ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ctssexmid GIF version

Theorem ctssexmid 6974
Description: The decidability condition in ctssdc 6950 is needed. More specifically, ctssdc 6950 minus that condition, plus the Limited Principle of Omniscience (LPO), implies excluded middle. (Contributed by Jim Kingdon, 15-Aug-2023.)
Hypotheses
Ref Expression
ctssexmid.1 ((𝑦 ⊆ ω ∧ ∃𝑓 𝑓:𝑦onto𝑥) → ∃𝑓 𝑓:ω–onto→(𝑥 ⊔ 1o))
ctssexmid.lpo ω ∈ Omni
Assertion
Ref Expression
ctssexmid (𝜑 ∨ ¬ 𝜑)
Distinct variable group:   𝜑,𝑓,𝑥,𝑦

Proof of Theorem ctssexmid
Dummy variables 𝑤 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ssrab2 3148 . . 3 {𝑧 ∈ ω ∣ 𝜑} ⊆ ω
2 f1oi 5361 . . . 4 ( I ↾ {𝑧 ∈ ω ∣ 𝜑}):{𝑧 ∈ ω ∣ 𝜑}–1-1-onto→{𝑧 ∈ ω ∣ 𝜑}
3 f1ofo 5330 . . . 4 (( I ↾ {𝑧 ∈ ω ∣ 𝜑}):{𝑧 ∈ ω ∣ 𝜑}–1-1-onto→{𝑧 ∈ ω ∣ 𝜑} → ( I ↾ {𝑧 ∈ ω ∣ 𝜑}):{𝑧 ∈ ω ∣ 𝜑}–onto→{𝑧 ∈ ω ∣ 𝜑})
4 ctssexmid.lpo . . . . . . . 8 ω ∈ Omni
54elexi 2669 . . . . . . 7 ω ∈ V
65rabex 4032 . . . . . 6 {𝑧 ∈ ω ∣ 𝜑} ∈ V
7 resiexg 4822 . . . . . 6 ({𝑧 ∈ ω ∣ 𝜑} ∈ V → ( I ↾ {𝑧 ∈ ω ∣ 𝜑}) ∈ V)
86, 7ax-mp 7 . . . . 5 ( I ↾ {𝑧 ∈ ω ∣ 𝜑}) ∈ V
9 foeq1 5299 . . . . 5 (𝑓 = ( I ↾ {𝑧 ∈ ω ∣ 𝜑}) → (𝑓:{𝑧 ∈ ω ∣ 𝜑}–onto→{𝑧 ∈ ω ∣ 𝜑} ↔ ( I ↾ {𝑧 ∈ ω ∣ 𝜑}):{𝑧 ∈ ω ∣ 𝜑}–onto→{𝑧 ∈ ω ∣ 𝜑}))
108, 9spcev 2751 . . . 4 (( I ↾ {𝑧 ∈ ω ∣ 𝜑}):{𝑧 ∈ ω ∣ 𝜑}–onto→{𝑧 ∈ ω ∣ 𝜑} → ∃𝑓 𝑓:{𝑧 ∈ ω ∣ 𝜑}–onto→{𝑧 ∈ ω ∣ 𝜑})
112, 3, 10mp2b 8 . . 3 𝑓 𝑓:{𝑧 ∈ ω ∣ 𝜑}–onto→{𝑧 ∈ ω ∣ 𝜑}
12 simpr 109 . . . . . . 7 ((𝑥 = {𝑧 ∈ ω ∣ 𝜑} ∧ 𝑦 = {𝑧 ∈ ω ∣ 𝜑}) → 𝑦 = {𝑧 ∈ ω ∣ 𝜑})
1312sseq1d 3092 . . . . . 6 ((𝑥 = {𝑧 ∈ ω ∣ 𝜑} ∧ 𝑦 = {𝑧 ∈ ω ∣ 𝜑}) → (𝑦 ⊆ ω ↔ {𝑧 ∈ ω ∣ 𝜑} ⊆ ω))
14 eqidd 2116 . . . . . . . 8 ((𝑥 = {𝑧 ∈ ω ∣ 𝜑} ∧ 𝑦 = {𝑧 ∈ ω ∣ 𝜑}) → 𝑓 = 𝑓)
15 simpl 108 . . . . . . . 8 ((𝑥 = {𝑧 ∈ ω ∣ 𝜑} ∧ 𝑦 = {𝑧 ∈ ω ∣ 𝜑}) → 𝑥 = {𝑧 ∈ ω ∣ 𝜑})
1614, 12, 15foeq123d 5319 . . . . . . 7 ((𝑥 = {𝑧 ∈ ω ∣ 𝜑} ∧ 𝑦 = {𝑧 ∈ ω ∣ 𝜑}) → (𝑓:𝑦onto𝑥𝑓:{𝑧 ∈ ω ∣ 𝜑}–onto→{𝑧 ∈ ω ∣ 𝜑}))
