ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ctssexmid GIF version

Theorem ctssexmid 7114
Description: The decidability condition in ctssdc 7078 is needed. More specifically, ctssdc 7078 minus that condition, plus the Limited Principle of Omniscience (LPO), implies excluded middle. (Contributed by Jim Kingdon, 15-Aug-2023.)
Hypotheses
Ref Expression
ctssexmid.1 ((𝑦 ⊆ ω ∧ ∃𝑓 𝑓:𝑦onto𝑥) → ∃𝑓 𝑓:ω–onto→(𝑥 ⊔ 1o))
ctssexmid.lpo ω ∈ Omni
Assertion
Ref Expression
ctssexmid (𝜑 ∨ ¬ 𝜑)
Distinct variable group:   𝜑,𝑓,𝑥,𝑦

Proof of Theorem ctssexmid
Dummy variables 𝑤 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ssrab2 3227 . . 3 {𝑧 ∈ ω ∣ 𝜑} ⊆ ω
2 f1oi 5470 . . . 4 ( I ↾ {𝑧 ∈ ω ∣ 𝜑}):{𝑧 ∈ ω ∣ 𝜑}–1-1-onto→{𝑧 ∈ ω ∣ 𝜑}
3 f1ofo 5439 . . . 4 (( I ↾ {𝑧 ∈ ω ∣ 𝜑}):{𝑧 ∈ ω ∣ 𝜑}–1-1-onto→{𝑧 ∈ ω ∣ 𝜑} → ( I ↾ {𝑧 ∈ ω ∣ 𝜑}):{𝑧 ∈ ω ∣ 𝜑}–onto→{𝑧 ∈ ω ∣ 𝜑})
4 ctssexmid.lpo . . . . . . . 8 ω ∈ Omni
54elexi 2738 . . . . . . 7 ω ∈ V
65rabex 4126 . . . . . 6 {𝑧 ∈ ω ∣ 𝜑} ∈ V
7 resiexg 4929 . . . . . 6 ({𝑧 ∈ ω ∣ 𝜑} ∈ V → ( I ↾ {𝑧 ∈ ω ∣ 𝜑}) ∈ V)
86, 7ax-mp 5 . . . . 5 ( I ↾ {𝑧 ∈ ω ∣ 𝜑}) ∈ V
9 foeq1 5406 . . . . 5 (𝑓 = ( I ↾ {𝑧 ∈ ω ∣ 𝜑}) → (𝑓:{𝑧 ∈ ω ∣ 𝜑}–onto→{𝑧 ∈ ω ∣ 𝜑} ↔ ( I ↾ {𝑧 ∈ ω ∣ 𝜑}):{𝑧 ∈ ω ∣ 𝜑}–onto→{𝑧 ∈ ω ∣ 𝜑}))
108, 9spcev 2821 . . . 4 (( I ↾ {𝑧 ∈ ω ∣ 𝜑}):{𝑧 ∈ ω ∣ 𝜑}–onto→{𝑧 ∈ ω ∣ 𝜑} → ∃𝑓 𝑓:{𝑧 ∈ ω ∣ 𝜑}–onto→{𝑧 ∈ ω ∣ 𝜑})
112, 3, 10mp2b 8 . . 3 𝑓 𝑓:{𝑧 ∈ ω ∣ 𝜑}–onto→{𝑧 ∈ ω ∣ 𝜑}
12 simpr 109 . . . . . . 7 ((𝑥 = {𝑧 ∈ ω ∣ 𝜑} ∧ 𝑦 = {𝑧 ∈ ω ∣ 𝜑}) → 𝑦 = {𝑧 ∈ ω ∣ 𝜑})
1312sseq1d 3171 . . . . . 6 ((𝑥 = {𝑧 ∈ ω ∣ 𝜑} ∧ 𝑦 = {𝑧 ∈ ω ∣ 𝜑}) → (𝑦 ⊆ ω ↔ {𝑧 ∈ ω ∣ 𝜑} ⊆ ω))
14 eqidd 2166 . . . . . . . 8 ((𝑥 = {𝑧 ∈ ω ∣ 𝜑} ∧ 𝑦 = {𝑧 ∈ ω ∣ 𝜑}) → 𝑓 = 𝑓)
15 simpl 108 . . . . . . . 8 ((𝑥 = {𝑧 ∈ ω ∣ 𝜑} ∧ 𝑦 = {𝑧 ∈ ω ∣ 𝜑}) → 𝑥 = {𝑧 ∈ ω ∣ 𝜑})
