ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  caucvgsrlemasr GIF version

Theorem caucvgsrlemasr 7902
Description: Lemma for caucvgsr 7914. The lower bound is a signed real. (Contributed by Jim Kingdon, 4-Jul-2021.)
Hypothesis
Ref Expression
caucvgsrlemasr.bnd (𝜑 → ∀𝑚N 𝐴 <R (𝐹𝑚))
Assertion
Ref Expression
caucvgsrlemasr (𝜑𝐴R)
Distinct variable group:   𝐴,𝑚
Allowed substitution hints:   𝜑(𝑚)   𝐹(𝑚)

Proof of Theorem caucvgsrlemasr
StepHypRef Expression
1 caucvgsrlemasr.bnd . . 3 (𝜑 → ∀𝑚N 𝐴 <R (𝐹𝑚))
2 ltrelsr 7850 . . . . . 6 <R ⊆ (R × R)
32brel 4726 . . . . 5 (𝐴 <R (𝐹𝑚) → (𝐴R ∧ (𝐹𝑚) ∈ R))
43simpld 112 . . . 4 (𝐴 <R (𝐹𝑚) → 𝐴R)
54ralimi 2568 . . 3 (∀𝑚N 𝐴 <R (𝐹𝑚) → ∀𝑚N 𝐴R)
61, 5syl 14 . 2 (𝜑 → ∀𝑚N 𝐴R)
7 1pi 7427 . . 3 1oN
8 elex2 2787 . . 3 (1oN → ∃𝑥 𝑥N)
9 r19.3rmv 3550 . . 3 (∃𝑥 𝑥N → (𝐴R ↔ ∀𝑚N 𝐴R))
107, 8, 9mp2b 8 . 2 (𝐴R ↔ ∀𝑚N 𝐴R)
116, 10sylibr 134 1 (𝜑𝐴R)
Colors of variables: wff set class
Syntax hints:  wi 4  wb 105  wex 1514  wcel 2175  wral 2483   class class class wbr 4043  cfv 5270  1oc1o 6494  Ncnpi 7384  Rcnr 7409   <R cltr 7415
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-13 2177  ax-14 2178  ax-ext 2186  ax-sep 4161  ax-nul 4169  ax-pow 4217  ax-pr 4252  ax-un 4479
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1375  df-nf 1483  df-sb 1785  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ne 2376  df-ral 2488  df-rex 2489  df-v 2773  df-dif 3167  df-un 3169  df-in 3171  df-ss 3178  df-nul 3460  df-pw 3617  df-sn 3638  df-pr 3639  df-op 3641  df-uni 3850  df-int 3885  df-br 4044  df-opab 4105  df-suc 4417  df-iom 4638  df-xp 4680  df-1o 6501  df-ni 7416  df-ltr 7842
This theorem is referenced by:  caucvgsrlemoffval  7908  caucvgsrlemofff  7909  caucvgsrlemoffcau  7910  caucvgsrlemoffgt1  7911  caucvgsrlemoffres  7912
  Copyright terms: Public domain W3C validator