ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  orduni GIF version

Theorem orduni 4584
Description: The union of an ordinal class is ordinal. (Contributed by NM, 12-Sep-2003.)
Assertion
Ref Expression
orduni (Ord 𝐴 → Ord 𝐴)

Proof of Theorem orduni
StepHypRef Expression
1 ordsson 4581 . 2 (Ord 𝐴𝐴 ⊆ On)
2 ssorduni 4576 . 2 (𝐴 ⊆ On → Ord 𝐴)
31, 2syl 14 1 (Ord 𝐴 → Ord 𝐴)
Colors of variables: wff set class
Syntax hints:  wi 4  wss 3197   cuni 3887  Ord word 4450  Oncon0 4451
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-v 2801  df-in 3203  df-ss 3210  df-uni 3888  df-tr 4182  df-iord 4454  df-on 4456
This theorem is referenced by:  tfrcl  6500
  Copyright terms: Public domain W3C validator