| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ralimdv | GIF version | ||
| Description: Deduction quantifying both antecedent and consequent, based on Theorem 19.20 of [Margaris] p. 90. (Contributed by NM, 8-Oct-2003.) |
| Ref | Expression |
|---|---|
| ralimdv.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
| Ref | Expression |
|---|---|
| ralimdv | ⊢ (𝜑 → (∀𝑥 ∈ 𝐴 𝜓 → ∀𝑥 ∈ 𝐴 𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ralimdv.1 | . . 3 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
| 2 | 1 | adantr 276 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝜓 → 𝜒)) |
| 3 | 2 | ralimdva 2564 | 1 ⊢ (𝜑 → (∀𝑥 ∈ 𝐴 𝜓 → ∀𝑥 ∈ 𝐴 𝜒)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∈ wcel 2167 ∀wral 2475 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-gen 1463 ax-4 1524 ax-17 1540 |
| This theorem depends on definitions: df-bi 117 df-nf 1475 df-ral 2480 |
| This theorem is referenced by: poss 4333 sess1 4372 sess2 4373 riinint 4927 dffo4 5710 dffo5 5711 isoini2 5866 rdgivallem 6439 iinerm 6666 xpf1o 6905 exmidontriimlem3 7290 exmidontriim 7292 resqrexlemgt0 11185 cau3lem 11279 caubnd2 11282 climshftlemg 11467 climcau 11512 climcaucn 11516 serf0 11517 modfsummodlemstep 11622 bezoutlemmain 12165 ctinf 12647 strsetsid 12711 imasaddfnlemg 12957 islss4 13938 fiinbas 14285 baspartn 14286 lmtopcnp 14486 rescncf 14817 limcresi 14902 |
| Copyright terms: Public domain | W3C validator |