| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > caucvgsrlemasr | GIF version | ||
| Description: Lemma for caucvgsr 7886. The lower bound is a signed real. (Contributed by Jim Kingdon, 4-Jul-2021.) |
| Ref | Expression |
|---|---|
| caucvgsrlemasr.bnd | ⊢ (𝜑 → ∀𝑚 ∈ N 𝐴 <R (𝐹‘𝑚)) |
| Ref | Expression |
|---|---|
| caucvgsrlemasr | ⊢ (𝜑 → 𝐴 ∈ R) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | caucvgsrlemasr.bnd | . . 3 ⊢ (𝜑 → ∀𝑚 ∈ N 𝐴 <R (𝐹‘𝑚)) | |
| 2 | ltrelsr 7822 | . . . . . 6 ⊢ <R ⊆ (R × R) | |
| 3 | 2 | brel 4716 | . . . . 5 ⊢ (𝐴 <R (𝐹‘𝑚) → (𝐴 ∈ R ∧ (𝐹‘𝑚) ∈ R)) |
| 4 | 3 | simpld 112 | . . . 4 ⊢ (𝐴 <R (𝐹‘𝑚) → 𝐴 ∈ R) |
| 5 | 4 | ralimi 2560 | . . 3 ⊢ (∀𝑚 ∈ N 𝐴 <R (𝐹‘𝑚) → ∀𝑚 ∈ N 𝐴 ∈ R) |
| 6 | 1, 5 | syl 14 | . 2 ⊢ (𝜑 → ∀𝑚 ∈ N 𝐴 ∈ R) |
| 7 | 1pi 7399 | . . 3 ⊢ 1o ∈ N | |
| 8 | elex2 2779 | . . 3 ⊢ (1o ∈ N → ∃𝑥 𝑥 ∈ N) | |
| 9 | r19.3rmv 3542 | . . 3 ⊢ (∃𝑥 𝑥 ∈ N → (𝐴 ∈ R ↔ ∀𝑚 ∈ N 𝐴 ∈ R)) | |
| 10 | 7, 8, 9 | mp2b 8 | . 2 ⊢ (𝐴 ∈ R ↔ ∀𝑚 ∈ N 𝐴 ∈ R) |
| 11 | 6, 10 | sylibr 134 | 1 ⊢ (𝜑 → 𝐴 ∈ R) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 ∃wex 1506 ∈ wcel 2167 ∀wral 2475 class class class wbr 4034 ‘cfv 5259 1oc1o 6476 Ncnpi 7356 Rcnr 7381 <R cltr 7387 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4152 ax-nul 4160 ax-pow 4208 ax-pr 4243 ax-un 4469 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-ral 2480 df-rex 2481 df-v 2765 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3452 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-int 3876 df-br 4035 df-opab 4096 df-suc 4407 df-iom 4628 df-xp 4670 df-1o 6483 df-ni 7388 df-ltr 7814 |
| This theorem is referenced by: caucvgsrlemoffval 7880 caucvgsrlemofff 7881 caucvgsrlemoffcau 7882 caucvgsrlemoffgt1 7883 caucvgsrlemoffres 7884 |
| Copyright terms: Public domain | W3C validator |