| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > orduni | GIF version | ||
| Description: The union of an ordinal class is ordinal. (Contributed by NM, 12-Sep-2003.) |
| Ref | Expression |
|---|---|
| orduni | ⊢ (Ord 𝐴 → Ord ∪ 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ordsson 4581 | . 2 ⊢ (Ord 𝐴 → 𝐴 ⊆ On) | |
| 2 | ssorduni 4576 | . 2 ⊢ (𝐴 ⊆ On → Ord ∪ 𝐴) | |
| 3 | 1, 2 | syl 14 | 1 ⊢ (Ord 𝐴 → Ord ∪ 𝐴) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ⊆ wss 3197 ∪ cuni 3887 Ord word 4450 Oncon0 4451 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-v 2801 df-in 3203 df-ss 3210 df-uni 3888 df-tr 4182 df-iord 4454 df-on 4456 |
| This theorem is referenced by: tfrcl 6500 |
| Copyright terms: Public domain | W3C validator |