| Step | Hyp | Ref
 | Expression | 
| 1 |   | ssrab2 3268 | 
. . 3
⊢ {𝑧 ∈ ω ∣ 𝜑} ⊆ ω | 
| 2 |   | f1oi 5542 | 
. . . 4
⊢ ( I
↾ {𝑧 ∈ ω
∣ 𝜑}):{𝑧 ∈ ω ∣ 𝜑}–1-1-onto→{𝑧 ∈ ω ∣ 𝜑} | 
| 3 |   | f1ofo 5511 | 
. . . 4
⊢ (( I
↾ {𝑧 ∈ ω
∣ 𝜑}):{𝑧 ∈ ω ∣ 𝜑}–1-1-onto→{𝑧 ∈ ω ∣ 𝜑} → ( I ↾ {𝑧 ∈ ω ∣ 𝜑}):{𝑧 ∈ ω ∣ 𝜑}–onto→{𝑧 ∈ ω ∣ 𝜑}) | 
| 4 |   | ctssexmid.lpo | 
. . . . . . . 8
⊢ ω
∈ Omni | 
| 5 | 4 | elexi 2775 | 
. . . . . . 7
⊢ ω
∈ V | 
| 6 | 5 | rabex 4177 | 
. . . . . 6
⊢ {𝑧 ∈ ω ∣ 𝜑} ∈ V | 
| 7 |   | resiexg 4991 | 
. . . . . 6
⊢ ({𝑧 ∈ ω ∣ 𝜑} ∈ V → ( I ↾
{𝑧 ∈ ω ∣
𝜑}) ∈
V) | 
| 8 | 6, 7 | ax-mp 5 | 
. . . . 5
⊢ ( I
↾ {𝑧 ∈ ω
∣ 𝜑}) ∈
V | 
| 9 |   | foeq1 5476 | 
. . . . 5
⊢ (𝑓 = ( I ↾ {𝑧 ∈ ω ∣ 𝜑}) → (𝑓:{𝑧 ∈ ω ∣ 𝜑}–onto→{𝑧 ∈ ω ∣ 𝜑} ↔ ( I ↾ {𝑧 ∈ ω ∣ 𝜑}):{𝑧 ∈ ω ∣ 𝜑}–onto→{𝑧 ∈ ω ∣ 𝜑})) | 
| 10 | 8, 9 | spcev 2859 | 
. . . 4
⊢ (( I
↾ {𝑧 ∈ ω
∣ 𝜑}):{𝑧 ∈ ω ∣ 𝜑}–onto→{𝑧 ∈ ω ∣ 𝜑} → ∃𝑓 𝑓:{𝑧 ∈ ω ∣ 𝜑}–onto→{𝑧 ∈ ω ∣ 𝜑}) | 
| 11 | 2, 3, 10 | mp2b 8 | 
. . 3
⊢
∃𝑓 𝑓:{𝑧 ∈ ω ∣ 𝜑}–onto→{𝑧 ∈ ω ∣ 𝜑} | 
| 12 |   | simpr 110 | 
. . . . . . 7
⊢ ((𝑥 = {𝑧 ∈ ω ∣ 𝜑} ∧ 𝑦 = {𝑧 ∈ ω ∣ 𝜑}) → 𝑦 = {𝑧 ∈ ω ∣ 𝜑}) | 
| 13 | 12 | sseq1d 3212 | 
. . . . . 6
⊢ ((𝑥 = {𝑧 ∈ ω ∣ 𝜑} ∧ 𝑦 = {𝑧 ∈ ω ∣ 𝜑}) → (𝑦 ⊆ ω ↔ {𝑧 ∈ ω ∣ 𝜑} ⊆ ω)) | 
| 14 |   | eqidd 2197 | 
. . . . . . . 8
⊢ ((𝑥 = {𝑧 ∈ ω ∣ 𝜑} ∧ 𝑦 = {𝑧 ∈ ω ∣ 𝜑}) → 𝑓 = 𝑓) | 
| 15 |   | simpl 109 | 
. . . . . . . 8
