| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > p0ex | GIF version | ||
| Description: The power set of the empty set (the ordinal 1) is a set. (Contributed by NM, 23-Dec-1993.) |
| Ref | Expression |
|---|---|
| p0ex | ⊢ {∅} ∈ V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pw0 3786 | . 2 ⊢ 𝒫 ∅ = {∅} | |
| 2 | 0ex 4179 | . . 3 ⊢ ∅ ∈ V | |
| 3 | 2 | pwex 4235 | . 2 ⊢ 𝒫 ∅ ∈ V |
| 4 | 1, 3 | eqeltrri 2280 | 1 ⊢ {∅} ∈ V |
| Colors of variables: wff set class |
| Syntax hints: ∈ wcel 2177 Vcvv 2773 ∅c0 3464 𝒫 cpw 3621 {csn 3638 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-14 2180 ax-ext 2188 ax-sep 4170 ax-nul 4178 ax-pow 4226 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-v 2775 df-dif 3172 df-in 3176 df-ss 3183 df-nul 3465 df-pw 3623 df-sn 3644 |
| This theorem is referenced by: pp0ex 4241 undifexmid 4245 exmidexmid 4248 exmidundif 4258 exmidundifim 4259 exmid1stab 4260 ordtriexmidlem 4575 ontr2exmid 4581 onsucsssucexmid 4583 onsucelsucexmid 4586 regexmidlemm 4588 ordsoexmid 4618 ordtri2or2exmid 4627 ontri2orexmidim 4628 opthprc 4734 acexmidlema 5948 acexmidlem2 5954 tposexg 6357 2dom 6911 map1 6918 endisj 6934 ssfiexmid 6988 domfiexmid 6990 exmidpw 7020 exmidpw2en 7024 djuex 7160 exmidomni 7259 exmidonfinlem 7317 exmidfodomrlemr 7326 exmidfodomrlemrALT 7327 exmidaclem 7336 pw1dom2 7358 pw1ne1 7360 sbthom 16106 |
| Copyright terms: Public domain | W3C validator |