![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > caucvgsrlemasr | GIF version |
Description: Lemma for caucvgsr 7821. The lower bound is a signed real. (Contributed by Jim Kingdon, 4-Jul-2021.) |
Ref | Expression |
---|---|
caucvgsrlemasr.bnd | ⊢ (𝜑 → ∀𝑚 ∈ N 𝐴 <R (𝐹‘𝑚)) |
Ref | Expression |
---|---|
caucvgsrlemasr | ⊢ (𝜑 → 𝐴 ∈ R) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | caucvgsrlemasr.bnd | . . 3 ⊢ (𝜑 → ∀𝑚 ∈ N 𝐴 <R (𝐹‘𝑚)) | |
2 | ltrelsr 7757 | . . . . . 6 ⊢ <R ⊆ (R × R) | |
3 | 2 | brel 4693 | . . . . 5 ⊢ (𝐴 <R (𝐹‘𝑚) → (𝐴 ∈ R ∧ (𝐹‘𝑚) ∈ R)) |
4 | 3 | simpld 112 | . . . 4 ⊢ (𝐴 <R (𝐹‘𝑚) → 𝐴 ∈ R) |
5 | 4 | ralimi 2553 | . . 3 ⊢ (∀𝑚 ∈ N 𝐴 <R (𝐹‘𝑚) → ∀𝑚 ∈ N 𝐴 ∈ R) |
6 | 1, 5 | syl 14 | . 2 ⊢ (𝜑 → ∀𝑚 ∈ N 𝐴 ∈ R) |
7 | 1pi 7334 | . . 3 ⊢ 1o ∈ N | |
8 | elex2 2768 | . . 3 ⊢ (1o ∈ N → ∃𝑥 𝑥 ∈ N) | |
9 | r19.3rmv 3528 | . . 3 ⊢ (∃𝑥 𝑥 ∈ N → (𝐴 ∈ R ↔ ∀𝑚 ∈ N 𝐴 ∈ R)) | |
10 | 7, 8, 9 | mp2b 8 | . 2 ⊢ (𝐴 ∈ R ↔ ∀𝑚 ∈ N 𝐴 ∈ R) |
11 | 6, 10 | sylibr 134 | 1 ⊢ (𝜑 → 𝐴 ∈ R) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 105 ∃wex 1503 ∈ wcel 2160 ∀wral 2468 class class class wbr 4018 ‘cfv 5232 1oc1o 6429 Ncnpi 7291 Rcnr 7316 <R cltr 7322 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2162 ax-14 2163 ax-ext 2171 ax-sep 4136 ax-nul 4144 ax-pow 4189 ax-pr 4224 ax-un 4448 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2176 df-cleq 2182 df-clel 2185 df-nfc 2321 df-ne 2361 df-ral 2473 df-rex 2474 df-v 2754 df-dif 3146 df-un 3148 df-in 3150 df-ss 3157 df-nul 3438 df-pw 3592 df-sn 3613 df-pr 3614 df-op 3616 df-uni 3825 df-int 3860 df-br 4019 df-opab 4080 df-suc 4386 df-iom 4605 df-xp 4647 df-1o 6436 df-ni 7323 df-ltr 7749 |
This theorem is referenced by: caucvgsrlemoffval 7815 caucvgsrlemofff 7816 caucvgsrlemoffcau 7817 caucvgsrlemoffgt1 7818 caucvgsrlemoffres 7819 |
Copyright terms: Public domain | W3C validator |