⊢ ((𝑥 = {𝑧 ∈ ω ∣ 𝜑} ∧ 𝑦 = {𝑧 ∈ ω ∣ 𝜑}) → 𝑥 = {𝑧 ∈ ω ∣ 𝜑}) | 
| 16 | 14, 12, 15 | foeq123d 5497 | 
. . . . . . 7
⊢ ((𝑥 = {𝑧 ∈ ω ∣ 𝜑} ∧ 𝑦 = {𝑧 ∈ ω ∣ 𝜑}) → (𝑓:𝑦–onto→𝑥 ↔ 𝑓:{𝑧 ∈ ω ∣ 𝜑}–onto→{𝑧 ∈ ω ∣ 𝜑})) | 
| 17 | 16 | exbidv 1839 | 
. . . . . 6
⊢ ((𝑥 = {𝑧 ∈ ω ∣ 𝜑} ∧ 𝑦 = {𝑧 ∈ ω ∣ 𝜑}) → (∃𝑓 𝑓:𝑦–onto→𝑥 ↔ ∃𝑓 𝑓:{𝑧 ∈ ω ∣ 𝜑}–onto→{𝑧 ∈ ω ∣ 𝜑})) | 
| 18 | 13, 17 | anbi12d 473 | 
. . . . 5
⊢ ((𝑥 = {𝑧 ∈ ω ∣ 𝜑} ∧ 𝑦 = {𝑧 ∈ ω ∣ 𝜑}) → ((𝑦 ⊆ ω ∧ ∃𝑓 𝑓:𝑦–onto→𝑥) ↔ ({𝑧 ∈ ω ∣ 𝜑} ⊆ ω ∧ ∃𝑓 𝑓:{𝑧 ∈ ω ∣ 𝜑}–onto→{𝑧 ∈ ω ∣ 𝜑}))) | 
| 19 |   | djueq1 7106 | 
. . . . . . 7
⊢ (𝑥 = {𝑧 ∈ ω ∣ 𝜑} → (𝑥 ⊔ 1o) = ({𝑧 ∈ ω ∣ 𝜑} ⊔
1o)) | 
| 20 |   | foeq3 5478 | 
. . . . . . 7
⊢ ((𝑥 ⊔ 1o) =
({𝑧 ∈ ω ∣
𝜑} ⊔ 1o)
→ (𝑓:ω–onto→(𝑥 ⊔ 1o) ↔ 𝑓:ω–onto→({𝑧 ∈ ω ∣ 𝜑} ⊔ 1o))) | 
| 21 | 15, 19, 20 | 3syl 17 | 
. . . . . 6
⊢ ((𝑥 = {𝑧 ∈ ω ∣ 𝜑} ∧ 𝑦 = {𝑧 ∈ ω ∣ 𝜑}) → (𝑓:ω–onto→(𝑥 ⊔ 1o) ↔ 𝑓:ω–onto→({𝑧 ∈ ω ∣ 𝜑} ⊔ 1o))) | 
| 22 | 21 | exbidv 1839 | 
. . . . 5
⊢ ((𝑥 = {𝑧 ∈ ω ∣ 𝜑} ∧ 𝑦 = {𝑧 ∈ ω ∣ 𝜑}) → (∃𝑓 𝑓:ω–onto→(𝑥 ⊔ 1o) ↔ ∃𝑓 𝑓:ω–onto→({𝑧 ∈ ω ∣ 𝜑} ⊔ 1o))) | 
| 23 | 18, 22 | imbi12d 234 | 
. . . 4
⊢ ((𝑥 = {𝑧 ∈ ω ∣ 𝜑} ∧ 𝑦 = {𝑧 ∈ ω ∣ 𝜑}) → (((𝑦 ⊆ ω ∧ ∃𝑓 𝑓:𝑦–onto→𝑥) → ∃𝑓 𝑓:ω–onto→(𝑥 ⊔ 1o)) ↔ (({𝑧 ∈ ω ∣ 𝜑} ⊆ ω ∧
∃𝑓 𝑓:{𝑧 ∈ ω ∣ 𝜑}–onto→{𝑧 ∈ ω ∣ 𝜑}) → ∃𝑓 𝑓:ω–onto→({𝑧 ∈ ω ∣ 𝜑} ⊔
1o)))) | 
| 24 |   | ctssexmid.1 | 
. . . 4
⊢ ((𝑦 ⊆ ω ∧
∃𝑓 𝑓:𝑦–onto→𝑥) → ∃𝑓 𝑓:ω–onto→(𝑥 ⊔ 1o)) | 
| 25 | 6, 6, 23, 24 | vtocl2 2819 | 
