ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  caucvgsrlemasr GIF version

Theorem caucvgsrlemasr 7622
Description: Lemma for caucvgsr 7634. The lower bound is a signed real. (Contributed by Jim Kingdon, 4-Jul-2021.)
Hypothesis
Ref Expression
caucvgsrlemasr.bnd (𝜑 → ∀𝑚N 𝐴 <R (𝐹𝑚))
Assertion
Ref Expression
caucvgsrlemasr (𝜑𝐴R)
Distinct variable group:   𝐴,𝑚
Allowed substitution hints:   𝜑(𝑚)   𝐹(𝑚)

Proof of Theorem caucvgsrlemasr
StepHypRef Expression
1 caucvgsrlemasr.bnd . . 3 (𝜑 → ∀𝑚N 𝐴 <R (𝐹𝑚))
2 ltrelsr 7570 . . . . . 6 <R ⊆ (R × R)
32brel 4599 . . . . 5 (𝐴 <R (𝐹𝑚) → (𝐴R ∧ (𝐹𝑚) ∈ R))
43simpld 111 . . . 4 (𝐴 <R (𝐹𝑚) → 𝐴R)
54ralimi 2498 . . 3 (∀𝑚N 𝐴 <R (𝐹𝑚) → ∀𝑚N 𝐴R)
61, 5syl 14 . 2 (𝜑 → ∀𝑚N 𝐴R)
7 1pi 7147 . . 3 1oN
8 elex2 2705 . . 3 (1oN → ∃𝑥 𝑥N)
9 r19.3rmv 3458 . . 3 (∃𝑥 𝑥N → (𝐴R ↔ ∀𝑚N 𝐴R))
107, 8, 9mp2b 8 . 2 (𝐴R ↔ ∀𝑚N 𝐴R)
116, 10sylibr 133 1 (𝜑𝐴R)
Colors of variables: wff set class
Syntax hints:  wi 4  wb 104  wex 1469  wcel 1481  wral 2417   class class class wbr 3937  cfv 5131  1oc1o 6314  Ncnpi 7104  Rcnr 7129   <R cltr 7135
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-13 1492  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-sep 4054  ax-nul 4062  ax-pow 4106  ax-pr 4139  ax-un 4363
This theorem depends on definitions:  df-bi 116  df-3an 965  df-tru 1335  df-nf 1438  df-sb 1737  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ne 2310  df-ral 2422  df-rex 2423  df-v 2691  df-dif 3078  df-un 3080  df-in 3082  df-ss 3089  df-nul 3369  df-pw 3517  df-sn 3538  df-pr 3539  df-op 3541  df-uni 3745  df-int 3780  df-br 3938  df-opab 3998  df-suc 4301  df-iom 4513  df-xp 4553  df-1o 6321  df-ni 7136  df-ltr 7562
This theorem is referenced by:  caucvgsrlemoffval  7628  caucvgsrlemofff  7629  caucvgsrlemoffcau  7630  caucvgsrlemoffgt1  7631  caucvgsrlemoffres  7632
  Copyright terms: Public domain W3C validator