Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > caucvgsrlemasr | GIF version |
Description: Lemma for caucvgsr 7764. The lower bound is a signed real. (Contributed by Jim Kingdon, 4-Jul-2021.) |
Ref | Expression |
---|---|
caucvgsrlemasr.bnd | ⊢ (𝜑 → ∀𝑚 ∈ N 𝐴 <R (𝐹‘𝑚)) |
Ref | Expression |
---|---|
caucvgsrlemasr | ⊢ (𝜑 → 𝐴 ∈ R) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | caucvgsrlemasr.bnd | . . 3 ⊢ (𝜑 → ∀𝑚 ∈ N 𝐴 <R (𝐹‘𝑚)) | |
2 | ltrelsr 7700 | . . . . . 6 ⊢ <R ⊆ (R × R) | |
3 | 2 | brel 4663 | . . . . 5 ⊢ (𝐴 <R (𝐹‘𝑚) → (𝐴 ∈ R ∧ (𝐹‘𝑚) ∈ R)) |
4 | 3 | simpld 111 | . . . 4 ⊢ (𝐴 <R (𝐹‘𝑚) → 𝐴 ∈ R) |
5 | 4 | ralimi 2533 | . . 3 ⊢ (∀𝑚 ∈ N 𝐴 <R (𝐹‘𝑚) → ∀𝑚 ∈ N 𝐴 ∈ R) |
6 | 1, 5 | syl 14 | . 2 ⊢ (𝜑 → ∀𝑚 ∈ N 𝐴 ∈ R) |
7 | 1pi 7277 | . . 3 ⊢ 1o ∈ N | |
8 | elex2 2746 | . . 3 ⊢ (1o ∈ N → ∃𝑥 𝑥 ∈ N) | |
9 | r19.3rmv 3505 | . . 3 ⊢ (∃𝑥 𝑥 ∈ N → (𝐴 ∈ R ↔ ∀𝑚 ∈ N 𝐴 ∈ R)) | |
10 | 7, 8, 9 | mp2b 8 | . 2 ⊢ (𝐴 ∈ R ↔ ∀𝑚 ∈ N 𝐴 ∈ R) |
11 | 6, 10 | sylibr 133 | 1 ⊢ (𝜑 → 𝐴 ∈ R) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 104 ∃wex 1485 ∈ wcel 2141 ∀wral 2448 class class class wbr 3989 ‘cfv 5198 1oc1o 6388 Ncnpi 7234 Rcnr 7259 <R cltr 7265 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-sep 4107 ax-nul 4115 ax-pow 4160 ax-pr 4194 ax-un 4418 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ne 2341 df-ral 2453 df-rex 2454 df-v 2732 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-nul 3415 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-int 3832 df-br 3990 df-opab 4051 df-suc 4356 df-iom 4575 df-xp 4617 df-1o 6395 df-ni 7266 df-ltr 7692 |
This theorem is referenced by: caucvgsrlemoffval 7758 caucvgsrlemofff 7759 caucvgsrlemoffcau 7760 caucvgsrlemoffgt1 7761 caucvgsrlemoffres 7762 |
Copyright terms: Public domain | W3C validator |