ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  opeq1 GIF version

Theorem opeq1 3765
Description: Equality theorem for ordered pairs. (Contributed by NM, 25-Jun-1998.) (Revised by Mario Carneiro, 26-Apr-2015.)
Assertion
Ref Expression
opeq1 (𝐴 = 𝐵 → ⟨𝐴, 𝐶⟩ = ⟨𝐵, 𝐶⟩)

Proof of Theorem opeq1
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 eleq1 2233 . . . . . 6 (𝐴 = 𝐵 → (𝐴 ∈ V ↔ 𝐵 ∈ V))
21anbi1d 462 . . . . 5 (𝐴 = 𝐵 → ((𝐴 ∈ V ∧ 𝐶 ∈ V) ↔ (𝐵 ∈ V ∧ 𝐶 ∈ V)))
3 sneq 3594 . . . . . . 7 (𝐴 = 𝐵 → {𝐴} = {𝐵})
4 preq1 3660 . . . . . . 7 (𝐴 = 𝐵 → {𝐴, 𝐶} = {𝐵, 𝐶})
53, 4preq12d 3668 . . . . . 6 (𝐴 = 𝐵 → {{𝐴}, {𝐴, 𝐶}} = {{𝐵}, {𝐵, 𝐶}})
65eleq2d 2240 . . . . 5 (𝐴 = 𝐵 → (𝑥 ∈ {{𝐴}, {𝐴, 𝐶}} ↔ 𝑥 ∈ {{𝐵}, {𝐵, 𝐶}}))
72, 6anbi12d 470 . . . 4 (𝐴 = 𝐵 → (((𝐴 ∈ V ∧ 𝐶 ∈ V) ∧ 𝑥 ∈ {{𝐴}, {𝐴, 𝐶}}) ↔ ((𝐵 ∈ V ∧ 𝐶 ∈ V) ∧ 𝑥 ∈ {{𝐵}, {𝐵, 𝐶}})))
8 df-3an 975 . . . 4 ((𝐴 ∈ V ∧ 𝐶 ∈ V ∧ 𝑥 ∈ {{𝐴}, {𝐴, 𝐶}}) ↔ ((𝐴 ∈ V ∧ 𝐶 ∈ V) ∧ 𝑥 ∈ {{𝐴}, {𝐴, 𝐶}}))
9 df-3an 975 . . . 4 ((𝐵 ∈ V ∧ 𝐶 ∈ V ∧ 𝑥 ∈ {{𝐵}, {𝐵, 𝐶}}) ↔ ((𝐵 ∈ V ∧ 𝐶 ∈ V) ∧ 𝑥 ∈ {{𝐵}, {𝐵, 𝐶}}))
107, 8, 93bitr4g 222 . . 3 (𝐴 = 𝐵 → ((𝐴 ∈ V ∧ 𝐶 ∈ V ∧ 𝑥 ∈ {{𝐴}, {𝐴, 𝐶}}) ↔ (𝐵 ∈ V ∧ 𝐶 ∈ V ∧ 𝑥 ∈ {{𝐵}, {𝐵, 𝐶}})))
1110abbidv 2288 . 2 (𝐴 = 𝐵 → {𝑥 ∣ (𝐴 ∈ V ∧ 𝐶 ∈ V ∧ 𝑥 ∈ {{𝐴}, {𝐴, 𝐶}})} = {𝑥 ∣ (𝐵 ∈ V ∧ 𝐶 ∈ V ∧ 𝑥 ∈ {{𝐵}, {𝐵, 𝐶}})})
12 df-op 3592 . 2 𝐴, 𝐶⟩ = {𝑥 ∣ (𝐴 ∈ V ∧ 𝐶 ∈ V ∧ 𝑥 ∈ {{𝐴}, {𝐴, 𝐶}})}
13 df-op 3592 . 2 𝐵, 𝐶⟩ = {𝑥 ∣ (𝐵 ∈ V ∧ 𝐶 ∈ V ∧ 𝑥 ∈ {{𝐵}, {𝐵, 𝐶}})}
1411, 12, 133eqtr4g 2228 1 (𝐴 = 𝐵 → ⟨𝐴, 𝐶⟩ = ⟨𝐵, 𝐶⟩)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  w3a 973   = wceq 1348  wcel 2141  {cab 2156  Vcvv 2730  {csn 3583  {cpr 3584  cop 3586
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-ext 2152
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-v 2732  df-un 3125  df-sn 3589  df-pr 3590  df-op 3592
This theorem is referenced by:  opeq12  3767  opeq1i  3768  opeq1d  3771  oteq1  3774  breq1  3992  cbvopab1  4062  cbvopab1s  4064  opthg  4223  eqvinop  4228  opelopabsb  4245  opelxp  4641  elvvv  4674  opabid2  4742  opeliunxp2  4751  elsnres  4928  elimasng  4979  rnxpid  5045  dmsnopg  5082  cnvsng  5096  elxp4  5098  elxp5  5099  funopg  5232  f1osng  5483  dmfco  5564  fvelrn  5627  fsng  5669  fvsng  5692  funfvima3  5729  oveq1  5860  oprabid  5885  dfoprab2  5900  cbvoprab1  5925  opabex3d  6100  opabex3  6101  op1stg  6129  op2ndg  6130  oprssdmm  6150  dfoprab4f  6172  cnvoprab  6213  opeliunxp2f  6217  tfr1onlemaccex  6327  tfrcllemaccex  6340  elixpsn  6713  fundmen  6784  xpsnen  6799  xpassen  6808  xpf1o  6822  ltexnqq  7370  archnqq  7379  prarloclemarch2  7381  prarloclemlo  7456  prarloclem3  7459  prarloclem5  7462  caucvgprlemnkj  7628  caucvgprlemnbj  7629  caucvgprlemm  7630  caucvgprlemdisj  7636  caucvgprlemloc  7637  caucvgprlemcl  7638  caucvgprlemladdfu  7639  caucvgprlemladdrl  7640  caucvgprlem1  7641  caucvgprlem2  7642  caucvgpr  7644  caucvgprprlemell  7647  caucvgprprlemelu  7648  caucvgprprlemcbv  7649  caucvgprprlemval  7650  caucvgprprlemnkeqj  7652  caucvgprprlemmu  7657  caucvgprprlemopl  7659  caucvgprprlemlol  7660  caucvgprprlemopu  7661  caucvgprprlemloc  7665  caucvgprprlemclphr  7667  caucvgprprlemexbt  7668  caucvgprprlem1  7671  caucvgprprlem2  7672  caucvgsr  7764  suplocsrlemb  7768  suplocsrlempr  7769  suplocsrlem  7770  suplocsr  7771  elrealeu  7791  pitonn  7810  nntopi  7856  axcaucvglemval  7859  axcaucvg  7862  axpre-suploclemres  7863  fsum2dlemstep  11397  fprod2dlemstep  11585  cnmpt21  13085
  Copyright terms: Public domain W3C validator