| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > p0ex | GIF version | ||
| Description: The power set of the empty set (the ordinal 1) is a set. (Contributed by NM, 23-Dec-1993.) |
| Ref | Expression |
|---|---|
| p0ex | ⊢ {∅} ∈ V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pw0 3770 | . 2 ⊢ 𝒫 ∅ = {∅} | |
| 2 | 0ex 4161 | . . 3 ⊢ ∅ ∈ V | |
| 3 | 2 | pwex 4217 | . 2 ⊢ 𝒫 ∅ ∈ V |
| 4 | 1, 3 | eqeltrri 2270 | 1 ⊢ {∅} ∈ V |
| Colors of variables: wff set class |
| Syntax hints: ∈ wcel 2167 Vcvv 2763 ∅c0 3451 𝒫 cpw 3606 {csn 3623 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-14 2170 ax-ext 2178 ax-sep 4152 ax-nul 4160 ax-pow 4208 |
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-v 2765 df-dif 3159 df-in 3163 df-ss 3170 df-nul 3452 df-pw 3608 df-sn 3629 |
| This theorem is referenced by: pp0ex 4223 undifexmid 4227 exmidexmid 4230 exmidundif 4240 exmidundifim 4241 exmid1stab 4242 ordtriexmidlem 4556 ontr2exmid 4562 onsucsssucexmid 4564 onsucelsucexmid 4567 regexmidlemm 4569 ordsoexmid 4599 ordtri2or2exmid 4608 ontri2orexmidim 4609 opthprc 4715 acexmidlema 5916 acexmidlem2 5922 tposexg 6325 2dom 6873 map1 6880 endisj 6892 ssfiexmid 6946 domfiexmid 6948 exmidpw 6978 exmidpw2en 6982 djuex 7118 exmidomni 7217 exmidonfinlem 7272 exmidfodomrlemr 7281 exmidfodomrlemrALT 7282 exmidaclem 7291 pw1dom2 7310 pw1ne1 7312 sbthom 15757 |
| Copyright terms: Public domain | W3C validator |