| Step | Hyp | Ref
| Expression |
| 1 | | fnmap 6714 |
. . 3
⊢
↑𝑚 Fn (V × V) |
| 2 | | mapsnen.1 |
. . 3
⊢ 𝐴 ∈ V |
| 3 | | mapsnen.2 |
. . . 4
⊢ 𝐵 ∈ V |
| 4 | 3 | snex 4218 |
. . 3
⊢ {𝐵} ∈ V |
| 5 | | fnovex 5955 |
. . 3
⊢ ((
↑𝑚 Fn (V × V) ∧ 𝐴 ∈ V ∧ {𝐵} ∈ V) → (𝐴 ↑𝑚 {𝐵}) ∈ V) |
| 6 | 1, 2, 4, 5 | mp3an 1348 |
. 2
⊢ (𝐴 ↑𝑚
{𝐵}) ∈
V |
| 7 | | vex 2766 |
. . . 4
⊢ 𝑧 ∈ V |
| 8 | 7, 3 | fvex 5578 |
. . 3
⊢ (𝑧‘𝐵) ∈ V |
| 9 | 8 | a1i 9 |
. 2
⊢ (𝑧 ∈ (𝐴 ↑𝑚 {𝐵}) → (𝑧‘𝐵) ∈ V) |
| 10 | | vex 2766 |
. . . . 5
⊢ 𝑤 ∈ V |
| 11 | 3, 10 | opex 4262 |
. . . 4
⊢
〈𝐵, 𝑤〉 ∈ V |
| 12 | 11 | snex 4218 |
. . 3
⊢
{〈𝐵, 𝑤〉} ∈
V |
| 13 | 12 | a1i 9 |
. 2
⊢ (𝑤 ∈ 𝐴 → {〈𝐵, 𝑤〉} ∈ V) |
| 14 | 2, 3 | mapsn 6749 |
. . . . . 6
⊢ (𝐴 ↑𝑚
{𝐵}) = {𝑧 ∣ ∃𝑦 ∈ 𝐴 𝑧 = {〈𝐵, 𝑦〉}} |
| 15 | 14 | abeq2i 2307 |
. . . . 5
⊢ (𝑧 ∈ (𝐴 ↑𝑚 {𝐵}) ↔ ∃𝑦 ∈ 𝐴 𝑧 = {〈𝐵, 𝑦〉}) |
| 16 | 15 | anbi1i 458 |
. . . 4
⊢ ((𝑧 ∈ (𝐴 ↑𝑚 {𝐵}) ∧ 𝑤 = (𝑧‘𝐵)) ↔ (∃𝑦 ∈ 𝐴 𝑧 = {〈𝐵, 𝑦〉} ∧ 𝑤 = (𝑧‘𝐵))) |
| 17 | | r19.41v 2653 |
. . . 4
⊢
(∃𝑦 ∈
𝐴 (𝑧 = {〈𝐵, 𝑦〉} ∧ 𝑤 = (𝑧‘𝐵)) ↔ (∃𝑦 ∈ 𝐴 𝑧 = {〈𝐵, 𝑦〉} ∧ 𝑤 = (𝑧‘𝐵))) |
| 18 | | df-rex 2481 |
. . . 4
⊢
(∃𝑦 ∈
𝐴 (𝑧 = {〈𝐵, 𝑦〉} ∧ 𝑤 = (𝑧‘𝐵)) ↔ ∃𝑦(𝑦 ∈ 𝐴 ∧ (𝑧 = {〈𝐵, 𝑦〉} ∧ 𝑤 = (𝑧‘𝐵)))) |
| 19 | 16, 17, 18 | 3bitr2i 208 |
. . 3
⊢ ((𝑧 ∈ (𝐴 ↑𝑚 {𝐵}) ∧ 𝑤 = (𝑧‘𝐵)) ↔ ∃𝑦(𝑦 ∈ 𝐴 ∧ (𝑧 = {〈𝐵, 𝑦〉} ∧ 𝑤 = (𝑧‘𝐵)))) |
| 20 | | fveq1 5557 |
. . . . . . . . . 10
⊢ (𝑧 = {〈𝐵, 𝑦〉} → (𝑧‘𝐵) = ({〈𝐵, 𝑦〉}‘𝐵)) |
| 21 | | vex 2766 |
. . . . . . . . . . 11
⊢ 𝑦 ∈ V |
| 22 | 3, 21 | fvsn 5757 |
. . . . . . . . . 10
⊢
({〈𝐵, 𝑦〉}‘𝐵) = 𝑦 |
| 23 | 20, 22 | eqtrdi 2245 |
. . . . . . . . 9
⊢ (𝑧 = {〈𝐵, 𝑦〉} → (𝑧‘𝐵) = 𝑦) |
| 24 | 23 | eqeq2d 2208 |
. . . . . . . 8
⊢ (𝑧 = {〈𝐵, 𝑦〉} → (𝑤 = (𝑧‘𝐵) ↔ 𝑤 = 𝑦)) |
| 25 | | equcom 1720 |
. . . . . . . 8
⊢ (𝑤 = 𝑦 ↔ 𝑦 = 𝑤) |
| 26 | 24, 25 | bitrdi 196 |
. . . . . . 7
⊢ (𝑧 = {〈𝐵, 𝑦〉} → (𝑤 = (𝑧‘𝐵) ↔ 𝑦 = 𝑤)) |
| 27 | 26 | pm5.32i 454 |
. . . . . 6
⊢ ((𝑧 = {〈𝐵, 𝑦〉} ∧ 𝑤 = (𝑧‘𝐵)) ↔ (𝑧 = {〈𝐵, 𝑦〉} ∧ 𝑦 = 𝑤)) |
| 28 | 27 | anbi2i 457 |
. . . . 5
⊢ ((𝑦 ∈ 𝐴 ∧ (𝑧 = {〈𝐵, 𝑦〉} ∧ 𝑤 = (𝑧‘𝐵))) ↔ (𝑦 ∈ 𝐴 ∧ (𝑧 = {〈𝐵, 𝑦〉} ∧ 𝑦 = 𝑤))) |
| 29 | | anass 401 |
. . . . 5
⊢ (((𝑦 ∈ 𝐴 ∧ 𝑧 = {〈𝐵, 𝑦〉}) ∧ 𝑦 = 𝑤) ↔ (𝑦 ∈ 𝐴 ∧ (𝑧 = {〈𝐵, 𝑦〉} ∧ 𝑦 = 𝑤))) |
| 30 | | ancom 266 |
. . . . 5
⊢ (((𝑦 ∈ 𝐴 ∧ 𝑧 = {〈𝐵, 𝑦〉}) ∧ 𝑦 = 𝑤) ↔ (𝑦 = 𝑤 ∧ (𝑦 ∈ 𝐴 ∧ 𝑧 = {〈𝐵, 𝑦〉}))) |
| 31 | 28, 29, 30 | 3bitr2i 208 |
. . . 4
⊢ ((𝑦 ∈ 𝐴 ∧ (𝑧 = {〈𝐵, 𝑦〉} ∧ 𝑤 = (𝑧‘𝐵))) ↔ (𝑦 = 𝑤 ∧ (𝑦 ∈ 𝐴 ∧ 𝑧 = {〈𝐵, 𝑦〉}))) |
| 32 | 31 | exbii 1619 |
. . 3
⊢
(∃𝑦(𝑦 ∈ 𝐴 ∧ (𝑧 = {〈𝐵, 𝑦〉} ∧ 𝑤 = (𝑧‘𝐵))) ↔ ∃𝑦(𝑦 = 𝑤 ∧ (𝑦 ∈ 𝐴 ∧ 𝑧 = {〈𝐵, 𝑦〉}))) |
| 33 | | eleq1w 2257 |
. . . . 5
⊢ (𝑦 = 𝑤 → (𝑦 ∈ 𝐴 ↔ 𝑤 ∈ 𝐴)) |
| 34 | | opeq2 3809 |
. . . . . . 7
⊢ (𝑦 = 𝑤 → 〈𝐵, 𝑦〉 = 〈𝐵, 𝑤〉) |
| 35 | 34 | sneqd 3635 |
. . . . . 6
⊢ (𝑦 = 𝑤 → {〈𝐵, 𝑦〉} = {〈𝐵, 𝑤〉}) |
| 36 | 35 | eqeq2d 2208 |
. . . . 5
⊢ (𝑦 = 𝑤 → (𝑧 = {〈𝐵, 𝑦〉} ↔ 𝑧 = {〈𝐵, 𝑤〉})) |
| 37 | 33, 36 | anbi12d 473 |
. . . 4
⊢ (𝑦 = 𝑤 → ((𝑦 ∈ 𝐴 ∧ 𝑧 = {〈𝐵, 𝑦〉}) ↔ (𝑤 ∈ 𝐴 ∧ 𝑧 = {〈𝐵, 𝑤〉}))) |
| 38 | 10, 37 | ceqsexv 2802 |
. . 3
⊢
(∃𝑦(𝑦 = 𝑤 ∧ (𝑦 ∈ 𝐴 ∧ 𝑧 = {〈𝐵, 𝑦〉})) ↔ (𝑤 ∈ 𝐴 ∧ 𝑧 = {〈𝐵, 𝑤〉})) |
| 39 | 19, 32, 38 | 3bitri 206 |
. 2
⊢ ((𝑧 ∈ (𝐴 ↑𝑚 {𝐵}) ∧ 𝑤 = (𝑧‘𝐵)) ↔ (𝑤 ∈ 𝐴 ∧ 𝑧 = {〈𝐵, 𝑤〉})) |
| 40 | 6, 2, 9, 13, 39 | en2i 6829 |
1
⊢ (𝐴 ↑𝑚
{𝐵}) ≈ 𝐴 |