ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mapsnen GIF version

Theorem mapsnen 6480
Description: Set exponentiation to a singleton exponent is equinumerous to its base. Exercise 4.43 of [Mendelson] p. 255. (Contributed by NM, 17-Dec-2003.) (Revised by Mario Carneiro, 15-Nov-2014.)
Hypotheses
Ref Expression
mapsnen.1 𝐴 ∈ V
mapsnen.2 𝐵 ∈ V
Assertion
Ref Expression
mapsnen (𝐴𝑚 {𝐵}) ≈ 𝐴

Proof of Theorem mapsnen
Dummy variables 𝑦 𝑤 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fnmap 6364 . . 3 𝑚 Fn (V × V)
2 mapsnen.1 . . 3 𝐴 ∈ V
3 mapsnen.2 . . . 4 𝐵 ∈ V
43snex 3994 . . 3 {𝐵} ∈ V
5 fnovex 5639 . . 3 (( ↑𝑚 Fn (V × V) ∧ 𝐴 ∈ V ∧ {𝐵} ∈ V) → (𝐴𝑚 {𝐵}) ∈ V)
61, 2, 4, 5mp3an 1271 . 2 (𝐴𝑚 {𝐵}) ∈ V
7 vex 2618 . . . 4 𝑧 ∈ V
87, 3fvex 5288 . . 3 (𝑧𝐵) ∈ V
98a1i 9 . 2 (𝑧 ∈ (𝐴𝑚 {𝐵}) → (𝑧𝐵) ∈ V)
10 vex 2618 . . . . 5 𝑤 ∈ V
113, 10opex 4030 . . . 4 𝐵, 𝑤⟩ ∈ V
1211snex 3994 . . 3 {⟨𝐵, 𝑤⟩} ∈ V
1312a1i 9 . 2 (𝑤𝐴 → {⟨𝐵, 𝑤⟩} ∈ V)
142, 3mapsn 6399 . . . . . 6 (𝐴𝑚 {𝐵}) = {𝑧 ∣ ∃𝑦𝐴 𝑧 = {⟨𝐵, 𝑦⟩}}
1514abeq2i 2195 . . . . 5 (𝑧 ∈ (𝐴𝑚 {𝐵}) ↔ ∃𝑦𝐴 𝑧 = {⟨𝐵, 𝑦⟩})
1615anbi1i 446 . . . 4 ((𝑧 ∈ (𝐴𝑚 {𝐵}) ∧ 𝑤 = (𝑧𝐵)) ↔ (∃𝑦𝐴 𝑧 = {⟨𝐵, 𝑦⟩} ∧ 𝑤 = (𝑧𝐵)))
17 r19.41v 2519 . . . 4 (∃𝑦𝐴 (𝑧 = {⟨𝐵, 𝑦⟩} ∧ 𝑤 = (𝑧𝐵)) ↔ (∃𝑦𝐴 𝑧 = {⟨𝐵, 𝑦⟩} ∧ 𝑤 = (𝑧𝐵)))
18 df-rex 2361 . . . 4 (∃𝑦𝐴 (𝑧 = {⟨𝐵, 𝑦⟩} ∧ 𝑤 = (𝑧𝐵)) ↔ ∃𝑦(𝑦𝐴 ∧ (𝑧 = {⟨𝐵, 𝑦⟩} ∧ 𝑤 = (𝑧𝐵))))
1916, 17, 183bitr2i 206 . . 3 ((𝑧 ∈ (𝐴𝑚 {𝐵}) ∧ 𝑤 = (𝑧𝐵)) ↔ ∃𝑦(𝑦𝐴 ∧ (𝑧 = {⟨𝐵, 𝑦⟩} ∧ 𝑤 = (𝑧𝐵))))
20 fveq1 5267 . . . . . . . . . 10 (𝑧 = {⟨𝐵, 𝑦⟩} → (𝑧𝐵) = ({⟨𝐵, 𝑦⟩}‘𝐵))
21 vex 2618 . . . . . . . . . . 11 𝑦 ∈ V
223, 21fvsn 5455 . . . . . . . . . 10 ({⟨𝐵, 𝑦⟩}‘𝐵) = 𝑦
2320, 22syl6eq 2133 . . . . . . . . 9 (𝑧 = {⟨𝐵, 𝑦⟩} → (𝑧𝐵) = 𝑦)
2423eqeq2d 2096 . . . . . . . 8 (𝑧 = {⟨𝐵, 𝑦⟩} → (𝑤 = (𝑧𝐵) ↔ 𝑤 = 𝑦))
25 equcom 1637 . . . . . . . 8 (𝑤 = 𝑦𝑦 = 𝑤)
2624, 25syl6bb 194 . . . . . . 7 (𝑧 = {⟨𝐵, 𝑦⟩} → (𝑤 = (𝑧𝐵) ↔ 𝑦 = 𝑤))
2726pm5.32i 442 . . . . . 6 ((𝑧 = {⟨𝐵, 𝑦⟩} ∧ 𝑤 = (𝑧𝐵)) ↔ (𝑧 = {⟨𝐵, 𝑦⟩} ∧ 𝑦 = 𝑤))
2827anbi2i 445 . . . . 5 ((𝑦𝐴 ∧ (𝑧 = {⟨𝐵, 𝑦⟩} ∧ 𝑤 = (𝑧𝐵))) ↔ (𝑦𝐴 ∧ (𝑧 = {⟨𝐵, 𝑦⟩} ∧ 𝑦 = 𝑤)))
29 anass 393 . . . . 5 (((𝑦𝐴𝑧 = {⟨𝐵, 𝑦⟩}) ∧ 𝑦 = 𝑤) ↔ (𝑦𝐴 ∧ (𝑧 = {⟨𝐵, 𝑦⟩} ∧ 𝑦 = 𝑤)))
30 ancom 262 . . . . 5 (((𝑦𝐴𝑧 = {⟨𝐵, 𝑦⟩}) ∧ 𝑦 = 𝑤) ↔ (𝑦 = 𝑤 ∧ (𝑦𝐴𝑧 = {⟨𝐵, 𝑦⟩})))
