ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  p0ex GIF version

Theorem p0ex 4217
Description: The power set of the empty set (the ordinal 1) is a set. (Contributed by NM, 23-Dec-1993.)
Assertion
Ref Expression
p0ex {∅} ∈ V

Proof of Theorem p0ex
StepHypRef Expression
1 pw0 3765 . 2 𝒫 ∅ = {∅}
2 0ex 4156 . . 3 ∅ ∈ V
32pwex 4212 . 2 𝒫 ∅ ∈ V
41, 3eqeltrri 2267 1 {∅} ∈ V
Colors of variables: wff set class
Syntax hints:  wcel 2164  Vcvv 2760  c0 3446  𝒫 cpw 3601  {csn 3618
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-nul 4155  ax-pow 4203
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-v 2762  df-dif 3155  df-in 3159  df-ss 3166  df-nul 3447  df-pw 3603  df-sn 3624
This theorem is referenced by:  pp0ex  4218  undifexmid  4222  exmidexmid  4225  exmidundif  4235  exmidundifim  4236  exmid1stab  4237  ordtriexmidlem  4551  ontr2exmid  4557  onsucsssucexmid  4559  onsucelsucexmid  4562  regexmidlemm  4564  ordsoexmid  4594  ordtri2or2exmid  4603  ontri2orexmidim  4604  opthprc  4710  acexmidlema  5909  acexmidlem2  5915  tposexg  6311  2dom  6859  map1  6866  endisj  6878  ssfiexmid  6932  domfiexmid  6934  exmidpw  6964  exmidpw2en  6968  djuex  7102  exmidomni  7201  exmidonfinlem  7253  exmidfodomrlemr  7262  exmidfodomrlemrALT  7263  exmidaclem  7268  pw1dom2  7287  pw1ne1  7289  sbthom  15516
  Copyright terms: Public domain W3C validator