| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > caucvgsrlemasr | GIF version | ||
| Description: Lemma for caucvgsr 7869. The lower bound is a signed real. (Contributed by Jim Kingdon, 4-Jul-2021.) | 
| Ref | Expression | 
|---|---|
| caucvgsrlemasr.bnd | ⊢ (𝜑 → ∀𝑚 ∈ N 𝐴 <R (𝐹‘𝑚)) | 
| Ref | Expression | 
|---|---|
| caucvgsrlemasr | ⊢ (𝜑 → 𝐴 ∈ R) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | caucvgsrlemasr.bnd | . . 3 ⊢ (𝜑 → ∀𝑚 ∈ N 𝐴 <R (𝐹‘𝑚)) | |
| 2 | ltrelsr 7805 | . . . . . 6 ⊢ <R ⊆ (R × R) | |
| 3 | 2 | brel 4715 | . . . . 5 ⊢ (𝐴 <R (𝐹‘𝑚) → (𝐴 ∈ R ∧ (𝐹‘𝑚) ∈ R)) | 
| 4 | 3 | simpld 112 | . . . 4 ⊢ (𝐴 <R (𝐹‘𝑚) → 𝐴 ∈ R) | 
| 5 | 4 | ralimi 2560 | . . 3 ⊢ (∀𝑚 ∈ N 𝐴 <R (𝐹‘𝑚) → ∀𝑚 ∈ N 𝐴 ∈ R) | 
| 6 | 1, 5 | syl 14 | . 2 ⊢ (𝜑 → ∀𝑚 ∈ N 𝐴 ∈ R) | 
| 7 | 1pi 7382 | . . 3 ⊢ 1o ∈ N | |
| 8 | elex2 2779 | . . 3 ⊢ (1o ∈ N → ∃𝑥 𝑥 ∈ N) | |
| 9 | r19.3rmv 3541 | . . 3 ⊢ (∃𝑥 𝑥 ∈ N → (𝐴 ∈ R ↔ ∀𝑚 ∈ N 𝐴 ∈ R)) | |
| 10 | 7, 8, 9 | mp2b 8 | . 2 ⊢ (𝐴 ∈ R ↔ ∀𝑚 ∈ N 𝐴 ∈ R) | 
| 11 | 6, 10 | sylibr 134 | 1 ⊢ (𝜑 → 𝐴 ∈ R) | 
| Colors of variables: wff set class | 
| Syntax hints: → wi 4 ↔ wb 105 ∃wex 1506 ∈ wcel 2167 ∀wral 2475 class class class wbr 4033 ‘cfv 5258 1oc1o 6467 Ncnpi 7339 Rcnr 7364 <R cltr 7370 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-nul 4159 ax-pow 4207 ax-pr 4242 ax-un 4468 | 
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-ral 2480 df-rex 2481 df-v 2765 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3451 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-int 3875 df-br 4034 df-opab 4095 df-suc 4406 df-iom 4627 df-xp 4669 df-1o 6474 df-ni 7371 df-ltr 7797 | 
| This theorem is referenced by: caucvgsrlemoffval 7863 caucvgsrlemofff 7864 caucvgsrlemoffcau 7865 caucvgsrlemoffgt1 7866 caucvgsrlemoffres 7867 | 
| Copyright terms: Public domain | W3C validator |