![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > prsstp23 | GIF version |
Description: A pair is a subset of an unordered triple containing its members. (Contributed by Jim Kingdon, 11-Aug-2018.) |
Ref | Expression |
---|---|
prsstp23 | ⊢ {𝐵, 𝐶} ⊆ {𝐴, 𝐵, 𝐶} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | prsstp12 3746 | . 2 ⊢ {𝐵, 𝐶} ⊆ {𝐵, 𝐶, 𝐴} | |
2 | tprot 3686 | . 2 ⊢ {𝐴, 𝐵, 𝐶} = {𝐵, 𝐶, 𝐴} | |
3 | 1, 2 | sseqtrri 3191 | 1 ⊢ {𝐵, 𝐶} ⊆ {𝐴, 𝐵, 𝐶} |
Colors of variables: wff set class |
Syntax hints: ⊆ wss 3130 {cpr 3594 {ctp 3595 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-ext 2159 |
This theorem depends on definitions: df-bi 117 df-3or 979 df-tru 1356 df-nf 1461 df-sb 1763 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-v 2740 df-un 3134 df-in 3136 df-ss 3143 df-sn 3599 df-pr 3600 df-tp 3601 |
This theorem is referenced by: sstpr 3758 |
Copyright terms: Public domain | W3C validator |