![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > p0ex | GIF version |
Description: The power set of the empty set (the ordinal 1) is a set. (Contributed by NM, 23-Dec-1993.) |
Ref | Expression |
---|---|
p0ex | ⊢ {∅} ∈ V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pw0 3736 | . 2 ⊢ 𝒫 ∅ = {∅} | |
2 | 0ex 4125 | . . 3 ⊢ ∅ ∈ V | |
3 | 2 | pwex 4178 | . 2 ⊢ 𝒫 ∅ ∈ V |
4 | 1, 3 | eqeltrri 2249 | 1 ⊢ {∅} ∈ V |
Colors of variables: wff set class |
Syntax hints: ∈ wcel 2146 Vcvv 2735 ∅c0 3420 𝒫 cpw 3572 {csn 3589 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1445 ax-7 1446 ax-gen 1447 ax-ie1 1491 ax-ie2 1492 ax-8 1502 ax-10 1503 ax-11 1504 ax-i12 1505 ax-bndl 1507 ax-4 1508 ax-17 1524 ax-i9 1528 ax-ial 1532 ax-i5r 1533 ax-14 2149 ax-ext 2157 ax-sep 4116 ax-nul 4124 ax-pow 4169 |
This theorem depends on definitions: df-bi 117 df-tru 1356 df-nf 1459 df-sb 1761 df-clab 2162 df-cleq 2168 df-clel 2171 df-nfc 2306 df-v 2737 df-dif 3129 df-in 3133 df-ss 3140 df-nul 3421 df-pw 3574 df-sn 3595 |
This theorem is referenced by: pp0ex 4184 undifexmid 4188 exmidexmid 4191 exmidundif 4201 exmidundifim 4202 ordtriexmidlem 4512 ontr2exmid 4518 onsucsssucexmid 4520 onsucelsucexmid 4523 regexmidlemm 4525 ordsoexmid 4555 ordtri2or2exmid 4564 ontri2orexmidim 4565 opthprc 4671 acexmidlema 5856 acexmidlem2 5862 tposexg 6249 2dom 6795 map1 6802 endisj 6814 ssfiexmid 6866 domfiexmid 6868 exmidpw 6898 djuex 7032 exmidomni 7130 exmidonfinlem 7182 exmidfodomrlemr 7191 exmidfodomrlemrALT 7192 exmidaclem 7197 pw1dom2 7216 pw1ne1 7218 exmid1stab 14319 sbthom 14344 |
Copyright terms: Public domain | W3C validator |