| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > pwprss | GIF version | ||
| Description: The power set of an unordered pair. (Contributed by Jim Kingdon, 13-Aug-2018.) | 
| Ref | Expression | 
|---|---|
| pwprss | ⊢ ({∅, {𝐴}} ∪ {{𝐵}, {𝐴, 𝐵}}) ⊆ 𝒫 {𝐴, 𝐵} | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | vex 2766 | . . . . . 6 ⊢ 𝑥 ∈ V | |
| 2 | 1 | elpr 3643 | . . . . 5 ⊢ (𝑥 ∈ {∅, {𝐴}} ↔ (𝑥 = ∅ ∨ 𝑥 = {𝐴})) | 
| 3 | 1 | elpr 3643 | . . . . 5 ⊢ (𝑥 ∈ {{𝐵}, {𝐴, 𝐵}} ↔ (𝑥 = {𝐵} ∨ 𝑥 = {𝐴, 𝐵})) | 
| 4 | 2, 3 | orbi12i 765 | . . . 4 ⊢ ((𝑥 ∈ {∅, {𝐴}} ∨ 𝑥 ∈ {{𝐵}, {𝐴, 𝐵}}) ↔ ((𝑥 = ∅ ∨ 𝑥 = {𝐴}) ∨ (𝑥 = {𝐵} ∨ 𝑥 = {𝐴, 𝐵}))) | 
| 5 | ssprr 3786 | . . . 4 ⊢ (((𝑥 = ∅ ∨ 𝑥 = {𝐴}) ∨ (𝑥 = {𝐵} ∨ 𝑥 = {𝐴, 𝐵})) → 𝑥 ⊆ {𝐴, 𝐵}) | |
| 6 | 4, 5 | sylbi 121 | . . 3 ⊢ ((𝑥 ∈ {∅, {𝐴}} ∨ 𝑥 ∈ {{𝐵}, {𝐴, 𝐵}}) → 𝑥 ⊆ {𝐴, 𝐵}) | 
| 7 | elun 3304 | . . 3 ⊢ (𝑥 ∈ ({∅, {𝐴}} ∪ {{𝐵}, {𝐴, 𝐵}}) ↔ (𝑥 ∈ {∅, {𝐴}} ∨ 𝑥 ∈ {{𝐵}, {𝐴, 𝐵}})) | |
| 8 | 1 | elpw 3611 | . . 3 ⊢ (𝑥 ∈ 𝒫 {𝐴, 𝐵} ↔ 𝑥 ⊆ {𝐴, 𝐵}) | 
| 9 | 6, 7, 8 | 3imtr4i 201 | . 2 ⊢ (𝑥 ∈ ({∅, {𝐴}} ∪ {{𝐵}, {𝐴, 𝐵}}) → 𝑥 ∈ 𝒫 {𝐴, 𝐵}) | 
| 10 | 9 | ssriv 3187 | 1 ⊢ ({∅, {𝐴}} ∪ {{𝐵}, {𝐴, 𝐵}}) ⊆ 𝒫 {𝐴, 𝐵} | 
| Colors of variables: wff set class | 
| Syntax hints: ∨ wo 709 = wceq 1364 ∈ wcel 2167 ∪ cun 3155 ⊆ wss 3157 ∅c0 3450 𝒫 cpw 3605 {csn 3622 {cpr 3623 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 | 
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-v 2765 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3451 df-pw 3607 df-sn 3628 df-pr 3629 | 
| This theorem is referenced by: pwpwpw0ss 3837 ord3ex 4223 | 
| Copyright terms: Public domain | W3C validator |