ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  imaiun GIF version

Theorem imaiun 5728
Description: The image of an indexed union is the indexed union of the images. (Contributed by Mario Carneiro, 18-Jun-2014.)
Assertion
Ref Expression
imaiun (𝐴 𝑥𝐵 𝐶) = 𝑥𝐵 (𝐴𝐶)
Distinct variable group:   𝑥,𝐴
Allowed substitution hints:   𝐵(𝑥)   𝐶(𝑥)

Proof of Theorem imaiun
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rexcom4 2749 . . . 4 (∃𝑥𝐵𝑧(𝑧𝐶 ∧ ⟨𝑧, 𝑦⟩ ∈ 𝐴) ↔ ∃𝑧𝑥𝐵 (𝑧𝐶 ∧ ⟨𝑧, 𝑦⟩ ∈ 𝐴))
2 vex 2729 . . . . . 6 𝑦 ∈ V
32elima3 4953 . . . . 5 (𝑦 ∈ (𝐴𝐶) ↔ ∃𝑧(𝑧𝐶 ∧ ⟨𝑧, 𝑦⟩ ∈ 𝐴))
43rexbii 2473 . . . 4 (∃𝑥𝐵 𝑦 ∈ (𝐴𝐶) ↔ ∃𝑥𝐵𝑧(𝑧𝐶 ∧ ⟨𝑧, 𝑦⟩ ∈ 𝐴))
5 eliun 3870 . . . . . . 7 (𝑧 𝑥𝐵 𝐶 ↔ ∃𝑥𝐵 𝑧𝐶)
65anbi1i 454 . . . . . 6 ((𝑧 𝑥𝐵 𝐶 ∧ ⟨𝑧, 𝑦⟩ ∈ 𝐴) ↔ (∃𝑥𝐵 𝑧𝐶 ∧ ⟨𝑧, 𝑦⟩ ∈ 𝐴))
7 r19.41v 2622 . . . . . 6 (∃𝑥𝐵 (𝑧𝐶 ∧ ⟨𝑧, 𝑦⟩ ∈ 𝐴) ↔ (∃𝑥𝐵 𝑧𝐶 ∧ ⟨𝑧, 𝑦⟩ ∈ 𝐴))
86, 7bitr4i 186 . . . . 5 ((𝑧 𝑥𝐵 𝐶 ∧ ⟨𝑧, 𝑦⟩ ∈ 𝐴) ↔ ∃𝑥𝐵 (𝑧𝐶 ∧ ⟨𝑧, 𝑦⟩ ∈ 𝐴))
98exbii 1593 . . . 4 (∃𝑧(𝑧 𝑥𝐵 𝐶 ∧ ⟨𝑧, 𝑦⟩ ∈ 𝐴) ↔ ∃𝑧𝑥𝐵 (𝑧𝐶 ∧ ⟨𝑧, 𝑦⟩ ∈ 𝐴))
101, 4, 93bitr4ri 212 . . 3 (∃𝑧(𝑧 𝑥𝐵 𝐶 ∧ ⟨𝑧, 𝑦⟩ ∈ 𝐴) ↔ ∃𝑥𝐵 𝑦 ∈ (𝐴𝐶))
112elima3 4953 . . 3 (𝑦 ∈ (𝐴 𝑥𝐵 𝐶) ↔ ∃𝑧(𝑧 𝑥𝐵 𝐶 ∧ ⟨𝑧, 𝑦⟩ ∈ 𝐴))
12 eliun 3870 . . 3 (𝑦 𝑥𝐵 (𝐴𝐶) ↔ ∃𝑥𝐵 𝑦 ∈ (𝐴𝐶))
1310, 11, 123bitr4i 211 . 2 (𝑦 ∈ (𝐴 𝑥𝐵 𝐶) ↔ 𝑦 𝑥𝐵 (𝐴𝐶))
1413eqriv 2162 1 (𝐴 𝑥𝐵 𝐶) = 𝑥𝐵 (𝐴𝐶)
Colors of variables: wff set class
Syntax hints:  wa 103   = wceq 1343  wex 1480  wcel 2136  wrex 2445  cop 3579   ciun 3866  cima 4607
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153  ax-pr 4187
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ral 2449  df-rex 2450  df-v 2728  df-un 3120  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-iun 3868  df-br 3983  df-opab 4044  df-xp 4610  df-cnv 4612  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617
This theorem is referenced by:  imauni  5729  uniqs  6559
  Copyright terms: Public domain W3C validator