3128, 29, 303bitr2i 206 . . . 4 ((𝑦𝐴 ∧ (𝑧 = {⟨𝐵, 𝑦⟩} ∧ 𝑤 = (𝑧𝐵))) ↔ (𝑦 = 𝑤 ∧ (𝑦𝐴𝑧 = {⟨𝐵, 𝑦⟩})))
3231exbii 1539 . . 3 (∃𝑦(𝑦𝐴 ∧ (𝑧 = {⟨𝐵, 𝑦⟩} ∧ 𝑤 = (𝑧𝐵))) ↔ ∃𝑦(𝑦 = 𝑤 ∧ (𝑦𝐴𝑧 = {⟨𝐵, 𝑦⟩})))
33 eleq1w 2145 . . . . 5 (𝑦 = 𝑤 → (𝑦𝐴𝑤𝐴))
34 opeq2 3606 . . . . . . 7 (𝑦 = 𝑤 → ⟨𝐵, 𝑦⟩ = ⟨𝐵, 𝑤⟩)
3534sneqd 3444 . . . . . 6 (𝑦 = 𝑤 → {⟨𝐵, 𝑦⟩} = {⟨𝐵, 𝑤⟩})
3635eqeq2d 2096 . . . . 5 (𝑦 = 𝑤 → (𝑧 = {⟨𝐵, 𝑦⟩} ↔ 𝑧 = {⟨𝐵, 𝑤⟩}))
3733, 36anbi12d 457 . . . 4 (𝑦 = 𝑤 → ((𝑦𝐴𝑧 = {⟨𝐵, 𝑦⟩}) ↔ (𝑤𝐴𝑧 = {⟨𝐵, 𝑤⟩})))
3810, 37ceqsexv 2652 . . 3 (∃𝑦(𝑦 = 𝑤 ∧ (𝑦𝐴𝑧 = {⟨𝐵, 𝑦⟩})) ↔ (𝑤𝐴𝑧 = {⟨𝐵, 𝑤⟩}))
3919, 32, 383bitri 204 . 2 ((𝑧 ∈ (𝐴𝑚 {𝐵}) ∧ 𝑤 = (𝑧𝐵)) ↔ (𝑤𝐴𝑧 = {⟨𝐵, 𝑤⟩}))
406, 2, 9, 13, 39en2i 6439 1 (𝐴𝑚 {𝐵}) ≈ 𝐴
Colors of variables: wff set class
Syntax hints:  wa 102   = wceq 1287  wex 1424  wcel 1436  wrex 2356  Vcvv 2615  {csn 3431  cop 3434   class class class wbr 3820   × cxp 4409   Fn wfn 4976  cfv 4981  (class class class)co 5613  𝑚 cmap 6357  cen 6407
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 577  ax-in2 578  ax-io 663  ax-5 1379  ax-7 1380  ax-gen 1381  ax-ie1 1425  ax-ie2 1426  ax-8 1438  ax-10 1439  ax-11 1440  ax-i12 1441  ax-bndl 1442  ax-4 1443  ax-13 1447  ax-14 1448  ax-17 1462  ax-i9 1466  ax-ial 1470  ax-i5r 1471  ax-ext 2067  ax-sep 3932  ax-pow 3984  ax-pr 4010  ax-un 4234  ax-setind 4326
This theorem depends on definitions:  df-bi 115  df-3an 924  df-tru 1290  df-fal 1293  df-nf 1393  df-sb 1690  df-eu 1948  df-mo 1949  df-clab 2072  df-cleq 2078  df-clel 2081  df-nfc 2214  df-ne 2252  df-ral 2360  df-rex 2361  df-reu 2362  df-rab 2364  df-v 2617  df-sbc 2830  df-csb 2923  df-dif 2990  df-un 2992  df-in 2994  df-ss 3001  df-pw 3417  df-sn 3437  df-pr 3438  df-op 3440  df-uni 3637  df-iun 3715  df-br 3821  df-opab 3875  df-mpt 3876  df-id 4094  df-xp 4417  df-rel 4418  df-cnv 4419  df-co 4420  df-dm 4421  df-rn 4422  df-res 4423  df-ima 4424  df-iota 4946  df-fun 4983  df-fn 4984  df-f 4985  df-f1 4986  df-fo 4987  df-f1o 4988  df-fv 4989  df-ov 5616  df-oprab 5617  df-mpt2 5618  df-1st 5868  df-2nd 5869  df-map 6359  df-en 6410
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator