| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > prsstp23 | GIF version | ||
| Description: A pair is a subset of an unordered triple containing its members. (Contributed by Jim Kingdon, 11-Aug-2018.) |
| Ref | Expression |
|---|---|
| prsstp23 | ⊢ {𝐵, 𝐶} ⊆ {𝐴, 𝐵, 𝐶} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | prsstp12 3786 | . 2 ⊢ {𝐵, 𝐶} ⊆ {𝐵, 𝐶, 𝐴} | |
| 2 | tprot 3726 | . 2 ⊢ {𝐴, 𝐵, 𝐶} = {𝐵, 𝐶, 𝐴} | |
| 3 | 1, 2 | sseqtrri 3228 | 1 ⊢ {𝐵, 𝐶} ⊆ {𝐴, 𝐵, 𝐶} |
| Colors of variables: wff set class |
| Syntax hints: ⊆ wss 3166 {cpr 3634 {ctp 3635 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-ext 2187 |
| This theorem depends on definitions: df-bi 117 df-3or 982 df-tru 1376 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-v 2774 df-un 3170 df-in 3172 df-ss 3179 df-sn 3639 df-pr 3640 df-tp 3641 |
| This theorem is referenced by: sstpr 3798 |
| Copyright terms: Public domain | W3C validator |