ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  inuni GIF version

Theorem inuni 4150
Description: The intersection of a union 𝐴 with a class 𝐵 is equal to the union of the intersections of each element of 𝐴 with 𝐵. (Contributed by FL, 24-Mar-2007.)
Assertion
Ref Expression
inuni ( 𝐴𝐵) = {𝑥 ∣ ∃𝑦𝐴 𝑥 = (𝑦𝐵)}
Distinct variable groups:   𝑥,𝐴,𝑦   𝑥,𝐵,𝑦

Proof of Theorem inuni
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 eluni2 3809 . . . . 5 (𝑧 𝐴 ↔ ∃𝑦𝐴 𝑧𝑦)
21anbi1i 458 . . . 4 ((𝑧 𝐴𝑧𝐵) ↔ (∃𝑦𝐴 𝑧𝑦𝑧𝐵))
3 elin 3316 . . . 4 (𝑧 ∈ ( 𝐴𝐵) ↔ (𝑧 𝐴𝑧𝐵))
4 ancom 266 . . . . . . . 8 ((𝑧𝑥 ∧ ∃𝑦𝐴 𝑥 = (𝑦𝐵)) ↔ (∃𝑦𝐴 𝑥 = (𝑦𝐵) ∧ 𝑧𝑥))
5 r19.41v 2631 . . . . . . . 8 (∃𝑦𝐴 (𝑥 = (𝑦𝐵) ∧ 𝑧𝑥) ↔ (∃𝑦𝐴 𝑥 = (𝑦𝐵) ∧ 𝑧𝑥))
64, 5bitr4i 187 . . . . . . 7 ((𝑧𝑥 ∧ ∃𝑦𝐴 𝑥 = (𝑦𝐵)) ↔ ∃𝑦𝐴 (𝑥 = (𝑦𝐵) ∧ 𝑧𝑥))
76exbii 1603 . . . . . 6 (∃𝑥(𝑧𝑥 ∧ ∃𝑦𝐴 𝑥 = (𝑦𝐵)) ↔ ∃𝑥𝑦𝐴 (𝑥 = (𝑦𝐵) ∧ 𝑧𝑥))
8 rexcom4 2758 . . . . . 6 (∃𝑦𝐴𝑥(𝑥 = (𝑦𝐵) ∧ 𝑧𝑥) ↔ ∃𝑥𝑦𝐴 (𝑥 = (𝑦𝐵) ∧ 𝑧𝑥))
97, 8bitr4i 187 . . . . 5 (∃𝑥(𝑧𝑥 ∧ ∃𝑦𝐴 𝑥 = (𝑦𝐵)) ↔ ∃𝑦𝐴𝑥(𝑥 = (𝑦𝐵) ∧ 𝑧𝑥))
10 vex 2738 . . . . . . . . . 10 𝑦 ∈ V
1110inex1 4132 . . . . . . . . 9 (𝑦𝐵) ∈ V
12 eleq2 2239 . . . . . . . . 9 (𝑥 = (𝑦𝐵) → (𝑧𝑥𝑧 ∈ (𝑦𝐵)))
1311, 12ceqsexv 2774 . . . . . . . 8 (∃𝑥(𝑥 = (𝑦𝐵) ∧ 𝑧𝑥) ↔ 𝑧 ∈ (𝑦𝐵))
14 elin 3316 . . . . . . . 8 (𝑧 ∈ (𝑦𝐵) ↔ (𝑧𝑦𝑧𝐵))
1513, 14bitri 184 . . . . . . 7 (∃𝑥(𝑥 = (𝑦𝐵) ∧ 𝑧𝑥) ↔ (𝑧𝑦𝑧𝐵))
1615rexbii 2482 . . . . . 6 (∃𝑦𝐴𝑥(𝑥 = (𝑦𝐵) ∧ 𝑧𝑥) ↔ ∃𝑦𝐴 (𝑧𝑦𝑧𝐵))
17 r19.41v 2631 . . . . . 6 (∃𝑦𝐴 (𝑧𝑦𝑧𝐵) ↔ (∃𝑦𝐴 𝑧𝑦𝑧𝐵))
1816, 17bitri 184 . . . . 5 (∃𝑦𝐴𝑥(𝑥 = (𝑦𝐵) ∧ 𝑧𝑥) ↔ (∃𝑦𝐴 𝑧𝑦𝑧𝐵))
199, 18bitri 184 . . . 4 (∃𝑥(𝑧𝑥 ∧ ∃𝑦𝐴 𝑥 = (𝑦𝐵)) ↔ (∃𝑦𝐴 𝑧𝑦𝑧𝐵))
202, 3, 193bitr4i 212 . . 3 (𝑧 ∈ ( 𝐴𝐵) ↔ ∃𝑥(𝑧𝑥 ∧ ∃𝑦𝐴 𝑥 = (𝑦𝐵)))
21 eluniab 3817 . . 3 (𝑧 {𝑥 ∣ ∃𝑦𝐴 𝑥 = (𝑦𝐵)} ↔ ∃𝑥(𝑧𝑥 ∧ ∃𝑦𝐴 𝑥 = (𝑦𝐵)))
2220, 21bitr4i 187 . 2 (𝑧 ∈ ( 𝐴𝐵) ↔ 𝑧 {𝑥 ∣ ∃𝑦𝐴 𝑥 = (𝑦𝐵)})
2322eqriv 2172 1 ( 𝐴𝐵) = {𝑥 ∣ ∃𝑦𝐴 𝑥 = (𝑦𝐵)}
Colors of variables: wff set class
Syntax hints:  wa 104   = wceq 1353  wex 1490  wcel 2146  {cab 2161  wrex 2454  cin 3126   cuni 3805
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1445  ax-7 1446  ax-gen 1447  ax-ie1 1491  ax-ie2 1492  ax-8 1502  ax-10 1503  ax-11 1504  ax-i12 1505  ax-bndl 1507  ax-4 1508  ax-17 1524  ax-i9 1528  ax-ial 1532  ax-i5r 1533  ax-ext 2157  ax-sep 4116
This theorem depends on definitions:  df-bi 117  df-tru 1356  df-nf 1459  df-sb 1761  df-clab 2162  df-cleq 2168  df-clel 2171  df-nfc 2306  df-rex 2459  df-v 2737  df-in 3133  df-uni 3806
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator