| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ralimdv | GIF version | ||
| Description: Deduction quantifying both antecedent and consequent, based on Theorem 19.20 of [Margaris] p. 90. (Contributed by NM, 8-Oct-2003.) |
| Ref | Expression |
|---|---|
| ralimdv.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
| Ref | Expression |
|---|---|
| ralimdv | ⊢ (𝜑 → (∀𝑥 ∈ 𝐴 𝜓 → ∀𝑥 ∈ 𝐴 𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ralimdv.1 | . . 3 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
| 2 | 1 | adantr 276 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝜓 → 𝜒)) |
| 3 | 2 | ralimdva 2564 | 1 ⊢ (𝜑 → (∀𝑥 ∈ 𝐴 𝜓 → ∀𝑥 ∈ 𝐴 𝜒)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∈ wcel 2167 ∀wral 2475 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-gen 1463 ax-4 1524 ax-17 1540 |
| This theorem depends on definitions: df-bi 117 df-nf 1475 df-ral 2480 |
| This theorem is referenced by: poss 4334 sess1 4373 sess2 4374 riinint 4928 dffo4 5711 dffo5 5712 isoini2 5867 rdgivallem 6440 iinerm 6667 xpf1o 6906 exmidontriimlem3 7292 exmidontriim 7294 resqrexlemgt0 11187 cau3lem 11281 caubnd2 11284 climshftlemg 11469 climcau 11514 climcaucn 11518 serf0 11519 modfsummodlemstep 11624 bezoutlemmain 12175 ctinf 12657 strsetsid 12721 imasaddfnlemg 12967 islss4 13948 fiinbas 14295 baspartn 14296 lmtopcnp 14496 rescncf 14827 limcresi 14912 |
| Copyright terms: Public domain | W3C validator |