| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > caucvgsrlemasr | GIF version | ||
| Description: Lemma for caucvgsr 7935. The lower bound is a signed real. (Contributed by Jim Kingdon, 4-Jul-2021.) |
| Ref | Expression |
|---|---|
| caucvgsrlemasr.bnd | ⊢ (𝜑 → ∀𝑚 ∈ N 𝐴 <R (𝐹‘𝑚)) |
| Ref | Expression |
|---|---|
| caucvgsrlemasr | ⊢ (𝜑 → 𝐴 ∈ R) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | caucvgsrlemasr.bnd | . . 3 ⊢ (𝜑 → ∀𝑚 ∈ N 𝐴 <R (𝐹‘𝑚)) | |
| 2 | ltrelsr 7871 | . . . . . 6 ⊢ <R ⊆ (R × R) | |
| 3 | 2 | brel 4735 | . . . . 5 ⊢ (𝐴 <R (𝐹‘𝑚) → (𝐴 ∈ R ∧ (𝐹‘𝑚) ∈ R)) |
| 4 | 3 | simpld 112 | . . . 4 ⊢ (𝐴 <R (𝐹‘𝑚) → 𝐴 ∈ R) |
| 5 | 4 | ralimi 2570 | . . 3 ⊢ (∀𝑚 ∈ N 𝐴 <R (𝐹‘𝑚) → ∀𝑚 ∈ N 𝐴 ∈ R) |
| 6 | 1, 5 | syl 14 | . 2 ⊢ (𝜑 → ∀𝑚 ∈ N 𝐴 ∈ R) |
| 7 | 1pi 7448 | . . 3 ⊢ 1o ∈ N | |
| 8 | elex2 2790 | . . 3 ⊢ (1o ∈ N → ∃𝑥 𝑥 ∈ N) | |
| 9 | r19.3rmv 3555 | . . 3 ⊢ (∃𝑥 𝑥 ∈ N → (𝐴 ∈ R ↔ ∀𝑚 ∈ N 𝐴 ∈ R)) | |
| 10 | 7, 8, 9 | mp2b 8 | . 2 ⊢ (𝐴 ∈ R ↔ ∀𝑚 ∈ N 𝐴 ∈ R) |
| 11 | 6, 10 | sylibr 134 | 1 ⊢ (𝜑 → 𝐴 ∈ R) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 ∃wex 1516 ∈ wcel 2177 ∀wral 2485 class class class wbr 4051 ‘cfv 5280 1oc1o 6508 Ncnpi 7405 Rcnr 7430 <R cltr 7436 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-sep 4170 ax-nul 4178 ax-pow 4226 ax-pr 4261 ax-un 4488 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-ral 2490 df-rex 2491 df-v 2775 df-dif 3172 df-un 3174 df-in 3176 df-ss 3183 df-nul 3465 df-pw 3623 df-sn 3644 df-pr 3645 df-op 3647 df-uni 3857 df-int 3892 df-br 4052 df-opab 4114 df-suc 4426 df-iom 4647 df-xp 4689 df-1o 6515 df-ni 7437 df-ltr 7863 |
| This theorem is referenced by: caucvgsrlemoffval 7929 caucvgsrlemofff 7930 caucvgsrlemoffcau 7931 caucvgsrlemoffgt1 7932 caucvgsrlemoffres 7933 |
| Copyright terms: Public domain | W3C validator |