| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > p0ex | GIF version | ||
| Description: The power set of the empty set (the ordinal 1) is a set. (Contributed by NM, 23-Dec-1993.) |
| Ref | Expression |
|---|---|
| p0ex | ⊢ {∅} ∈ V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pw0 3769 | . 2 ⊢ 𝒫 ∅ = {∅} | |
| 2 | 0ex 4160 | . . 3 ⊢ ∅ ∈ V | |
| 3 | 2 | pwex 4216 | . 2 ⊢ 𝒫 ∅ ∈ V |
| 4 | 1, 3 | eqeltrri 2270 | 1 ⊢ {∅} ∈ V |
| Colors of variables: wff set class |
| Syntax hints: ∈ wcel 2167 Vcvv 2763 ∅c0 3450 𝒫 cpw 3605 {csn 3622 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-nul 4159 ax-pow 4207 |
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-v 2765 df-dif 3159 df-in 3163 df-ss 3170 df-nul 3451 df-pw 3607 df-sn 3628 |
| This theorem is referenced by: pp0ex 4222 undifexmid 4226 exmidexmid 4229 exmidundif 4239 exmidundifim 4240 exmid1stab 4241 ordtriexmidlem 4555 ontr2exmid 4561 onsucsssucexmid 4563 onsucelsucexmid 4566 regexmidlemm 4568 ordsoexmid 4598 ordtri2or2exmid 4607 ontri2orexmidim 4608 opthprc 4714 acexmidlema 5913 acexmidlem2 5919 tposexg 6316 2dom 6864 map1 6871 endisj 6883 ssfiexmid 6937 domfiexmid 6939 exmidpw 6969 exmidpw2en 6973 djuex 7109 exmidomni 7208 exmidonfinlem 7260 exmidfodomrlemr 7269 exmidfodomrlemrALT 7270 exmidaclem 7275 pw1dom2 7294 pw1ne1 7296 sbthom 15670 |
| Copyright terms: Public domain | W3C validator |