ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  p0ex GIF version

Theorem p0ex 4218
Description: The power set of the empty set (the ordinal 1) is a set. (Contributed by NM, 23-Dec-1993.)
Assertion
Ref Expression
p0ex {∅} ∈ V

Proof of Theorem p0ex
StepHypRef Expression
1 pw0 3766 . 2 𝒫 ∅ = {∅}
2 0ex 4157 . . 3 ∅ ∈ V
32pwex 4213 . 2 𝒫 ∅ ∈ V
41, 3eqeltrri 2267 1 {∅} ∈ V
Colors of variables: wff set class
Syntax hints:  wcel 2164  Vcvv 2760  c0 3447  𝒫 cpw 3602  {csn 3619
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-14 2167  ax-ext 2175  ax-sep 4148  ax-nul 4156  ax-pow 4204
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-v 2762  df-dif 3156  df-in 3160  df-ss 3167  df-nul 3448  df-pw 3604  df-sn 3625
This theorem is referenced by:  pp0ex  4219  undifexmid  4223  exmidexmid  4226  exmidundif  4236  exmidundifim  4237  exmid1stab  4238  ordtriexmidlem  4552  ontr2exmid  4558  onsucsssucexmid  4560  onsucelsucexmid  4563  regexmidlemm  4565  ordsoexmid  4595  ordtri2or2exmid  4604  ontri2orexmidim  4605  opthprc  4711  acexmidlema  5910  acexmidlem2  5916  tposexg  6313  2dom  6861  map1  6868  endisj  6880  ssfiexmid  6934  domfiexmid  6936  exmidpw  6966  exmidpw2en  6970  djuex  7104  exmidomni  7203  exmidonfinlem  7255  exmidfodomrlemr  7264  exmidfodomrlemrALT  7265  exmidaclem  7270  pw1dom2  7289  pw1ne1  7291  sbthom  15586
  Copyright terms: Public domain W3C validator