ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  caucvgsrlemasr GIF version

Theorem caucvgsrlemasr 7809
Description: Lemma for caucvgsr 7821. The lower bound is a signed real. (Contributed by Jim Kingdon, 4-Jul-2021.)
Hypothesis
Ref Expression
caucvgsrlemasr.bnd (𝜑 → ∀𝑚N 𝐴 <R (𝐹𝑚))
Assertion
Ref Expression
caucvgsrlemasr (𝜑𝐴R)
Distinct variable group:   𝐴,𝑚
Allowed substitution hints:   𝜑(𝑚)   𝐹(𝑚)

Proof of Theorem caucvgsrlemasr
StepHypRef Expression
1 caucvgsrlemasr.bnd . . 3 (𝜑 → ∀𝑚N 𝐴 <R (𝐹𝑚))
2 ltrelsr 7757 . . . . . 6 <R ⊆ (R × R)
32brel 4693 . . . . 5 (𝐴 <R (𝐹𝑚) → (𝐴R ∧ (𝐹𝑚) ∈ R))
43simpld 112 . . . 4 (𝐴 <R (𝐹𝑚) → 𝐴R)
54ralimi 2553 . . 3 (∀𝑚N 𝐴 <R (𝐹𝑚) → ∀𝑚N 𝐴R)
61, 5syl 14 . 2 (𝜑 → ∀𝑚N 𝐴R)
7 1pi 7334 . . 3 1oN
8 elex2 2768 . . 3 (1oN → ∃𝑥 𝑥N)
9 r19.3rmv 3528 . . 3 (∃𝑥 𝑥N → (𝐴R ↔ ∀𝑚N 𝐴R))
107, 8, 9mp2b 8 . 2 (𝐴R ↔ ∀𝑚N 𝐴R)
116, 10sylibr 134 1 (𝜑𝐴R)
Colors of variables: wff set class
Syntax hints:  wi 4  wb 105  wex 1503  wcel 2160  wral 2468   class class class wbr 4018  cfv 5232  1oc1o 6429  Ncnpi 7291  Rcnr 7316   <R cltr 7322
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2162  ax-14 2163  ax-ext 2171  ax-sep 4136  ax-nul 4144  ax-pow 4189  ax-pr 4224  ax-un 4448
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ne 2361  df-ral 2473  df-rex 2474  df-v 2754  df-dif 3146  df-un 3148  df-in 3150  df-ss 3157  df-nul 3438  df-pw 3592  df-sn 3613  df-pr 3614  df-op 3616  df-uni 3825  df-int 3860  df-br 4019  df-opab 4080  df-suc 4386  df-iom 4605  df-xp 4647  df-1o 6436  df-ni 7323  df-ltr 7749
This theorem is referenced by:  caucvgsrlemoffval  7815  caucvgsrlemofff  7816  caucvgsrlemoffcau  7817  caucvgsrlemoffgt1  7818  caucvgsrlemoffres  7819
  Copyright terms: Public domain W3C validator