ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ctssexmid GIF version

Theorem ctssexmid 7209
Description: The decidability condition in ctssdc 7172 is needed. More specifically, ctssdc 7172 minus that condition, plus the Limited Principle of Omniscience (LPO), implies excluded middle. (Contributed by Jim Kingdon, 15-Aug-2023.)
Hypotheses
Ref Expression
ctssexmid.1 ((𝑦 ⊆ ω ∧ ∃𝑓 𝑓:𝑦onto𝑥) → ∃𝑓 𝑓:ω–onto→(𝑥 ⊔ 1o))
ctssexmid.lpo ω ∈ Omni
Assertion
Ref Expression
ctssexmid (𝜑 ∨ ¬ 𝜑)
Distinct variable group:   𝜑,𝑓,𝑥,𝑦

Proof of Theorem ctssexmid
Dummy variables 𝑤 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ssrab2 3264 . . 3 {𝑧 ∈ ω ∣ 𝜑} ⊆ ω
2 f1oi 5538 . . . 4 ( I ↾ {𝑧 ∈ ω ∣ 𝜑}):{𝑧 ∈ ω ∣ 𝜑}–1-1-onto→{𝑧 ∈ ω ∣ 𝜑}
3 f1ofo 5507 . . . 4 (( I ↾ {𝑧 ∈ ω ∣ 𝜑}):{𝑧 ∈ ω ∣ 𝜑}–1-1-onto→{𝑧 ∈ ω ∣ 𝜑} → ( I ↾ {𝑧 ∈ ω ∣ 𝜑}):{𝑧 ∈ ω ∣ 𝜑}–onto→{𝑧 ∈ ω ∣ 𝜑})
4 ctssexmid.lpo . . . . . . . 8 ω ∈ Omni
54elexi 2772 . . . . . . 7 ω ∈ V
65rabex 4173 . . . . . 6 {𝑧 ∈ ω ∣ 𝜑} ∈ V
7 resiexg 4987 . . . . . 6 ({𝑧 ∈ ω ∣ 𝜑} ∈ V → ( I ↾ {𝑧 ∈ ω ∣ 𝜑}) ∈ V)
86, 7ax-mp 5 . . . . 5 ( I ↾ {𝑧 ∈ ω ∣ 𝜑}) ∈ V
9 foeq1 5472 . . . . 5 (𝑓 = ( I ↾ {𝑧 ∈ ω ∣ 𝜑}) → (𝑓:{𝑧 ∈ ω ∣ 𝜑}–onto→{𝑧 ∈ ω ∣ 𝜑} ↔ ( I ↾ {𝑧 ∈ ω ∣ 𝜑}):{𝑧 ∈ ω ∣ 𝜑}–onto→{𝑧 ∈ ω ∣ 𝜑}))
108, 9spcev 2855 . . . 4 (( I ↾ {𝑧 ∈ ω ∣ 𝜑}):{𝑧 ∈ ω ∣ 𝜑}–onto→{𝑧 ∈ ω ∣ 𝜑} → ∃𝑓 𝑓:{𝑧 ∈ ω ∣ 𝜑}–onto→{𝑧 ∈ ω ∣ 𝜑})
112, 3, 10mp2b 8 . . 3 𝑓 𝑓:{𝑧 ∈ ω ∣ 𝜑}–onto→{𝑧 ∈ ω ∣ 𝜑}
12 simpr 110 . . . . . . 7 ((𝑥 = {𝑧 ∈ ω ∣ 𝜑} ∧ 𝑦 = {𝑧 ∈ ω ∣ 𝜑}) → 𝑦 = {𝑧 ∈ ω ∣ 𝜑})
1312sseq1d 3208 . . . . . 6 ((𝑥 = {𝑧 ∈ ω ∣ 𝜑} ∧ 𝑦 = {𝑧 ∈ ω ∣ 𝜑}) → (𝑦 ⊆ ω ↔ {𝑧 ∈ ω ∣ 𝜑} ⊆ ω))
14 eqidd 2194 . . . . . . . 8 ((𝑥 = {𝑧 ∈ ω ∣ 𝜑} ∧ 𝑦 = {𝑧 ∈ ω ∣ 𝜑}) → 𝑓 = 𝑓)
