![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > p0ex | GIF version |
Description: The power set of the empty set (the ordinal 1) is a set. (Contributed by NM, 23-Dec-1993.) |
Ref | Expression |
---|---|
p0ex | ⊢ {∅} ∈ V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pw0 3765 | . 2 ⊢ 𝒫 ∅ = {∅} | |
2 | 0ex 4156 | . . 3 ⊢ ∅ ∈ V | |
3 | 2 | pwex 4212 | . 2 ⊢ 𝒫 ∅ ∈ V |
4 | 1, 3 | eqeltrri 2267 | 1 ⊢ {∅} ∈ V |
Colors of variables: wff set class |
Syntax hints: ∈ wcel 2164 Vcvv 2760 ∅c0 3446 𝒫 cpw 3601 {csn 3618 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-14 2167 ax-ext 2175 ax-sep 4147 ax-nul 4155 ax-pow 4203 |
This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-v 2762 df-dif 3155 df-in 3159 df-ss 3166 df-nul 3447 df-pw 3603 df-sn 3624 |
This theorem is referenced by: pp0ex 4218 undifexmid 4222 exmidexmid 4225 exmidundif 4235 exmidundifim 4236 exmid1stab 4237 ordtriexmidlem 4551 ontr2exmid 4557 onsucsssucexmid 4559 onsucelsucexmid 4562 regexmidlemm 4564 ordsoexmid 4594 ordtri2or2exmid 4603 ontri2orexmidim 4604 opthprc 4710 acexmidlema 5909 acexmidlem2 5915 tposexg 6311 2dom 6859 map1 6866 endisj 6878 ssfiexmid 6932 domfiexmid 6934 exmidpw 6964 exmidpw2en 6968 djuex 7102 exmidomni 7201 exmidonfinlem 7253 exmidfodomrlemr 7262 exmidfodomrlemrALT 7263 exmidaclem 7268 pw1dom2 7287 pw1ne1 7289 sbthom 15516 |
Copyright terms: Public domain | W3C validator |