ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  caucvgsrlemasr GIF version

Theorem caucvgsrlemasr 7610
Description: Lemma for caucvgsr 7622. The lower bound is a signed real. (Contributed by Jim Kingdon, 4-Jul-2021.)
Hypothesis
Ref Expression
caucvgsrlemasr.bnd (𝜑 → ∀𝑚N 𝐴 <R (𝐹𝑚))
Assertion
Ref Expression
caucvgsrlemasr (𝜑𝐴R)
Distinct variable group:   𝐴,𝑚
Allowed substitution hints:   𝜑(𝑚)   𝐹(𝑚)

Proof of Theorem caucvgsrlemasr
StepHypRef Expression
1 caucvgsrlemasr.bnd . . 3 (𝜑 → ∀𝑚N 𝐴 <R (𝐹𝑚))
2 ltrelsr 7558 . . . . . 6 <R ⊆ (R × R)
32brel 4591 . . . . 5 (𝐴 <R (𝐹𝑚) → (𝐴R ∧ (𝐹𝑚) ∈ R))
43simpld 111 . . . 4 (𝐴 <R (𝐹𝑚) → 𝐴R)
54ralimi 2495 . . 3 (∀𝑚N 𝐴 <R (𝐹𝑚) → ∀𝑚N 𝐴R)
61, 5syl 14 . 2 (𝜑 → ∀𝑚N 𝐴R)
7 1pi 7135 . . 3 1oN
8 elex2 2702 . . 3 (1oN → ∃𝑥 𝑥N)
9 r19.3rmv 3453 . . 3 (∃𝑥 𝑥N → (𝐴R ↔ ∀𝑚N 𝐴R))
107, 8, 9mp2b 8 . 2 (𝐴R ↔ ∀𝑚N 𝐴R)
116, 10sylibr 133 1 (𝜑𝐴R)
Colors of variables: wff set class
Syntax hints:  wi 4  wb 104  wex 1468  wcel 1480  wral 2416   class class class wbr 3929  cfv 5123  1oc1o 6306  Ncnpi 7092  Rcnr 7117   <R cltr 7123
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-sep 4046  ax-nul 4054  ax-pow 4098  ax-pr 4131  ax-un 4355
This theorem depends on definitions:  df-bi 116  df-3an 964  df-tru 1334  df-nf 1437  df-sb 1736  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-ral 2421  df-rex 2422  df-v 2688  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-nul 3364  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-int 3772  df-br 3930  df-opab 3990  df-suc 4293  df-iom 4505  df-xp 4545  df-1o 6313  df-ni 7124  df-ltr 7550
This theorem is referenced by:  caucvgsrlemoffval  7616  caucvgsrlemofff  7617  caucvgsrlemoffcau  7618  caucvgsrlemoffgt1  7619  caucvgsrlemoffres  7620
  Copyright terms: Public domain W3C validator