15 simpl 109 . . . . . . . 8 ((𝑥 = {𝑧 ∈ ω ∣ 𝜑} ∧ 𝑦 = {𝑧 ∈ ω ∣ 𝜑}) → 𝑥 = {𝑧 ∈ ω ∣ 𝜑})
1614, 12, 15foeq123d 5493 . . . . . . 7 ((𝑥 = {𝑧 ∈ ω ∣ 𝜑} ∧ 𝑦 = {𝑧 ∈ ω ∣ 𝜑}) → (𝑓:𝑦onto𝑥𝑓:{𝑧 ∈ ω ∣ 𝜑}–onto→{𝑧 ∈ ω ∣ 𝜑}))
1716exbidv 1836 . . . . . 6 ((𝑥 = {𝑧 ∈ ω ∣ 𝜑} ∧ 𝑦 = {𝑧 ∈ ω ∣ 𝜑}) → (∃𝑓 𝑓:𝑦onto𝑥 ↔ ∃𝑓 𝑓:{𝑧 ∈ ω ∣ 𝜑}–onto→{𝑧 ∈ ω ∣ 𝜑}))
1813, 17anbi12d 473 . . . . 5 ((𝑥 = {𝑧 ∈ ω ∣ 𝜑} ∧ 𝑦 = {𝑧 ∈ ω ∣ 𝜑}) → ((𝑦 ⊆ ω ∧ ∃𝑓 𝑓:𝑦onto𝑥) ↔ ({𝑧 ∈ ω ∣ 𝜑} ⊆ ω ∧ ∃𝑓 𝑓:{𝑧 ∈ ω ∣ 𝜑}–onto→{𝑧 ∈ ω ∣ 𝜑})))
19 djueq1 7099 . . . . . . 7 (𝑥 = {𝑧 ∈ ω ∣ 𝜑} → (𝑥 ⊔ 1o) = ({𝑧 ∈ ω ∣ 𝜑} ⊔ 1o))
20 foeq3 5474 . . . . . . 7 ((𝑥 ⊔ 1o) = ({𝑧 ∈ ω ∣ 𝜑} ⊔ 1o) → (𝑓:ω–onto→(𝑥 ⊔ 1o) ↔ 𝑓:ω–onto→({𝑧 ∈ ω ∣ 𝜑} ⊔ 1o)))
2115, 19, 203syl 17 . . . . . 6 ((𝑥 = {𝑧 ∈ ω ∣ 𝜑} ∧ 𝑦 = {𝑧 ∈ ω ∣ 𝜑}) → (𝑓:ω–onto→(𝑥 ⊔ 1o) ↔ 𝑓:ω–onto→({𝑧 ∈ ω ∣ 𝜑} ⊔ 1o)))
2221exbidv 1836 . . . . 5 ((𝑥 = {𝑧 ∈ ω ∣ 𝜑} ∧ 𝑦 = {𝑧 ∈ ω ∣ 𝜑}) → (∃𝑓 𝑓:ω–onto→(𝑥 ⊔ 1o) ↔ ∃𝑓 𝑓:ω–onto→({𝑧 ∈ ω ∣ 𝜑} ⊔ 1o)))
2318, 22imbi12d 234 . . . 4 ((𝑥 = {𝑧 ∈ ω ∣ 𝜑} ∧ 𝑦 = {𝑧 ∈ ω ∣ 𝜑}) → (((𝑦 ⊆ ω ∧ ∃𝑓 𝑓:𝑦onto𝑥) → ∃𝑓 𝑓:ω–onto→(𝑥 ⊔ 1o)) ↔ (({𝑧 ∈ ω ∣ 𝜑} ⊆ ω ∧ ∃𝑓 𝑓:{𝑧 ∈ ω ∣ 𝜑}–onto→{𝑧 ∈ ω ∣ 𝜑}) → ∃𝑓 𝑓:ω–onto→({𝑧 ∈ ω ∣ 𝜑} ⊔ 1o))))
24 ctssexmid.1 . . . 4 ((𝑦 ⊆ ω ∧ ∃𝑓 𝑓:𝑦onto𝑥) → ∃𝑓 𝑓:ω–onto→(𝑥 ⊔ 1o))
256, 6, 23, 24vtocl2 2815 . . 3 (({𝑧 ∈ ω ∣ 𝜑} ⊆ ω ∧ ∃𝑓 𝑓:{𝑧 ∈ ω ∣ 𝜑}–onto→{𝑧 ∈ ω ∣ 𝜑}) → ∃𝑓 𝑓:ω–onto→({𝑧 ∈ ω ∣ 𝜑} ⊔ 1o))
261, 11, 25mp2an 426 . 2 𝑓 𝑓:ω–onto→({𝑧 ∈ ω ∣ 𝜑} ⊔ 1o)
274a1i 9 . . . 4 (𝑓:ω–onto→({𝑧 ∈ ω ∣ 𝜑} ⊔ 1o) → ω ∈ Omni)
28 id 19 . . . 4 (𝑓:ω–onto→({𝑧 ∈ ω ∣ 𝜑} ⊔ 1o) → 𝑓:ω–onto→({𝑧 ∈ ω ∣ 𝜑} ⊔ 1o))
2927, 28fodjuomni 7208 . . 3 (𝑓:ω–onto→({𝑧 ∈ ω ∣ 𝜑} ⊔ 1o) → (∃𝑤 𝑤 ∈ {𝑧 ∈ ω ∣ 𝜑} ∨ {𝑧 ∈ ω ∣ 𝜑} = ∅))
