| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > pwprss | GIF version | ||
| Description: The power set of an unordered pair. (Contributed by Jim Kingdon, 13-Aug-2018.) |
| Ref | Expression |
|---|---|
| pwprss | ⊢ ({∅, {𝐴}} ∪ {{𝐵}, {𝐴, 𝐵}}) ⊆ 𝒫 {𝐴, 𝐵} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vex 2802 | . . . . . 6 ⊢ 𝑥 ∈ V | |
| 2 | 1 | elpr 3687 | . . . . 5 ⊢ (𝑥 ∈ {∅, {𝐴}} ↔ (𝑥 = ∅ ∨ 𝑥 = {𝐴})) |
| 3 | 1 | elpr 3687 | . . . . 5 ⊢ (𝑥 ∈ {{𝐵}, {𝐴, 𝐵}} ↔ (𝑥 = {𝐵} ∨ 𝑥 = {𝐴, 𝐵})) |
| 4 | 2, 3 | orbi12i 769 | . . . 4 ⊢ ((𝑥 ∈ {∅, {𝐴}} ∨ 𝑥 ∈ {{𝐵}, {𝐴, 𝐵}}) ↔ ((𝑥 = ∅ ∨ 𝑥 = {𝐴}) ∨ (𝑥 = {𝐵} ∨ 𝑥 = {𝐴, 𝐵}))) |
| 5 | ssprr 3833 | . . . 4 ⊢ (((𝑥 = ∅ ∨ 𝑥 = {𝐴}) ∨ (𝑥 = {𝐵} ∨ 𝑥 = {𝐴, 𝐵})) → 𝑥 ⊆ {𝐴, 𝐵}) | |
| 6 | 4, 5 | sylbi 121 | . . 3 ⊢ ((𝑥 ∈ {∅, {𝐴}} ∨ 𝑥 ∈ {{𝐵}, {𝐴, 𝐵}}) → 𝑥 ⊆ {𝐴, 𝐵}) |
| 7 | elun 3345 | . . 3 ⊢ (𝑥 ∈ ({∅, {𝐴}} ∪ {{𝐵}, {𝐴, 𝐵}}) ↔ (𝑥 ∈ {∅, {𝐴}} ∨ 𝑥 ∈ {{𝐵}, {𝐴, 𝐵}})) | |
| 8 | 1 | elpw 3655 | . . 3 ⊢ (𝑥 ∈ 𝒫 {𝐴, 𝐵} ↔ 𝑥 ⊆ {𝐴, 𝐵}) |
| 9 | 6, 7, 8 | 3imtr4i 201 | . 2 ⊢ (𝑥 ∈ ({∅, {𝐴}} ∪ {{𝐵}, {𝐴, 𝐵}}) → 𝑥 ∈ 𝒫 {𝐴, 𝐵}) |
| 10 | 9 | ssriv 3228 | 1 ⊢ ({∅, {𝐴}} ∪ {{𝐵}, {𝐴, 𝐵}}) ⊆ 𝒫 {𝐴, 𝐵} |
| Colors of variables: wff set class |
| Syntax hints: ∨ wo 713 = wceq 1395 ∈ wcel 2200 ∪ cun 3195 ⊆ wss 3197 ∅c0 3491 𝒫 cpw 3649 {csn 3666 {cpr 3667 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-v 2801 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-pw 3651 df-sn 3672 df-pr 3673 |
| This theorem is referenced by: pwpwpw0ss 3885 ord3ex 4273 |
| Copyright terms: Public domain | W3C validator |