Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > caucvgsrlemasr | GIF version |
Description: Lemma for caucvgsr 7776. The lower bound is a signed real. (Contributed by Jim Kingdon, 4-Jul-2021.) |
Ref | Expression |
---|---|
caucvgsrlemasr.bnd | ⊢ (𝜑 → ∀𝑚 ∈ N 𝐴 <R (𝐹‘𝑚)) |
Ref | Expression |
---|---|
caucvgsrlemasr | ⊢ (𝜑 → 𝐴 ∈ R) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | caucvgsrlemasr.bnd | . . 3 ⊢ (𝜑 → ∀𝑚 ∈ N 𝐴 <R (𝐹‘𝑚)) | |
2 | ltrelsr 7712 | . . . . . 6 ⊢ <R ⊆ (R × R) | |
3 | 2 | brel 4672 | . . . . 5 ⊢ (𝐴 <R (𝐹‘𝑚) → (𝐴 ∈ R ∧ (𝐹‘𝑚) ∈ R)) |
4 | 3 | simpld 112 | . . . 4 ⊢ (𝐴 <R (𝐹‘𝑚) → 𝐴 ∈ R) |
5 | 4 | ralimi 2538 | . . 3 ⊢ (∀𝑚 ∈ N 𝐴 <R (𝐹‘𝑚) → ∀𝑚 ∈ N 𝐴 ∈ R) |
6 | 1, 5 | syl 14 | . 2 ⊢ (𝜑 → ∀𝑚 ∈ N 𝐴 ∈ R) |
7 | 1pi 7289 | . . 3 ⊢ 1o ∈ N | |
8 | elex2 2751 | . . 3 ⊢ (1o ∈ N → ∃𝑥 𝑥 ∈ N) | |
9 | r19.3rmv 3511 | . . 3 ⊢ (∃𝑥 𝑥 ∈ N → (𝐴 ∈ R ↔ ∀𝑚 ∈ N 𝐴 ∈ R)) | |
10 | 7, 8, 9 | mp2b 8 | . 2 ⊢ (𝐴 ∈ R ↔ ∀𝑚 ∈ N 𝐴 ∈ R) |
11 | 6, 10 | sylibr 134 | 1 ⊢ (𝜑 → 𝐴 ∈ R) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 105 ∃wex 1490 ∈ wcel 2146 ∀wral 2453 class class class wbr 3998 ‘cfv 5208 1oc1o 6400 Ncnpi 7246 Rcnr 7271 <R cltr 7277 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1445 ax-7 1446 ax-gen 1447 ax-ie1 1491 ax-ie2 1492 ax-8 1502 ax-10 1503 ax-11 1504 ax-i12 1505 ax-bndl 1507 ax-4 1508 ax-17 1524 ax-i9 1528 ax-ial 1532 ax-i5r 1533 ax-13 2148 ax-14 2149 ax-ext 2157 ax-sep 4116 ax-nul 4124 ax-pow 4169 ax-pr 4203 ax-un 4427 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-nf 1459 df-sb 1761 df-clab 2162 df-cleq 2168 df-clel 2171 df-nfc 2306 df-ne 2346 df-ral 2458 df-rex 2459 df-v 2737 df-dif 3129 df-un 3131 df-in 3133 df-ss 3140 df-nul 3421 df-pw 3574 df-sn 3595 df-pr 3596 df-op 3598 df-uni 3806 df-int 3841 df-br 3999 df-opab 4060 df-suc 4365 df-iom 4584 df-xp 4626 df-1o 6407 df-ni 7278 df-ltr 7704 |
This theorem is referenced by: caucvgsrlemoffval 7770 caucvgsrlemofff 7771 caucvgsrlemoffcau 7772 caucvgsrlemoffgt1 7773 caucvgsrlemoffres 7774 |
Copyright terms: Public domain | W3C validator |