Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > ralimdv | GIF version |
Description: Deduction quantifying both antecedent and consequent, based on Theorem 19.20 of [Margaris] p. 90. (Contributed by NM, 8-Oct-2003.) |
Ref | Expression |
---|---|
ralimdv.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
Ref | Expression |
---|---|
ralimdv | ⊢ (𝜑 → (∀𝑥 ∈ 𝐴 𝜓 → ∀𝑥 ∈ 𝐴 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ralimdv.1 | . . 3 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
2 | 1 | adantr 274 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝜓 → 𝜒)) |
3 | 2 | ralimdva 2537 | 1 ⊢ (𝜑 → (∀𝑥 ∈ 𝐴 𝜓 → ∀𝑥 ∈ 𝐴 𝜒)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∈ wcel 2141 ∀wral 2448 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1440 ax-gen 1442 ax-4 1503 ax-17 1519 |
This theorem depends on definitions: df-bi 116 df-nf 1454 df-ral 2453 |
This theorem is referenced by: poss 4283 sess1 4322 sess2 4323 riinint 4872 dffo4 5644 dffo5 5645 isoini2 5798 rdgivallem 6360 iinerm 6585 xpf1o 6822 exmidontriimlem3 7200 exmidontriim 7202 resqrexlemgt0 10984 cau3lem 11078 caubnd2 11081 climshftlemg 11265 climcau 11310 climcaucn 11314 serf0 11315 modfsummodlemstep 11420 bezoutlemmain 11953 ctinf 12385 strsetsid 12449 fiinbas 12841 baspartn 12842 lmtopcnp 13044 rescncf 13362 limcresi 13429 |
Copyright terms: Public domain | W3C validator |