![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > caucvgsrlemasr | GIF version |
Description: Lemma for caucvgsr 7864. The lower bound is a signed real. (Contributed by Jim Kingdon, 4-Jul-2021.) |
Ref | Expression |
---|---|
caucvgsrlemasr.bnd | ⊢ (𝜑 → ∀𝑚 ∈ N 𝐴 <R (𝐹‘𝑚)) |
Ref | Expression |
---|---|
caucvgsrlemasr | ⊢ (𝜑 → 𝐴 ∈ R) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | caucvgsrlemasr.bnd | . . 3 ⊢ (𝜑 → ∀𝑚 ∈ N 𝐴 <R (𝐹‘𝑚)) | |
2 | ltrelsr 7800 | . . . . . 6 ⊢ <R ⊆ (R × R) | |
3 | 2 | brel 4712 | . . . . 5 ⊢ (𝐴 <R (𝐹‘𝑚) → (𝐴 ∈ R ∧ (𝐹‘𝑚) ∈ R)) |
4 | 3 | simpld 112 | . . . 4 ⊢ (𝐴 <R (𝐹‘𝑚) → 𝐴 ∈ R) |
5 | 4 | ralimi 2557 | . . 3 ⊢ (∀𝑚 ∈ N 𝐴 <R (𝐹‘𝑚) → ∀𝑚 ∈ N 𝐴 ∈ R) |
6 | 1, 5 | syl 14 | . 2 ⊢ (𝜑 → ∀𝑚 ∈ N 𝐴 ∈ R) |
7 | 1pi 7377 | . . 3 ⊢ 1o ∈ N | |
8 | elex2 2776 | . . 3 ⊢ (1o ∈ N → ∃𝑥 𝑥 ∈ N) | |
9 | r19.3rmv 3538 | . . 3 ⊢ (∃𝑥 𝑥 ∈ N → (𝐴 ∈ R ↔ ∀𝑚 ∈ N 𝐴 ∈ R)) | |
10 | 7, 8, 9 | mp2b 8 | . 2 ⊢ (𝐴 ∈ R ↔ ∀𝑚 ∈ N 𝐴 ∈ R) |
11 | 6, 10 | sylibr 134 | 1 ⊢ (𝜑 → 𝐴 ∈ R) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 105 ∃wex 1503 ∈ wcel 2164 ∀wral 2472 class class class wbr 4030 ‘cfv 5255 1oc1o 6464 Ncnpi 7334 Rcnr 7359 <R cltr 7365 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-sep 4148 ax-nul 4156 ax-pow 4204 ax-pr 4239 ax-un 4465 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ne 2365 df-ral 2477 df-rex 2478 df-v 2762 df-dif 3156 df-un 3158 df-in 3160 df-ss 3167 df-nul 3448 df-pw 3604 df-sn 3625 df-pr 3626 df-op 3628 df-uni 3837 df-int 3872 df-br 4031 df-opab 4092 df-suc 4403 df-iom 4624 df-xp 4666 df-1o 6471 df-ni 7366 df-ltr 7792 |
This theorem is referenced by: caucvgsrlemoffval 7858 caucvgsrlemofff 7859 caucvgsrlemoffcau 7860 caucvgsrlemoffgt1 7861 caucvgsrlemoffres 7862 |
Copyright terms: Public domain | W3C validator |