1716exbidv 1779 . . . . . 6 ((𝑥 = {𝑧 ∈ ω ∣ 𝜑} ∧ 𝑦 = {𝑧 ∈ ω ∣ 𝜑}) → (∃𝑓 𝑓:𝑦onto𝑥 ↔ ∃𝑓 𝑓:{𝑧 ∈ ω ∣ 𝜑}–onto→{𝑧 ∈ ω ∣ 𝜑}))
1813, 17anbi12d 462 . . . . 5 ((𝑥 = {𝑧 ∈ ω ∣ 𝜑} ∧ 𝑦 = {𝑧 ∈ ω ∣ 𝜑}) → ((𝑦 ⊆ ω ∧ ∃𝑓 𝑓:𝑦onto𝑥) ↔ ({𝑧 ∈ ω ∣ 𝜑} ⊆ ω ∧ ∃𝑓 𝑓:{𝑧 ∈ ω ∣ 𝜑}–onto→{𝑧 ∈ ω ∣ 𝜑})))
19 djueq1 6877 . . . . . . 7 (𝑥 = {𝑧 ∈ ω ∣ 𝜑} → (𝑥 ⊔ 1o) = ({𝑧 ∈ ω ∣ 𝜑} ⊔ 1o))
20 foeq3 5301 . . . . . . 7 ((𝑥 ⊔ 1o) = ({𝑧 ∈ ω ∣ 𝜑} ⊔ 1o) → (𝑓:ω–onto→(𝑥 ⊔ 1o) ↔ 𝑓:ω–onto→({𝑧 ∈ ω ∣ 𝜑} ⊔ 1o)))
2115, 19, 203syl 17 . . . . . 6 ((𝑥 = {𝑧 ∈ ω ∣ 𝜑} ∧ 𝑦 = {𝑧 ∈ ω ∣ 𝜑}) → (𝑓:ω–onto→(𝑥 ⊔ 1o) ↔ 𝑓:ω–onto→({𝑧 ∈ ω ∣ 𝜑} ⊔ 1o)))
2221exbidv 1779 . . . . 5 ((𝑥 = {𝑧 ∈ ω ∣ 𝜑} ∧ 𝑦 = {𝑧 ∈ ω ∣ 𝜑}) → (∃𝑓 𝑓:ω–onto→(𝑥 ⊔ 1o) ↔ ∃𝑓 𝑓:ω–onto→({𝑧 ∈ ω ∣ 𝜑} ⊔ 1o)))
2318, 22imbi12d 233 . . . 4 ((𝑥 = {𝑧 ∈ ω ∣ 𝜑} ∧ 𝑦 = {𝑧 ∈ ω ∣ 𝜑}) → (((𝑦 ⊆ ω ∧ ∃𝑓 𝑓:𝑦onto𝑥) → ∃𝑓 𝑓:ω–onto→(𝑥 ⊔ 1o)) ↔ (({𝑧 ∈ ω ∣ 𝜑} ⊆ ω ∧ ∃𝑓 𝑓:{𝑧 ∈ ω ∣ 𝜑}–onto→{𝑧 ∈ ω ∣ 𝜑}) → ∃𝑓 𝑓:ω–onto→({𝑧 ∈ ω ∣ 𝜑} ⊔ 1o))))
24 ctssexmid.1 . . . 4 ((𝑦 ⊆ ω ∧ ∃𝑓 𝑓:𝑦onto𝑥) → ∃𝑓 𝑓:ω–onto→(𝑥 ⊔ 1o))
256, 6, 23, 24vtocl2 2712 . . 3 (({𝑧 ∈ ω ∣ 𝜑} ⊆ ω ∧ ∃𝑓 𝑓:{𝑧 ∈ ω ∣ 𝜑}–onto→{𝑧 ∈ ω ∣ 𝜑}) → ∃𝑓 𝑓:ω–onto→({𝑧 ∈ ω ∣ 𝜑} ⊔ 1o))
261, 11, 25mp2an 420 . 2 𝑓 𝑓:ω–onto→({𝑧 ∈ ω ∣ 𝜑} ⊔ 1o)
274a1i 9 . . . 4 (𝑓:ω–onto→({𝑧 ∈ ω ∣ 𝜑} ⊔ 1o) → ω ∈ Omni)
28 id 19 . . . 4 (𝑓:ω–onto→({𝑧 ∈ ω ∣ 𝜑} ⊔ 1o) → 𝑓:ω–onto→({𝑧 ∈ ω ∣ 𝜑} ⊔ 1o))
2927, 28fodjuomni 6971 . . 3 (𝑓:ω–onto→({𝑧 ∈ ω ∣ 𝜑} ⊔ 1o) → (∃𝑤 𝑤 ∈ {𝑧 ∈ ω ∣ 𝜑} ∨ {𝑧 ∈ ω ∣ 𝜑} = ∅))
3029exlimiv 1560 . 2 (∃𝑓 𝑓:ω–onto→({𝑧 ∈ ω ∣ 𝜑} ⊔ 1o) → (∃𝑤 𝑤 ∈ {𝑧 ∈ ω ∣ 𝜑} ∨ {𝑧 ∈ ω ∣ 𝜑} = ∅))
31 biidd 171 . . . . . 6 (𝑧 = 𝑤 → (𝜑𝜑))
3231elrab 2809 . . . . 5 (𝑤 ∈ {𝑧 ∈ ω ∣ 𝜑} ↔ (𝑤 ∈ ω ∧ 𝜑))
3332simprbi 271 . . . 4 (𝑤 ∈ {𝑧 ∈ ω ∣ 𝜑} → 𝜑)
3433exlimiv 1560 . . 3 (∃𝑤 𝑤 ∈ {𝑧 ∈ ω ∣ 𝜑} → 𝜑)
35 rabeq0 3358 . . . 4 ({𝑧 ∈ ω ∣ 𝜑} = ∅ ↔ ∀𝑧 ∈ ω ¬ 𝜑)
36 peano1 4468 . . . . 5 ∅ ∈ ω
37 elex2 2673 . . . . 5 (∅ ∈ ω → ∃𝑢 𝑢 ∈ ω)
38 r19.3rmv 3419 . . . . 5 (∃𝑢 𝑢 ∈ ω → (¬ 𝜑 ↔ ∀𝑧 ∈ ω ¬ 𝜑))
