| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > caucvgsrlemasr | GIF version | ||
| Description: Lemma for caucvgsr 7985. The lower bound is a signed real. (Contributed by Jim Kingdon, 4-Jul-2021.) |
| Ref | Expression |
|---|---|
| caucvgsrlemasr.bnd | ⊢ (𝜑 → ∀𝑚 ∈ N 𝐴 <R (𝐹‘𝑚)) |
| Ref | Expression |
|---|---|
| caucvgsrlemasr | ⊢ (𝜑 → 𝐴 ∈ R) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | caucvgsrlemasr.bnd | . . 3 ⊢ (𝜑 → ∀𝑚 ∈ N 𝐴 <R (𝐹‘𝑚)) | |
| 2 | ltrelsr 7921 | . . . . . 6 ⊢ <R ⊆ (R × R) | |
| 3 | 2 | brel 4770 | . . . . 5 ⊢ (𝐴 <R (𝐹‘𝑚) → (𝐴 ∈ R ∧ (𝐹‘𝑚) ∈ R)) |
| 4 | 3 | simpld 112 | . . . 4 ⊢ (𝐴 <R (𝐹‘𝑚) → 𝐴 ∈ R) |
| 5 | 4 | ralimi 2593 | . . 3 ⊢ (∀𝑚 ∈ N 𝐴 <R (𝐹‘𝑚) → ∀𝑚 ∈ N 𝐴 ∈ R) |
| 6 | 1, 5 | syl 14 | . 2 ⊢ (𝜑 → ∀𝑚 ∈ N 𝐴 ∈ R) |
| 7 | 1pi 7498 | . . 3 ⊢ 1o ∈ N | |
| 8 | elex2 2816 | . . 3 ⊢ (1o ∈ N → ∃𝑥 𝑥 ∈ N) | |
| 9 | r19.3rmv 3582 | . . 3 ⊢ (∃𝑥 𝑥 ∈ N → (𝐴 ∈ R ↔ ∀𝑚 ∈ N 𝐴 ∈ R)) | |
| 10 | 7, 8, 9 | mp2b 8 | . 2 ⊢ (𝐴 ∈ R ↔ ∀𝑚 ∈ N 𝐴 ∈ R) |
| 11 | 6, 10 | sylibr 134 | 1 ⊢ (𝜑 → 𝐴 ∈ R) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 ∃wex 1538 ∈ wcel 2200 ∀wral 2508 class class class wbr 4082 ‘cfv 5317 1oc1o 6553 Ncnpi 7455 Rcnr 7480 <R cltr 7486 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4201 ax-nul 4209 ax-pow 4257 ax-pr 4292 ax-un 4523 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-ral 2513 df-rex 2514 df-v 2801 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-int 3923 df-br 4083 df-opab 4145 df-suc 4461 df-iom 4682 df-xp 4724 df-1o 6560 df-ni 7487 df-ltr 7913 |
| This theorem is referenced by: caucvgsrlemoffval 7979 caucvgsrlemofff 7980 caucvgsrlemoffcau 7981 caucvgsrlemoffgt1 7982 caucvgsrlemoffres 7983 |
| Copyright terms: Public domain | W3C validator |