ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  p0ex GIF version

Theorem p0ex 4221
Description: The power set of the empty set (the ordinal 1) is a set. (Contributed by NM, 23-Dec-1993.)
Assertion
Ref Expression
p0ex {∅} ∈ V

Proof of Theorem p0ex
StepHypRef Expression
1 pw0 3769 . 2 𝒫 ∅ = {∅}
2 0ex 4160 . . 3 ∅ ∈ V
32pwex 4216 . 2 𝒫 ∅ ∈ V
41, 3eqeltrri 2270 1 {∅} ∈ V
Colors of variables: wff set class
Syntax hints:  wcel 2167  Vcvv 2763  c0 3450  𝒫 cpw 3605  {csn 3622
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-nul 4159  ax-pow 4207
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-v 2765  df-dif 3159  df-in 3163  df-ss 3170  df-nul 3451  df-pw 3607  df-sn 3628
This theorem is referenced by:  pp0ex  4222  undifexmid  4226  exmidexmid  4229  exmidundif  4239  exmidundifim  4240  exmid1stab  4241  ordtriexmidlem  4555  ontr2exmid  4561  onsucsssucexmid  4563  onsucelsucexmid  4566  regexmidlemm  4568  ordsoexmid  4598  ordtri2or2exmid  4607  ontri2orexmidim  4608  opthprc  4714  acexmidlema  5913  acexmidlem2  5919  tposexg  6316  2dom  6864  map1  6871  endisj  6883  ssfiexmid  6937  domfiexmid  6939  exmidpw  6969  exmidpw2en  6973  djuex  7109  exmidomni  7208  exmidonfinlem  7260  exmidfodomrlemr  7269  exmidfodomrlemrALT  7270  exmidaclem  7275  pw1dom2  7294  pw1ne1  7296  sbthom  15670
  Copyright terms: Public domain W3C validator