1614, 12, 15foeq123d 5426 . . . . . . 7 ((𝑥 = {𝑧 ∈ ω ∣ 𝜑} ∧ 𝑦 = {𝑧 ∈ ω ∣ 𝜑}) → (𝑓:𝑦onto𝑥𝑓:{𝑧 ∈ ω ∣ 𝜑}–onto→{𝑧 ∈ ω ∣ 𝜑}))
1716exbidv 1813 . . . . . 6 ((𝑥 = {𝑧 ∈ ω ∣ 𝜑} ∧ 𝑦 = {𝑧 ∈ ω ∣ 𝜑}) → (∃𝑓 𝑓:𝑦onto𝑥 ↔ ∃𝑓 𝑓:{𝑧 ∈ ω ∣ 𝜑}–onto→{𝑧 ∈ ω ∣ 𝜑}))
1813, 17anbi12d 465 . . . . 5 ((𝑥 = {𝑧 ∈ ω ∣ 𝜑} ∧ 𝑦 = {𝑧 ∈ ω ∣ 𝜑}) → ((𝑦 ⊆ ω ∧ ∃𝑓 𝑓:𝑦onto𝑥) ↔ ({𝑧 ∈ ω ∣ 𝜑} ⊆ ω ∧ ∃𝑓 𝑓:{𝑧 ∈ ω ∣ 𝜑}–onto→{𝑧 ∈ ω ∣ 𝜑})))
19 djueq1 7005 . . . . . . 7 (𝑥 = {𝑧 ∈ ω ∣ 𝜑} → (𝑥 ⊔ 1o) = ({𝑧 ∈ ω ∣ 𝜑} ⊔ 1o))
20 foeq3 5408 . . . . . . 7 ((𝑥 ⊔ 1o) = ({𝑧 ∈ ω ∣ 𝜑} ⊔ 1o) → (𝑓:ω–onto→(𝑥 ⊔ 1o) ↔ 𝑓:ω–onto→({𝑧 ∈ ω ∣ 𝜑} ⊔ 1o)))
2115, 19, 203syl 17 . . . . . 6 ((𝑥 = {𝑧 ∈ ω ∣ 𝜑} ∧ 𝑦 = {𝑧 ∈ ω ∣ 𝜑}) → (𝑓:ω–onto→(𝑥 ⊔ 1o) ↔ 𝑓:ω–onto→({𝑧 ∈ ω ∣ 𝜑} ⊔ 1o)))
2221exbidv 1813 . . . . 5 ((𝑥 = {𝑧 ∈ ω ∣ 𝜑} ∧ 𝑦 = {𝑧 ∈ ω ∣ 𝜑}) → (∃𝑓 𝑓:ω–onto→(𝑥 ⊔ 1o) ↔ ∃𝑓 𝑓:ω–onto→({𝑧 ∈ ω ∣ 𝜑} ⊔ 1o)))
2318, 22imbi12d 233 . . . 4 ((𝑥 = {𝑧 ∈ ω ∣ 𝜑} ∧ 𝑦 = {𝑧 ∈ ω ∣ 𝜑}) → (((𝑦 ⊆ ω ∧ ∃𝑓 𝑓:𝑦onto𝑥) → ∃𝑓 𝑓:ω–onto→(𝑥 ⊔ 1o)) ↔ (({𝑧 ∈ ω ∣ 𝜑} ⊆ ω ∧ ∃𝑓 𝑓:{𝑧 ∈ ω ∣ 𝜑}–onto→{𝑧 ∈ ω ∣ 𝜑}) → ∃𝑓 𝑓:ω–onto→({𝑧 ∈ ω ∣ 𝜑} ⊔ 1o))))
24 ctssexmid.1 . . . 4 ((𝑦 ⊆ ω ∧ ∃𝑓 𝑓:𝑦onto𝑥) → ∃𝑓 𝑓:ω–onto→(𝑥 ⊔ 1o))
256, 6, 23, 24vtocl2 2781 . . 3 (({𝑧 ∈ ω ∣ 𝜑} ⊆ ω ∧ ∃𝑓 𝑓:{𝑧 ∈ ω ∣ 𝜑}–onto→{𝑧 ∈ ω ∣ 𝜑}) → ∃𝑓 𝑓:ω–onto→({𝑧 ∈ ω ∣ 𝜑} ⊔ 1o))
261, 11, 25mp2an 423 . 2 𝑓 𝑓:ω–onto→({𝑧 ∈ ω ∣ 𝜑} ⊔ 1o)
274a1i 9 . . . 4 (𝑓:ω–onto→({𝑧 ∈ ω ∣ 𝜑} ⊔ 1o) → ω ∈ Omni)
28 id 19 . . . 4 (𝑓:ω–onto→({𝑧 ∈ ω ∣ 𝜑} ⊔ 1o) → 𝑓:ω–onto→({𝑧 ∈ ω ∣ 𝜑} ⊔ 1o))
2927, 28fodjuomni 7113 . . 3 (𝑓:ω–onto→({𝑧 ∈ ω ∣ 𝜑} ⊔ 1o) → (∃𝑤 𝑤 ∈ {𝑧 ∈ ω ∣ 𝜑} ∨ {𝑧 ∈ ω ∣ 𝜑} = ∅))
3029exlimiv 1586 . 2 (∃𝑓 𝑓:ω–onto→({𝑧 ∈ ω ∣ 𝜑} ⊔ 1o) → (∃𝑤 𝑤 ∈ {𝑧 ∈ ω ∣ 𝜑} ∨ {𝑧 ∈ ω ∣ 𝜑} = ∅))
31 biidd 171 . . . . . 6 (𝑧 = 𝑤 → (𝜑𝜑))
3231elrab 2882 . . . . 5 (𝑤 ∈ {𝑧 ∈ ω ∣ 𝜑} ↔ (𝑤 ∈ ω ∧ 𝜑))
3332simprbi 273 . . . 4 (𝑤 ∈ {𝑧 ∈ ω ∣ 𝜑} → 𝜑)
3433exlimiv 1586 . . 3 (∃𝑤 𝑤 ∈ {𝑧 ∈ ω ∣ 𝜑} → 𝜑)
35 rabeq0 3438 . . . 4 ({𝑧 ∈ ω ∣ 𝜑} = ∅ ↔ ∀𝑧 ∈ ω ¬ 𝜑)
36 peano1 4571 . . . . 5 ∅ ∈ ω
37 elex2 2742 . . . . 5 (∅ ∈ ω → ∃𝑢 𝑢 ∈ ω)
38 r19.3rmv 3499 . . . . 5 (∃𝑢 𝑢 ∈ ω → (¬ 𝜑 ↔ ∀𝑧 ∈ ω ¬ 𝜑))
3936, 37, 38mp2b 8 . . . 4 𝜑 ↔ ∀𝑧 ∈ ω ¬ 𝜑)
4035, 39sylbb2 137 . . 3 ({𝑧 ∈ ω ∣ 𝜑} = ∅ → ¬ 𝜑)
4134, 40orim12i 749 . 2 ((∃𝑤 𝑤 ∈ {𝑧 ∈ ω ∣ 𝜑} ∨ {𝑧 ∈ ω ∣ 𝜑} = ∅) → (𝜑 ∨ ¬ 𝜑))
4226, 30, 41mp2b 8 1 (𝜑 ∨ ¬ 𝜑)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 103  wb 104  wo 698   = wceq 1343  wex 1480  wcel 2136  wral 2444  {crab 2448  Vcvv 2726  wss 3116  c0 3409   I cid 4266  ωcom 4567  cres 4606  ontowfo 5186  1-1-ontowf1o 5187  1oc1o 6377  cdju 7002  Omnicomni 7098
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-nul 4108  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-setind 4514
This theorem depends on definitions:  df-bi 116  df-dc 825  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-ral 2449  df-rex 2450  df-rab 2453  df-v 2728  df-sbc 2952  df-csb 3046  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-nul 3410  df-if 3521  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-int 3825  df-br 3983  df-opab 4044  df-mpt 4045  df-tr 4081  df-id 4271  df-iord 4344  df-on 4346  df-suc 4349  df-iom 4568  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-f1 5193  df-fo 5194  df-f1o 5195  df-fv 5196  df-ov 5845  df-oprab 5846  df-mpo 5847  df-1st 6108  df-2nd 6109  df-1o 6384  df-2o 6385  df-map 6616  df-dju 7003  df-inl 7012  df-inr 7013  df-omni 7099
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator