ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ralimdv GIF version

Theorem ralimdv 2565
Description: Deduction quantifying both antecedent and consequent, based on Theorem 19.20 of [Margaris] p. 90. (Contributed by NM, 8-Oct-2003.)
Hypothesis
Ref Expression
ralimdv.1 (𝜑 → (𝜓𝜒))
Assertion
Ref Expression
ralimdv (𝜑 → (∀𝑥𝐴 𝜓 → ∀𝑥𝐴 𝜒))
Distinct variable group:   𝜑,𝑥
Allowed substitution hints:   𝜓(𝑥)   𝜒(𝑥)   𝐴(𝑥)

Proof of Theorem ralimdv
StepHypRef Expression
1 ralimdv.1 . . 3 (𝜑 → (𝜓𝜒))
21adantr 276 . 2 ((𝜑𝑥𝐴) → (𝜓𝜒))
32ralimdva 2564 1 (𝜑 → (∀𝑥𝐴 𝜓 → ∀𝑥𝐴 𝜒))
Colors of variables: wff set class
Syntax hints:  wi 4  wcel 2167  wral 2475
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1461  ax-gen 1463  ax-4 1524  ax-17 1540
This theorem depends on definitions:  df-bi 117  df-nf 1475  df-ral 2480
This theorem is referenced by:  poss  4334  sess1  4373  sess2  4374  riinint  4928  dffo4  5713  dffo5  5714  isoini2  5869  rdgivallem  6448  iinerm  6675  xpf1o  6914  exmidontriimlem3  7308  exmidontriim  7310  resqrexlemgt0  11204  cau3lem  11298  caubnd2  11301  climshftlemg  11486  climcau  11531  climcaucn  11535  serf0  11536  modfsummodlemstep  11641  bezoutlemmain  12192  ctinf  12674  strsetsid  12738  imasaddfnlemg  13018  islss4  14016  fiinbas  14393  baspartn  14394  lmtopcnp  14594  rescncf  14925  limcresi  15010
  Copyright terms: Public domain W3C validator