| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ralimdv | GIF version | ||
| Description: Deduction quantifying both antecedent and consequent, based on Theorem 19.20 of [Margaris] p. 90. (Contributed by NM, 8-Oct-2003.) |
| Ref | Expression |
|---|---|
| ralimdv.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
| Ref | Expression |
|---|---|
| ralimdv | ⊢ (𝜑 → (∀𝑥 ∈ 𝐴 𝜓 → ∀𝑥 ∈ 𝐴 𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ralimdv.1 | . . 3 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
| 2 | 1 | adantr 276 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝜓 → 𝜒)) |
| 3 | 2 | ralimdva 2575 | 1 ⊢ (𝜑 → (∀𝑥 ∈ 𝐴 𝜓 → ∀𝑥 ∈ 𝐴 𝜒)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∈ wcel 2178 ∀wral 2486 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1471 ax-gen 1473 ax-4 1534 ax-17 1550 |
| This theorem depends on definitions: df-bi 117 df-nf 1485 df-ral 2491 |
| This theorem is referenced by: poss 4363 sess1 4402 sess2 4403 riinint 4958 dffo4 5751 dffo5 5752 isoini2 5911 rdgivallem 6490 iinerm 6717 xpf1o 6966 exmidontriimlem3 7366 exmidontriim 7368 resqrexlemgt0 11446 cau3lem 11540 caubnd2 11543 climshftlemg 11728 climcau 11773 climcaucn 11777 serf0 11778 modfsummodlemstep 11883 bezoutlemmain 12434 ctinf 12916 strsetsid 12980 imasaddfnlemg 13261 islss4 14259 fiinbas 14636 baspartn 14637 lmtopcnp 14837 rescncf 15168 limcresi 15253 |
| Copyright terms: Public domain | W3C validator |