ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xpiundi GIF version

Theorem xpiundi 4669
Description: Distributive law for cross product over indexed union. (Contributed by Mario Carneiro, 27-Apr-2014.)
Assertion
Ref Expression
xpiundi (𝐶 × 𝑥𝐴 𝐵) = 𝑥𝐴 (𝐶 × 𝐵)
Distinct variable group:   𝑥,𝐶
Allowed substitution hints:   𝐴(𝑥)   𝐵(𝑥)

Proof of Theorem xpiundi
Dummy variables 𝑦 𝑤 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rexcom 2634 . . . 4 (∃𝑤𝐶𝑥𝐴𝑦𝐵 𝑧 = ⟨𝑤, 𝑦⟩ ↔ ∃𝑥𝐴𝑤𝐶𝑦𝐵 𝑧 = ⟨𝑤, 𝑦⟩)
2 eliun 3877 . . . . . . . 8 (𝑦 𝑥𝐴 𝐵 ↔ ∃𝑥𝐴 𝑦𝐵)
32anbi1i 455 . . . . . . 7 ((𝑦 𝑥𝐴 𝐵𝑧 = ⟨𝑤, 𝑦⟩) ↔ (∃𝑥𝐴 𝑦𝐵𝑧 = ⟨𝑤, 𝑦⟩))
43exbii 1598 . . . . . 6 (∃𝑦(𝑦 𝑥𝐴 𝐵𝑧 = ⟨𝑤, 𝑦⟩) ↔ ∃𝑦(∃𝑥𝐴 𝑦𝐵𝑧 = ⟨𝑤, 𝑦⟩))
5 df-rex 2454 . . . . . 6 (∃𝑦 𝑥𝐴 𝐵𝑧 = ⟨𝑤, 𝑦⟩ ↔ ∃𝑦(𝑦 𝑥𝐴 𝐵𝑧 = ⟨𝑤, 𝑦⟩))
6 df-rex 2454 . . . . . . . 8 (∃𝑦𝐵 𝑧 = ⟨𝑤, 𝑦⟩ ↔ ∃𝑦(𝑦𝐵𝑧 = ⟨𝑤, 𝑦⟩))
76rexbii 2477 . . . . . . 7 (∃𝑥𝐴𝑦𝐵 𝑧 = ⟨𝑤, 𝑦⟩ ↔ ∃𝑥𝐴𝑦(𝑦𝐵𝑧 = ⟨𝑤, 𝑦⟩))
8 rexcom4 2753 . . . . . . 7 (∃𝑥𝐴𝑦(𝑦𝐵𝑧 = ⟨𝑤, 𝑦⟩) ↔ ∃𝑦𝑥𝐴 (𝑦𝐵𝑧 = ⟨𝑤, 𝑦⟩))
9 r19.41v 2626 . . . . . . . 8 (∃𝑥𝐴 (𝑦𝐵𝑧 = ⟨𝑤, 𝑦⟩) ↔ (∃𝑥𝐴 𝑦𝐵𝑧 = ⟨𝑤, 𝑦⟩))
109exbii 1598 . . . . . . 7 (∃𝑦𝑥𝐴 (𝑦𝐵𝑧 = ⟨𝑤, 𝑦⟩) ↔ ∃𝑦(∃𝑥𝐴 𝑦𝐵𝑧 = ⟨𝑤, 𝑦⟩))
117, 8, 103bitri 205 . . . . . 6 (∃𝑥𝐴𝑦𝐵 𝑧 = ⟨𝑤, 𝑦⟩ ↔ ∃𝑦(∃𝑥𝐴 𝑦𝐵𝑧 = ⟨𝑤, 𝑦⟩))
124, 5, 113bitr4i 211 . . . . 5 (∃𝑦 𝑥𝐴 𝐵𝑧 = ⟨𝑤, 𝑦⟩ ↔ ∃𝑥𝐴𝑦𝐵 𝑧 = ⟨𝑤, 𝑦⟩)
1312rexbii 2477 . . . 4 (∃𝑤𝐶𝑦 𝑥𝐴 𝐵𝑧 = ⟨𝑤, 𝑦⟩ ↔ ∃𝑤𝐶𝑥𝐴𝑦𝐵 𝑧 = ⟨𝑤, 𝑦⟩)
14 elxp2 4629 . . . . 5 (𝑧 ∈ (𝐶 × 𝐵) ↔ ∃𝑤𝐶𝑦𝐵 𝑧 = ⟨𝑤, 𝑦⟩)
1514rexbii 2477 . . . 4 (∃𝑥𝐴 𝑧 ∈ (𝐶 × 𝐵) ↔ ∃𝑥𝐴𝑤𝐶𝑦𝐵 𝑧 = ⟨𝑤, 𝑦⟩)
161, 13, 153bitr4i 211 . . 3 (∃𝑤𝐶𝑦 𝑥𝐴 𝐵𝑧 = ⟨𝑤, 𝑦⟩ ↔ ∃𝑥𝐴 𝑧 ∈ (𝐶 × 𝐵))
17 elxp2 4629 . . 3 (𝑧 ∈ (𝐶 × 𝑥𝐴 𝐵) ↔ ∃𝑤𝐶𝑦 𝑥𝐴 𝐵𝑧 = ⟨𝑤, 𝑦⟩)
18 eliun 3877 . . 3 (𝑧 𝑥𝐴 (𝐶 × 𝐵) ↔ ∃𝑥𝐴 𝑧 ∈ (𝐶 × 𝐵))
1916, 17, 183bitr4i 211 . 2 (𝑧 ∈ (𝐶 × 𝑥𝐴 𝐵) ↔ 𝑧 𝑥𝐴 (𝐶 × 𝐵))
2019eqriv 2167 1 (𝐶 × 𝑥𝐴 𝐵) = 𝑥𝐴 (𝐶 × 𝐵)
Colors of variables: wff set class
Syntax hints:  wa 103   = wceq 1348  wex 1485  wcel 2141  wrex 2449  cop 3586   ciun 3873   × cxp 4609
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-14 2144  ax-ext 2152  ax-sep 4107  ax-pow 4160  ax-pr 4194
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ral 2453  df-rex 2454  df-v 2732  df-un 3125  df-in 3127  df-ss 3134  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-iun 3875  df-opab 4051  df-xp 4617
This theorem is referenced by:  xpexgALT  6112  txbasval  13061
  Copyright terms: Public domain W3C validator