ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ralimdv GIF version

Theorem ralimdv 2565
Description: Deduction quantifying both antecedent and consequent, based on Theorem 19.20 of [Margaris] p. 90. (Contributed by NM, 8-Oct-2003.)
Hypothesis
Ref Expression
ralimdv.1 (𝜑 → (𝜓𝜒))
Assertion
Ref Expression
ralimdv (𝜑 → (∀𝑥𝐴 𝜓 → ∀𝑥𝐴 𝜒))
Distinct variable group:   𝜑,𝑥
Allowed substitution hints:   𝜓(𝑥)   𝜒(𝑥)   𝐴(𝑥)

Proof of Theorem ralimdv
StepHypRef Expression
1 ralimdv.1 . . 3 (𝜑 → (𝜓𝜒))
21adantr 276 . 2 ((𝜑𝑥𝐴) → (𝜓𝜒))
32ralimdva 2564 1 (𝜑 → (∀𝑥𝐴 𝜓 → ∀𝑥𝐴 𝜒))
Colors of variables: wff set class
Syntax hints:  wi 4  wcel 2167  wral 2475
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1461  ax-gen 1463  ax-4 1524  ax-17 1540
This theorem depends on definitions:  df-bi 117  df-nf 1475  df-ral 2480
This theorem is referenced by:  poss  4334  sess1  4373  sess2  4374  riinint  4928  dffo4  5711  dffo5  5712  isoini2  5867  rdgivallem  6440  iinerm  6667  xpf1o  6906  exmidontriimlem3  7292  exmidontriim  7294  resqrexlemgt0  11187  cau3lem  11281  caubnd2  11284  climshftlemg  11469  climcau  11514  climcaucn  11518  serf0  11519  modfsummodlemstep  11624  bezoutlemmain  12175  ctinf  12657  strsetsid  12721  imasaddfnlemg  12967  islss4  13948  fiinbas  14295  baspartn  14296  lmtopcnp  14496  rescncf  14827  limcresi  14912
  Copyright terms: Public domain W3C validator