ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  p0ex GIF version

Theorem p0ex 4189
Description: The power set of the empty set (the ordinal 1) is a set. (Contributed by NM, 23-Dec-1993.)
Assertion
Ref Expression
p0ex {∅} ∈ V

Proof of Theorem p0ex
StepHypRef Expression
1 pw0 3740 . 2 𝒫 ∅ = {∅}
2 0ex 4131 . . 3 ∅ ∈ V
32pwex 4184 . 2 𝒫 ∅ ∈ V
41, 3eqeltrri 2251 1 {∅} ∈ V
Colors of variables: wff set class
Syntax hints:  wcel 2148  Vcvv 2738  c0 3423  𝒫 cpw 3576  {csn 3593
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-14 2151  ax-ext 2159  ax-sep 4122  ax-nul 4130  ax-pow 4175
This theorem depends on definitions:  df-bi 117  df-tru 1356  df-nf 1461  df-sb 1763  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-v 2740  df-dif 3132  df-in 3136  df-ss 3143  df-nul 3424  df-pw 3578  df-sn 3599
This theorem is referenced by:  pp0ex  4190  undifexmid  4194  exmidexmid  4197  exmidundif  4207  exmidundifim  4208  exmid1stab  4209  ordtriexmidlem  4519  ontr2exmid  4525  onsucsssucexmid  4527  onsucelsucexmid  4530  regexmidlemm  4532  ordsoexmid  4562  ordtri2or2exmid  4571  ontri2orexmidim  4572  opthprc  4678  acexmidlema  5866  acexmidlem2  5872  tposexg  6259  2dom  6805  map1  6812  endisj  6824  ssfiexmid  6876  domfiexmid  6878  exmidpw  6908  djuex  7042  exmidomni  7140  exmidonfinlem  7192  exmidfodomrlemr  7201  exmidfodomrlemrALT  7202  exmidaclem  7207  pw1dom2  7226  pw1ne1  7228  sbthom  14777
  Copyright terms: Public domain W3C validator