3029exlimiv 1609 . 2 (∃𝑓 𝑓:ω–onto→({𝑧 ∈ ω ∣ 𝜑} ⊔ 1o) → (∃𝑤 𝑤 ∈ {𝑧 ∈ ω ∣ 𝜑} ∨ {𝑧 ∈ ω ∣ 𝜑} = ∅))
31 biidd 172 . . . . . 6 (𝑧 = 𝑤 → (𝜑𝜑))
3231elrab 2916 . . . . 5 (𝑤 ∈ {𝑧 ∈ ω ∣ 𝜑} ↔ (𝑤 ∈ ω ∧ 𝜑))
3332simprbi 275 . . . 4 (𝑤 ∈ {𝑧 ∈ ω ∣ 𝜑} → 𝜑)
3433exlimiv 1609 . . 3 (∃𝑤 𝑤 ∈ {𝑧 ∈ ω ∣ 𝜑} → 𝜑)
35 rabeq0 3476 . . . 4 ({𝑧 ∈ ω ∣ 𝜑} = ∅ ↔ ∀𝑧 ∈ ω ¬ 𝜑)
36 peano1 4626 . . . . 5 ∅ ∈ ω
37 elex2 2776 . . . . 5 (∅ ∈ ω → ∃𝑢 𝑢 ∈ ω)
38 r19.3rmv 3537 . . . . 5 (∃𝑢 𝑢 ∈ ω → (¬ 𝜑 ↔ ∀𝑧 ∈ ω ¬ 𝜑))
3936, 37, 38mp2b 8 . . . 4 𝜑 ↔ ∀𝑧 ∈ ω ¬ 𝜑)
4035, 39sylbb2 138 . . 3 ({𝑧 ∈ ω ∣ 𝜑} = ∅ → ¬ 𝜑)
4134, 40orim12i 760 . 2 ((∃𝑤 𝑤 ∈ {𝑧 ∈ ω ∣ 𝜑} ∨ {𝑧 ∈ ω ∣ 𝜑} = ∅) → (𝜑 ∨ ¬ 𝜑))
4226, 30, 41mp2b 8 1 (𝜑 ∨ ¬ 𝜑)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wb 105  wo 709   = wceq 1364  wex 1503  wcel 2164  wral 2472  {crab 2476  Vcvv 2760  wss 3153  c0 3446   I cid 4319  ωcom 4622  cres 4661  ontowfo 5252  1-1-ontowf1o 5253  1oc1o 6462  cdju 7096  Omnicomni 7193
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-nul 4155  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-ral 2477  df-rex 2478  df-rab 2481  df-v 2762  df-sbc 2986  df-csb 3081  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3447  df-if 3558  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-int 3871  df-br 4030  df-opab 4091  df-mpt 4092  df-tr 4128  df-id 4324  df-iord 4397  df-on 4399  df-suc 4402  df-iom 4623  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-f1 5259  df-fo 5260  df-f1o 5261  df-fv 5262  df-ov 5921  df-oprab 5922  df-mpo 5923  df-1st 6193  df-2nd 6194  df-1o 6469  df-2o 6470  df-map 6704  df-dju 7097  df-inl 7106  df-inr 7107  df-omni 7194
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator