ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  inuni GIF version

Theorem inuni 4040
Description: The intersection of a union 𝐴 with a class 𝐵 is equal to the union of the intersections of each element of 𝐴 with 𝐵. (Contributed by FL, 24-Mar-2007.)
Assertion
Ref Expression
inuni ( 𝐴𝐵) = {𝑥 ∣ ∃𝑦𝐴 𝑥 = (𝑦𝐵)}
Distinct variable groups:   𝑥,𝐴,𝑦   𝑥,𝐵,𝑦

Proof of Theorem inuni
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 eluni2 3706 . . . . 5 (𝑧 𝐴 ↔ ∃𝑦𝐴 𝑧𝑦)
21anbi1i 451 . . . 4 ((𝑧 𝐴𝑧𝐵) ↔ (∃𝑦𝐴 𝑧𝑦𝑧𝐵))
3 elin 3225 . . . 4 (𝑧 ∈ ( 𝐴𝐵) ↔ (𝑧 𝐴𝑧𝐵))
4 ancom 264 . . . . . . . 8 ((𝑧𝑥 ∧ ∃𝑦𝐴 𝑥 = (𝑦𝐵)) ↔ (∃𝑦𝐴 𝑥 = (𝑦𝐵) ∧ 𝑧𝑥))
5 r19.41v 2561 . . . . . . . 8 (∃𝑦𝐴 (𝑥 = (𝑦𝐵) ∧ 𝑧𝑥) ↔ (∃𝑦𝐴 𝑥 = (𝑦𝐵) ∧ 𝑧𝑥))
64, 5bitr4i 186 . . . . . . 7 ((𝑧𝑥 ∧ ∃𝑦𝐴 𝑥 = (𝑦𝐵)) ↔ ∃𝑦𝐴 (𝑥 = (𝑦𝐵) ∧ 𝑧𝑥))
76exbii 1567 . . . . . 6 (∃𝑥(𝑧𝑥 ∧ ∃𝑦𝐴 𝑥 = (𝑦𝐵)) ↔ ∃𝑥𝑦𝐴 (𝑥 = (𝑦𝐵) ∧ 𝑧𝑥))
8 rexcom4 2680 . . . . . 6 (∃𝑦𝐴𝑥(𝑥 = (𝑦𝐵) ∧ 𝑧𝑥) ↔ ∃𝑥𝑦𝐴 (𝑥 = (𝑦𝐵) ∧ 𝑧𝑥))
97, 8bitr4i 186 . . . . 5 (∃𝑥(𝑧𝑥 ∧ ∃𝑦𝐴 𝑥 = (𝑦𝐵)) ↔ ∃𝑦𝐴𝑥(𝑥 = (𝑦𝐵) ∧ 𝑧𝑥))
10 vex 2660 . . . . . . . . . 10 𝑦 ∈ V
1110inex1 4022 . . . . . . . . 9 (𝑦𝐵) ∈ V
12 eleq2 2178 . . . . . . . . 9 (𝑥 = (𝑦𝐵) → (𝑧𝑥𝑧 ∈ (𝑦𝐵)))
1311, 12ceqsexv 2696 . . . . . . . 8 (∃𝑥(𝑥 = (𝑦𝐵) ∧ 𝑧𝑥) ↔ 𝑧 ∈ (𝑦𝐵))
14 elin 3225 . . . . . . . 8 (𝑧 ∈ (𝑦𝐵) ↔ (𝑧𝑦𝑧𝐵))
1513, 14bitri 183 . . . . . . 7 (∃𝑥(𝑥 = (𝑦𝐵) ∧ 𝑧𝑥) ↔ (𝑧𝑦𝑧𝐵))
1615rexbii 2416 . . . . . 6 (∃𝑦𝐴𝑥(𝑥 = (𝑦𝐵) ∧ 𝑧𝑥) ↔ ∃𝑦𝐴 (𝑧𝑦𝑧𝐵))
17 r19.41v 2561 . . . . . 6 (∃𝑦𝐴 (𝑧𝑦𝑧𝐵) ↔ (∃𝑦𝐴 𝑧𝑦𝑧𝐵))
1816, 17bitri 183 . . . . 5 (∃𝑦𝐴𝑥(𝑥 = (𝑦𝐵) ∧ 𝑧𝑥) ↔ (∃𝑦𝐴 𝑧𝑦𝑧𝐵))
199, 18bitri 183 . . . 4 (∃𝑥(𝑧𝑥 ∧ ∃𝑦𝐴 𝑥 = (𝑦𝐵)) ↔ (∃𝑦𝐴 𝑧𝑦𝑧𝐵))
202, 3, 193bitr4i 211 . . 3 (𝑧 ∈ ( 𝐴𝐵) ↔ ∃𝑥(𝑧𝑥 ∧ ∃𝑦𝐴 𝑥 = (𝑦𝐵)))
21 eluniab 3714 . . 3 (𝑧 {𝑥 ∣ ∃𝑦𝐴 𝑥 = (𝑦𝐵)} ↔ ∃𝑥(𝑧𝑥 ∧ ∃𝑦𝐴 𝑥 = (𝑦𝐵)))
2220, 21bitr4i 186 . 2 (𝑧 ∈ ( 𝐴𝐵) ↔ 𝑧 {𝑥 ∣ ∃𝑦𝐴 𝑥 = (𝑦𝐵)})
2322eqriv 2112 1 ( 𝐴𝐵) = {𝑥 ∣ ∃𝑦𝐴 𝑥 = (𝑦𝐵)}
Colors of variables: wff set class
Syntax hints:  wa 103   = wceq 1314  wex 1451  wcel 1463  {cab 2101  wrex 2391  cin 3036   cuni 3702
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 681  ax-5 1406  ax-7 1407  ax-gen 1408  ax-ie1 1452  ax-ie2 1453  ax-8 1465  ax-10 1466  ax-11 1467  ax-i12 1468  ax-bndl 1469  ax-4 1470  ax-17 1489  ax-i9 1493  ax-ial 1497  ax-i5r 1498  ax-ext 2097  ax-sep 4006
This theorem depends on definitions:  df-bi 116  df-tru 1317  df-nf 1420  df-sb 1719  df-clab 2102  df-cleq 2108  df-clel 2111  df-nfc 2244  df-rex 2396  df-v 2659  df-in 3043  df-uni 3703
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator