ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  coiun GIF version

Theorem coiun 5113
Description: Composition with an indexed union. (Contributed by NM, 21-Dec-2008.)
Assertion
Ref Expression
coiun (𝐴 𝑥𝐶 𝐵) = 𝑥𝐶 (𝐴𝐵)
Distinct variable group:   𝑥,𝐴
Allowed substitution hints:   𝐵(𝑥)   𝐶(𝑥)

Proof of Theorem coiun
Dummy variables 𝑤 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 relco 5102 . 2 Rel (𝐴 𝑥𝐶 𝐵)
2 reliun 4725 . . 3 (Rel 𝑥𝐶 (𝐴𝐵) ↔ ∀𝑥𝐶 Rel (𝐴𝐵))
3 relco 5102 . . . 4 Rel (𝐴𝐵)
43a1i 9 . . 3 (𝑥𝐶 → Rel (𝐴𝐵))
52, 4mprgbir 2524 . 2 Rel 𝑥𝐶 (𝐴𝐵)
6 eliun 3870 . . . . . . . 8 (⟨𝑦, 𝑤⟩ ∈ 𝑥𝐶 𝐵 ↔ ∃𝑥𝐶𝑦, 𝑤⟩ ∈ 𝐵)
7 df-br 3983 . . . . . . . 8 (𝑦 𝑥𝐶 𝐵𝑤 ↔ ⟨𝑦, 𝑤⟩ ∈ 𝑥𝐶 𝐵)
8 df-br 3983 . . . . . . . . 9 (𝑦𝐵𝑤 ↔ ⟨𝑦, 𝑤⟩ ∈ 𝐵)
98rexbii 2473 . . . . . . . 8 (∃𝑥𝐶 𝑦𝐵𝑤 ↔ ∃𝑥𝐶𝑦, 𝑤⟩ ∈ 𝐵)
106, 7, 93bitr4i 211 . . . . . . 7 (𝑦 𝑥𝐶 𝐵𝑤 ↔ ∃𝑥𝐶 𝑦𝐵𝑤)
1110anbi1i 454 . . . . . 6 ((𝑦 𝑥𝐶 𝐵𝑤𝑤𝐴𝑧) ↔ (∃𝑥𝐶 𝑦𝐵𝑤𝑤𝐴𝑧))
12 r19.41v 2622 . . . . . 6 (∃𝑥𝐶 (𝑦𝐵𝑤𝑤𝐴𝑧) ↔ (∃𝑥𝐶 𝑦𝐵𝑤𝑤𝐴𝑧))
1311, 12bitr4i 186 . . . . 5 ((𝑦 𝑥𝐶 𝐵𝑤𝑤𝐴𝑧) ↔ ∃𝑥𝐶 (𝑦𝐵𝑤𝑤𝐴𝑧))
1413exbii 1593 . . . 4 (∃𝑤(𝑦 𝑥𝐶 𝐵𝑤𝑤𝐴𝑧) ↔ ∃𝑤𝑥𝐶 (𝑦𝐵𝑤𝑤𝐴𝑧))
15 rexcom4 2749 . . . 4 (∃𝑥𝐶𝑤(𝑦𝐵𝑤𝑤𝐴𝑧) ↔ ∃𝑤𝑥𝐶 (𝑦𝐵𝑤𝑤𝐴𝑧))
1614, 15bitr4i 186 . . 3 (∃𝑤(𝑦 𝑥𝐶 𝐵𝑤𝑤𝐴𝑧) ↔ ∃𝑥𝐶𝑤(𝑦𝐵𝑤𝑤𝐴𝑧))
17 vex 2729 . . . 4 𝑦 ∈ V
18 vex 2729 . . . 4 𝑧 ∈ V
1917, 18opelco 4776 . . 3 (⟨𝑦, 𝑧⟩ ∈ (𝐴 𝑥𝐶 𝐵) ↔ ∃𝑤(𝑦 𝑥𝐶 𝐵𝑤𝑤𝐴𝑧))
20 eliun 3870 . . . 4 (⟨𝑦, 𝑧⟩ ∈ 𝑥𝐶 (𝐴𝐵) ↔ ∃𝑥𝐶𝑦, 𝑧⟩ ∈ (𝐴𝐵))
2117, 18opelco 4776 . . . . 5 (⟨𝑦, 𝑧⟩ ∈ (𝐴𝐵) ↔ ∃𝑤(𝑦𝐵𝑤𝑤𝐴𝑧))
2221rexbii 2473 . . . 4 (∃𝑥𝐶𝑦, 𝑧⟩ ∈ (𝐴𝐵) ↔ ∃𝑥𝐶𝑤(𝑦𝐵𝑤𝑤𝐴𝑧))
2320, 22bitri 183 . . 3 (⟨𝑦, 𝑧⟩ ∈ 𝑥𝐶 (𝐴𝐵) ↔ ∃𝑥𝐶𝑤(𝑦𝐵𝑤𝑤𝐴𝑧))
2416, 19, 233bitr4i 211 . 2 (⟨𝑦, 𝑧⟩ ∈ (𝐴 𝑥𝐶 𝐵) ↔ ⟨𝑦, 𝑧⟩ ∈ 𝑥𝐶 (𝐴𝐵))
251, 5, 24eqrelriiv 4698 1 (𝐴 𝑥𝐶 𝐵) = 𝑥𝐶 (𝐴𝐵)
Colors of variables: wff set class
Syntax hints:  wa 103   = wceq 1343  wex 1480  wcel 2136  wrex 2445  cop 3579   ciun 3866   class class class wbr 3982  ccom 4608  Rel wrel 4609
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153  ax-pr 4187
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ral 2449  df-rex 2450  df-v 2728  df-un 3120  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-iun 3868  df-br 3983  df-opab 4044  df-xp 4610  df-rel 4611  df-co 4613
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator