| Step | Hyp | Ref
| Expression |
| 1 | | ssrab2 3269 |
. . 3
⊢ {𝑧 ∈ ω ∣ 𝜑} ⊆ ω |
| 2 | | f1oi 5545 |
. . . 4
⊢ ( I
↾ {𝑧 ∈ ω
∣ 𝜑}):{𝑧 ∈ ω ∣ 𝜑}–1-1-onto→{𝑧 ∈ ω ∣ 𝜑} |
| 3 | | f1ofo 5514 |
. . . 4
⊢ (( I
↾ {𝑧 ∈ ω
∣ 𝜑}):{𝑧 ∈ ω ∣ 𝜑}–1-1-onto→{𝑧 ∈ ω ∣ 𝜑} → ( I ↾ {𝑧 ∈ ω ∣ 𝜑}):{𝑧 ∈ ω ∣ 𝜑}–onto→{𝑧 ∈ ω ∣ 𝜑}) |
| 4 | | ctssexmid.lpo |
. . . . . . . 8
⊢ ω
∈ Omni |
| 5 | 4 | elexi 2775 |
. . . . . . 7
⊢ ω
∈ V |
| 6 | 5 | rabex 4178 |
. . . . . 6
⊢ {𝑧 ∈ ω ∣ 𝜑} ∈ V |
| 7 | | resiexg 4992 |
. . . . . 6
⊢ ({𝑧 ∈ ω ∣ 𝜑} ∈ V → ( I ↾
{𝑧 ∈ ω ∣
𝜑}) ∈
V) |
| 8 | 6, 7 | ax-mp 5 |
. . . . 5
⊢ ( I
↾ {𝑧 ∈ ω
∣ 𝜑}) ∈
V |
| 9 | | foeq1 5479 |
. . . . 5
⊢ (𝑓 = ( I ↾ {𝑧 ∈ ω ∣ 𝜑}) → (𝑓:{𝑧 ∈ ω ∣ 𝜑}–onto→{𝑧 ∈ ω ∣ 𝜑} ↔ ( I ↾ {𝑧 ∈ ω ∣ 𝜑}):{𝑧 ∈ ω ∣ 𝜑}–onto→{𝑧 ∈ ω ∣ 𝜑})) |
| 10 | 8, 9 | spcev 2859 |
. . . 4
⊢ (( I
↾ {𝑧 ∈ ω
∣ 𝜑}):{𝑧 ∈ ω ∣ 𝜑}–onto→{𝑧 ∈ ω ∣ 𝜑} → ∃𝑓 𝑓:{𝑧 ∈ ω ∣ 𝜑}–onto→{𝑧 ∈ ω ∣ 𝜑}) |
| 11 | 2, 3, 10 | mp2b 8 |
. . 3
⊢
∃𝑓 𝑓:{𝑧 ∈ ω ∣ 𝜑}–onto→{𝑧 ∈ ω ∣ 𝜑} |
| 12 | | simpr 110 |
. . . . . . 7
⊢ ((𝑥 = {𝑧 ∈ ω ∣ 𝜑} ∧ 𝑦 = {𝑧 ∈ ω ∣ 𝜑}) → 𝑦 = {𝑧 ∈ ω ∣ 𝜑}) |
| 13 | 12 | sseq1d 3213 |
. . . . . 6
⊢ ((𝑥 = {𝑧 ∈ ω ∣ 𝜑} ∧ 𝑦 = {𝑧 ∈ ω ∣ 𝜑}) → (𝑦 ⊆ ω ↔ {𝑧 ∈ ω ∣ 𝜑} ⊆ ω)) |
| 14 | | eqidd 2197 |
. . . . . . . 8
⊢ ((𝑥 = {𝑧 ∈ ω ∣ 𝜑} ∧ 𝑦 = {𝑧 ∈ ω ∣ 𝜑}) → 𝑓 = 𝑓) |
| 15 | | simpl 109 |
. . . . . . . 8
⊢ ((𝑥 = {𝑧 ∈ ω ∣ 𝜑} ∧ 𝑦 = {𝑧 ∈ ω ∣ 𝜑}) → 𝑥 = {𝑧 ∈ ω ∣ 𝜑}) |
| 16 | 14, 12, 15 | foeq123d 5500 |
. . . . . . 7
⊢ ((𝑥 = {𝑧 ∈ ω ∣ 𝜑} ∧ 𝑦 = {𝑧 ∈ ω ∣ 𝜑}) → (𝑓:𝑦–onto→𝑥 ↔ 𝑓:{𝑧 ∈ ω ∣ 𝜑}–onto→{𝑧 ∈ ω ∣ 𝜑})) |
| 17 | 16 | exbidv 1839 |
. . . . . 6
⊢ ((𝑥 = {𝑧 ∈ ω ∣ 𝜑} ∧ 𝑦 = {𝑧 ∈ ω ∣ 𝜑}) → (∃𝑓 𝑓:𝑦–onto→𝑥 ↔ ∃𝑓 𝑓:{𝑧 ∈ ω ∣ 𝜑}–onto→{𝑧 ∈ ω ∣ 𝜑})) |
| 18 | 13, 17 | anbi12d 473 |
. . . . 5
⊢ ((𝑥 = {𝑧 ∈ ω ∣ 𝜑} ∧ 𝑦 = {𝑧 ∈ ω ∣ 𝜑}) → ((𝑦 ⊆ ω ∧ ∃𝑓 𝑓:𝑦–onto→𝑥) ↔ ({𝑧 ∈ ω ∣ 𝜑} ⊆ ω ∧ ∃𝑓 𝑓:{𝑧 ∈ ω ∣ 𝜑}–onto→{𝑧 ∈ ω ∣ 𝜑}))) |
| 19 | | djueq1 7115 |
. . . . . . 7
⊢ (𝑥 = {𝑧 ∈ ω ∣ 𝜑} → (𝑥 ⊔ 1o) = ({𝑧 ∈ ω ∣ 𝜑} ⊔
1o)) |
| 20 | | foeq3 5481 |
. . . . . . 7
⊢ ((𝑥 ⊔ 1o) =
({𝑧 ∈ ω ∣
𝜑} ⊔ 1o)
→ (𝑓:ω–onto→(𝑥 ⊔ 1o) ↔ 𝑓:ω–onto→({𝑧 ∈ ω ∣ 𝜑} ⊔ 1o))) |
| 21 | 15, 19, 20 | 3syl 17 |
. . . . . 6
⊢ ((𝑥 = {𝑧 ∈ ω ∣ 𝜑} ∧ 𝑦 = {𝑧 ∈ ω ∣ 𝜑}) → (𝑓:ω–onto→(𝑥 ⊔ 1o) ↔ 𝑓:ω–onto→({𝑧 ∈ ω ∣ 𝜑} ⊔ 1o))) |
| 22 | 21 | exbidv 1839 |
. . . . 5
⊢ ((𝑥 = {𝑧 ∈ ω ∣ 𝜑} ∧ 𝑦 = {𝑧 ∈ ω ∣ 𝜑}) → (∃𝑓 𝑓:ω–onto→(𝑥 ⊔ 1o) ↔ ∃𝑓 𝑓:ω–onto→({𝑧 ∈ ω ∣ 𝜑} ⊔ 1o))) |
| 23 | 18, 22 | imbi12d 234 |
. . . 4
⊢ ((𝑥 = {𝑧 ∈ ω ∣ 𝜑} ∧ 𝑦 = {𝑧 ∈ ω ∣ 𝜑}) → (((𝑦 ⊆ ω ∧ ∃𝑓 𝑓:𝑦–onto→𝑥) → ∃𝑓 𝑓:ω–onto→(𝑥 ⊔ 1o)) ↔ (({𝑧 ∈ ω ∣ 𝜑} ⊆ ω ∧
∃𝑓 𝑓:{𝑧 ∈ ω ∣ 𝜑}–onto→{𝑧 ∈ ω ∣ 𝜑}) → ∃𝑓 𝑓:ω–onto→({𝑧 ∈ ω ∣ 𝜑} ⊔
1o)))) |
| 24 | | ctssexmid.1 |
. . . 4
⊢ ((𝑦 ⊆ ω ∧
∃𝑓 𝑓:𝑦–onto→𝑥) → ∃𝑓 𝑓:ω–onto→(𝑥 ⊔ 1o)) |
| 25 | 6, 6, 23, 24 | vtocl2 2819 |
. . 3
⊢ (({𝑧 ∈ ω ∣ 𝜑} ⊆ ω ∧
∃𝑓 𝑓:{𝑧 ∈ ω ∣ 𝜑}–onto→{𝑧 ∈ ω ∣ 𝜑}) → ∃𝑓 𝑓:ω–onto→({𝑧 ∈ ω ∣ 𝜑} ⊔ 1o)) |
| 26 | 1, 11, 25 | mp2an 426 |
. 2
⊢
∃𝑓 𝑓:ω–onto→({𝑧 ∈ ω ∣ 𝜑} ⊔ 1o) |
| 27 | 4 | a1i 9 |
. . . 4
⊢ (𝑓:ω–onto→({𝑧 ∈ ω ∣ 𝜑} ⊔ 1o) → ω
∈ Omni) |
| 28 | | id 19 |
. . . 4
⊢ (𝑓:ω–onto→({𝑧 ∈ ω ∣ 𝜑} ⊔ 1o) → 𝑓:ω–onto→({𝑧 ∈ ω ∣ 𝜑} ⊔ 1o)) |
| 29 | 27, 28 | fodjuomni 7224 |
. . 3
⊢ (𝑓:ω–onto→({𝑧 ∈ ω ∣ 𝜑} ⊔ 1o) →
(∃𝑤 𝑤 ∈ {𝑧 ∈ ω ∣ 𝜑} ∨ {𝑧 ∈ ω ∣ 𝜑} = ∅)) |
| 30 | 29 | exlimiv 1612 |
. 2
⊢
(∃𝑓 𝑓:ω–onto→({𝑧 ∈ ω ∣ 𝜑} ⊔ 1o) →
(∃𝑤 𝑤 ∈ {𝑧 ∈ ω ∣ 𝜑} ∨ {𝑧 ∈ ω ∣ 𝜑} = ∅)) |
| 31 | | biidd 172 |
. . . . . 6
⊢ (𝑧 = 𝑤 → (𝜑 ↔ 𝜑)) |
| 32 | 31 | elrab 2920 |
. . . . 5
⊢ (𝑤 ∈ {𝑧 ∈ ω ∣ 𝜑} ↔ (𝑤 ∈ ω ∧ 𝜑)) |
| 33 | 32 | simprbi 275 |
. . . 4
⊢ (𝑤 ∈ {𝑧 ∈ ω ∣ 𝜑} → 𝜑) |
| 34 | 33 | exlimiv 1612 |
. . 3
⊢
(∃𝑤 𝑤 ∈ {𝑧 ∈ ω ∣ 𝜑} → 𝜑) |
| 35 | | rabeq0 3481 |
. . . 4
⊢ ({𝑧 ∈ ω ∣ 𝜑} = ∅ ↔ ∀𝑧 ∈ ω ¬ 𝜑) |
| 36 | | peano1 4631 |
. . . . 5
⊢ ∅
∈ ω |
| 37 | | elex2 2779 |
. . . . 5
⊢ (∅
∈ ω → ∃𝑢 𝑢 ∈ ω) |
| 38 | | r19.3rmv 3542 |
. . . . 5
⊢
(∃𝑢 𝑢 ∈ ω → (¬
𝜑 ↔ ∀𝑧 ∈ ω ¬ 𝜑)) |
| 39 | 36, 37, 38 | mp2b 8 |
. . . 4
⊢ (¬
𝜑 ↔ ∀𝑧 ∈ ω ¬ 𝜑) |
| 40 | 35, 39 | sylbb2 138 |
. . 3
⊢ ({𝑧 ∈ ω ∣ 𝜑} = ∅ → ¬ 𝜑) |
| 41 | 34, 40 | orim12i 760 |
. 2
⊢
((∃𝑤 𝑤 ∈ {𝑧 ∈ ω ∣ 𝜑} ∨ {𝑧 ∈ ω ∣ 𝜑} = ∅) → (𝜑 ∨ ¬ 𝜑)) |
| 42 | 26, 30, 41 | mp2b 8 |
1
⊢ (𝜑 ∨ ¬ 𝜑) |