| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ralimdv | GIF version | ||
| Description: Deduction quantifying both antecedent and consequent, based on Theorem 19.20 of [Margaris] p. 90. (Contributed by NM, 8-Oct-2003.) |
| Ref | Expression |
|---|---|
| ralimdv.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
| Ref | Expression |
|---|---|
| ralimdv | ⊢ (𝜑 → (∀𝑥 ∈ 𝐴 𝜓 → ∀𝑥 ∈ 𝐴 𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ralimdv.1 | . . 3 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
| 2 | 1 | adantr 276 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝜓 → 𝜒)) |
| 3 | 2 | ralimdva 2597 | 1 ⊢ (𝜑 → (∀𝑥 ∈ 𝐴 𝜓 → ∀𝑥 ∈ 𝐴 𝜒)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∈ wcel 2200 ∀wral 2508 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1493 ax-gen 1495 ax-4 1556 ax-17 1572 |
| This theorem depends on definitions: df-bi 117 df-nf 1507 df-ral 2513 |
| This theorem is referenced by: poss 4388 sess1 4427 sess2 4428 riinint 4984 dffo4 5782 dffo5 5783 isoini2 5942 rdgivallem 6525 iinerm 6752 xpf1o 7001 exmidontriimlem3 7401 exmidontriim 7403 resqrexlemgt0 11526 cau3lem 11620 caubnd2 11623 climshftlemg 11808 climcau 11853 climcaucn 11857 serf0 11858 modfsummodlemstep 11963 bezoutlemmain 12514 ctinf 12996 strsetsid 13060 imasaddfnlemg 13342 islss4 14340 fiinbas 14717 baspartn 14718 lmtopcnp 14918 rescncf 15249 limcresi 15334 |
| Copyright terms: Public domain | W3C validator |