3936, 37, 38mp2b 8 . . . 4 𝜑 ↔ ∀𝑧 ∈ ω ¬ 𝜑)
4035, 39sylbb2 137 . . 3 ({𝑧 ∈ ω ∣ 𝜑} = ∅ → ¬ 𝜑)
4134, 40orim12i 731 . 2 ((∃𝑤 𝑤 ∈ {𝑧 ∈ ω ∣ 𝜑} ∨ {𝑧 ∈ ω ∣ 𝜑} = ∅) → (𝜑 ∨ ¬ 𝜑))
4226, 30, 41mp2b 8 1 (𝜑 ∨ ¬ 𝜑)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 103  wb 104  wo 680   = wceq 1314  wex 1451  wcel 1463  wral 2390  {crab 2394  Vcvv 2657  wss 3037  c0 3329   I cid 4170  ωcom 4464  cres 4501  ontowfo 5079  1-1-ontowf1o 5080  1oc1o 6260  cdju 6874  Omnicomni 6954
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 586  ax-in2 587  ax-io 681  ax-5 1406  ax-7 1407  ax-gen 1408  ax-ie1 1452  ax-ie2 1453  ax-8 1465  ax-10 1466  ax-11 1467  ax-i12 1468  ax-bndl 1469  ax-4 1470  ax-13 1474  ax-14 1475  ax-17 1489  ax-i9 1493  ax-ial 1497  ax-i5r 1498  ax-ext 2097  ax-sep 4006  ax-nul 4014  ax-pow 4058  ax-pr 4091  ax-un 4315  ax-setind 4412
This theorem depends on definitions:  df-bi 116  df-dc 803  df-3an 947  df-tru 1317  df-fal 1320  df-nf 1420  df-sb 1719  df-eu 1978  df-mo 1979  df-clab 2102  df-cleq 2108  df-clel 2111  df-nfc 2244  df-ne 2283  df-ral 2395  df-rex 2396  df-rab 2399  df-v 2659  df-sbc 2879  df-csb 2972  df-dif 3039  df-un 3041  df-in 3043  df-ss 3050  df-nul 3330  df-if 3441  df-pw 3478  df-sn 3499  df-pr 3500  df-op 3502  df-uni 3703  df-int 3738  df-br 3896  df-opab 3950  df-mpt 3951  df-tr 3987  df-id 4175  df-iord 4248  df-on 4250  df-suc 4253  df-iom 4465  df-xp 4505  df-rel 4506  df-cnv 4507  df-co 4508  df-dm 4509  df-rn 4510  df-res 4511  df-ima 4512  df-iota 5046  df-fun 5083  df-fn 5084  df-f 5085  df-f1 5086  df-fo 5087  df-f1o 5088  df-fv 5089  df-ov 5731  df-oprab 5732  df-mpo 5733  df-1st 5992  df-2nd 5993  df-1o 6267  df-2o 6268  df-map 6498  df-dju 6875  df-inl 6884  df-inr 6885  df-omni 6956
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator