ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ralimdv GIF version

Theorem ralimdv 2565
Description: Deduction quantifying both antecedent and consequent, based on Theorem 19.20 of [Margaris] p. 90. (Contributed by NM, 8-Oct-2003.)
Hypothesis
Ref Expression
ralimdv.1 (𝜑 → (𝜓𝜒))
Assertion
Ref Expression
ralimdv (𝜑 → (∀𝑥𝐴 𝜓 → ∀𝑥𝐴 𝜒))
Distinct variable group:   𝜑,𝑥
Allowed substitution hints:   𝜓(𝑥)   𝜒(𝑥)   𝐴(𝑥)

Proof of Theorem ralimdv
StepHypRef Expression
1 ralimdv.1 . . 3 (𝜑 → (𝜓𝜒))
21adantr 276 . 2 ((𝜑𝑥𝐴) → (𝜓𝜒))
32ralimdva 2564 1 (𝜑 → (∀𝑥𝐴 𝜓 → ∀𝑥𝐴 𝜒))
Colors of variables: wff set class
Syntax hints:  wi 4  wcel 2167  wral 2475
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1461  ax-gen 1463  ax-4 1524  ax-17 1540
This theorem depends on definitions:  df-bi 117  df-nf 1475  df-ral 2480
This theorem is referenced by:  poss  4334  sess1  4373  sess2  4374  riinint  4928  dffo4  5713  dffo5  5714  isoini2  5869  rdgivallem  6448  iinerm  6675  xpf1o  6914  exmidontriimlem3  7306  exmidontriim  7308  resqrexlemgt0  11202  cau3lem  11296  caubnd2  11299  climshftlemg  11484  climcau  11529  climcaucn  11533  serf0  11534  modfsummodlemstep  11639  bezoutlemmain  12190  ctinf  12672  strsetsid  12736  imasaddfnlemg  13016  islss4  14014  fiinbas  14369  baspartn  14370  lmtopcnp  14570  rescncf  14901  limcresi  14986
  Copyright terms: Public domain W3C validator