. . 3
⊢ (({𝑧 ∈ ω ∣ 𝜑} ⊆ ω ∧
∃𝑓 𝑓:{𝑧 ∈ ω ∣ 𝜑}–onto→{𝑧 ∈ ω ∣ 𝜑}) → ∃𝑓 𝑓:ω–onto→({𝑧 ∈ ω ∣ 𝜑} ⊔ 1o)) | 
| 26 | 1, 11, 25 | mp2an 426 | 
. 2
⊢
∃𝑓 𝑓:ω–onto→({𝑧 ∈ ω ∣ 𝜑} ⊔ 1o) | 
| 27 | 4 | a1i 9 | 
. . . 4
⊢ (𝑓:ω–onto→({𝑧 ∈ ω ∣ 𝜑} ⊔ 1o) → ω
∈ Omni) | 
| 28 |   | id 19 | 
. . . 4
⊢ (𝑓:ω–onto→({𝑧 ∈ ω ∣ 𝜑} ⊔ 1o) → 𝑓:ω–onto→({𝑧 ∈ ω ∣ 𝜑} ⊔ 1o)) | 
| 29 | 27, 28 | fodjuomni 7215 | 
. . 3
⊢ (𝑓:ω–onto→({𝑧 ∈ ω ∣ 𝜑} ⊔ 1o) →
(∃𝑤 𝑤 ∈ {𝑧 ∈ ω ∣ 𝜑} ∨ {𝑧 ∈ ω ∣ 𝜑} = ∅)) | 
| 30 | 29 | exlimiv 1612 | 
. 2
⊢
(∃𝑓 𝑓:ω–onto→({𝑧 ∈ ω ∣ 𝜑} ⊔ 1o) →
(∃𝑤 𝑤 ∈ {𝑧 ∈ ω ∣ 𝜑} ∨ {𝑧 ∈ ω ∣ 𝜑} = ∅)) | 
| 31 |   | biidd 172 | 
. . . . . 6
⊢ (𝑧 = 𝑤 → (𝜑 ↔ 𝜑)) | 
| 32 | 31 | elrab 2920 | 
. . . . 5
⊢ (𝑤 ∈ {𝑧 ∈ ω ∣ 𝜑} ↔ (𝑤 ∈ ω ∧ 𝜑)) | 
| 33 | 32 | simprbi 275 | 
. . . 4
⊢ (𝑤 ∈ {𝑧 ∈ ω ∣ 𝜑} → 𝜑) | 
| 34 | 33 | exlimiv 1612 | 
. . 3
⊢
(∃𝑤 𝑤 ∈ {𝑧 ∈ ω ∣ 𝜑} → 𝜑) | 
| 35 |   | rabeq0 3480 | 
. . . 4
⊢ ({𝑧 ∈ ω ∣ 𝜑} = ∅ ↔ ∀𝑧 ∈ ω ¬ 𝜑) | 
| 36 |   | peano1 4630 | 
. . . . 5
⊢ ∅
∈ ω | 
| 37 |   | elex2 2779 | 
. . . . 5
⊢ (∅
∈ ω → ∃𝑢 𝑢 ∈ ω) | 
| 38 |   | r19.3rmv 3541 | 
. . . . 5
⊢
(∃𝑢 𝑢 ∈ ω → (¬
𝜑 ↔ ∀𝑧 ∈ ω ¬ 𝜑)) | 
| 39 | 36, 37, 38 | mp2b 8 | 
. . . 4
⊢ (¬
𝜑 ↔ ∀𝑧 ∈ ω ¬ 𝜑) | 
| 40 | 35, 39 | sylbb2 138 | 
. . 3
⊢ ({𝑧 ∈ ω ∣ 𝜑} = ∅ → ¬ 𝜑) | 
| 41 | 34, 40 | orim12i 760 | 
. 2
⊢
((∃𝑤 𝑤 ∈ {𝑧 ∈ ω ∣ 𝜑} ∨ {𝑧 ∈ ω ∣ 𝜑} = ∅) → (𝜑 ∨ ¬ 𝜑)) | 
| 42 | 26, 30, 41 | mp2b 8 | 
1
⊢ (𝜑 ∨ ¬ 𝜑) |