ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ralimdv GIF version

Theorem ralimdv 2565
Description: Deduction quantifying both antecedent and consequent, based on Theorem 19.20 of [Margaris] p. 90. (Contributed by NM, 8-Oct-2003.)
Hypothesis
Ref Expression
ralimdv.1 (𝜑 → (𝜓𝜒))
Assertion
Ref Expression
ralimdv (𝜑 → (∀𝑥𝐴 𝜓 → ∀𝑥𝐴 𝜒))
Distinct variable group:   𝜑,𝑥
Allowed substitution hints:   𝜓(𝑥)   𝜒(𝑥)   𝐴(𝑥)

Proof of Theorem ralimdv
StepHypRef Expression
1 ralimdv.1 . . 3 (𝜑 → (𝜓𝜒))
21adantr 276 . 2 ((𝜑𝑥𝐴) → (𝜓𝜒))
32ralimdva 2564 1 (𝜑 → (∀𝑥𝐴 𝜓 → ∀𝑥𝐴 𝜒))
Colors of variables: wff set class
Syntax hints:  wi 4  wcel 2167  wral 2475
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1461  ax-gen 1463  ax-4 1524  ax-17 1540
This theorem depends on definitions:  df-bi 117  df-nf 1475  df-ral 2480
This theorem is referenced by:  poss  4333  sess1  4372  sess2  4373  riinint  4927  dffo4  5710  dffo5  5711  isoini2  5866  rdgivallem  6439  iinerm  6666  xpf1o  6905  exmidontriimlem3  7290  exmidontriim  7292  resqrexlemgt0  11185  cau3lem  11279  caubnd2  11282  climshftlemg  11467  climcau  11512  climcaucn  11516  serf0  11517  modfsummodlemstep  11622  bezoutlemmain  12165  ctinf  12647  strsetsid  12711  imasaddfnlemg  12957  islss4  13938  fiinbas  14285  baspartn  14286  lmtopcnp  14486  rescncf  14817  limcresi  14902
  Copyright terms: Public domain W3C validator