 df-tru 1351 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-v 2732 df-dif 3123 df-in 3127 df-ss 3134 df-nul 3415 df-pw 3568 df-sn 3589 |
This theorem is referenced by: pp0ex 4175 undifexmid 4179 exmidexmid 4182 exmidundif 4192 exmidundifim 4193 ordtriexmidlem 4503 ontr2exmid 4509 onsucsssucexmid 4511 onsucelsucexmid 4514 regexmidlemm 4516 ordsoexmid 4546 ordtri2or2exmid 4555 ontri2orexmidim 4556 opthprc 4662 acexmidlema 5844 acexmidlem2 5850 tposexg 6237 2dom 6783 map1 6790 endisj 6802 ssfiexmid 6854 domfiexmid 6856 exmidpw 6886 djuex 7020 exmidomni 7118 exmidonfinlem 7170 exmidfodomrlemr 7179 exmidfodomrlemrALT 7180 exmidaclem 7185 pw1dom2 7204 pw1ne1 7206 exmid1stab 14033 sbthom 14058 |
Copyright terms: Public domain | W3C validator |