Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > p0ex | GIF version |
Description: The power set of the empty set (the ordinal 1) is a set. (Contributed by NM, 23-Dec-1993.) |
Ref | Expression |
---|---|
p0ex | ⊢ {∅} ∈ V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pw0 3720 | . 2 ⊢ 𝒫 ∅ = {∅} | |
2 | 0ex 4109 | . . 3 ⊢ ∅ ∈ V | |
3 | 2 | pwex 4162 | . 2 ⊢ 𝒫 ∅ ∈ V |
4 | 1, 3 | eqeltrri 2240 | 1 ⊢ {∅} ∈ V |
Colors of variables: wff set class |
Syntax hints: ∈ wcel 2136 Vcvv 2726 ∅c0 3409 𝒫 cpw 3559 {csn 3576 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-nul 4108 ax-pow 4153 |
This theorem depends on definitions: df-bi 116 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-v 2728 df-dif 3118 df-in 3122 df-ss 3129 df-nul 3410 df-pw 3561 df-sn 3582 |
This theorem is referenced by: pp0ex 4168 undifexmid 4172 exmidexmid 4175 exmidundif 4185 exmidundifim 4186 ordtriexmidlem 4496 ontr2exmid 4502 onsucsssucexmid 4504 onsucelsucexmid 4507 regexmidlemm 4509 ordsoexmid 4539 ordtri2or2exmid 4548 ontri2orexmidim 4549 opthprc 4655 acexmidlema 5833 acexmidlem2 5839 tposexg 6226 2dom 6771 map1 6778 endisj 6790 ssfiexmid 6842 domfiexmid 6844 exmidpw 6874 djuex 7008 exmidomni 7106 exmidonfinlem 7149 exmidfodomrlemr 7158 exmidfodomrlemrALT 7159 exmidaclem 7164 pw1dom2 7183 pw1ne1 7185 exmid1stab 13890 sbthom 13915 |
Copyright terms: Public domain | W3C validator |