![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > imaiun | GIF version |
Description: The image of an indexed union is the indexed union of the images. (Contributed by Mario Carneiro, 18-Jun-2014.) |
Ref | Expression |
---|---|
imaiun | ⊢ (𝐴 “ ∪ 𝑥 ∈ 𝐵 𝐶) = ∪ 𝑥 ∈ 𝐵 (𝐴 “ 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rexcom4 2783 | . . . 4 ⊢ (∃𝑥 ∈ 𝐵 ∃𝑧(𝑧 ∈ 𝐶 ∧ 〈𝑧, 𝑦〉 ∈ 𝐴) ↔ ∃𝑧∃𝑥 ∈ 𝐵 (𝑧 ∈ 𝐶 ∧ 〈𝑧, 𝑦〉 ∈ 𝐴)) | |
2 | vex 2763 | . . . . . 6 ⊢ 𝑦 ∈ V | |
3 | 2 | elima3 5013 | . . . . 5 ⊢ (𝑦 ∈ (𝐴 “ 𝐶) ↔ ∃𝑧(𝑧 ∈ 𝐶 ∧ 〈𝑧, 𝑦〉 ∈ 𝐴)) |
4 | 3 | rexbii 2501 | . . . 4 ⊢ (∃𝑥 ∈ 𝐵 𝑦 ∈ (𝐴 “ 𝐶) ↔ ∃𝑥 ∈ 𝐵 ∃𝑧(𝑧 ∈ 𝐶 ∧ 〈𝑧, 𝑦〉 ∈ 𝐴)) |
5 | eliun 3917 | . . . . . . 7 ⊢ (𝑧 ∈ ∪ 𝑥 ∈ 𝐵 𝐶 ↔ ∃𝑥 ∈ 𝐵 𝑧 ∈ 𝐶) | |
6 | 5 | anbi1i 458 | . . . . . 6 ⊢ ((𝑧 ∈ ∪ 𝑥 ∈ 𝐵 𝐶 ∧ 〈𝑧, 𝑦〉 ∈ 𝐴) ↔ (∃𝑥 ∈ 𝐵 𝑧 ∈ 𝐶 ∧ 〈𝑧, 𝑦〉 ∈ 𝐴)) |
7 | r19.41v 2650 | . . . . . 6 ⊢ (∃𝑥 ∈ 𝐵 (𝑧 ∈ 𝐶 ∧ 〈𝑧, 𝑦〉 ∈ 𝐴) ↔ (∃𝑥 ∈ 𝐵 𝑧 ∈ 𝐶 ∧ 〈𝑧, 𝑦〉 ∈ 𝐴)) | |
8 | 6, 7 | bitr4i 187 | . . . . 5 ⊢ ((𝑧 ∈ ∪ 𝑥 ∈ 𝐵 𝐶 ∧ 〈𝑧, 𝑦〉 ∈ 𝐴) ↔ ∃𝑥 ∈ 𝐵 (𝑧 ∈ 𝐶 ∧ 〈𝑧, 𝑦〉 ∈ 𝐴)) |
9 | 8 | exbii 1616 | . . . 4 ⊢ (∃𝑧(𝑧 ∈ ∪ 𝑥 ∈ 𝐵 𝐶 ∧ 〈𝑧, 𝑦〉 ∈ 𝐴) ↔ ∃𝑧∃𝑥 ∈ 𝐵 (𝑧 ∈ 𝐶 ∧ 〈𝑧, 𝑦〉 ∈ 𝐴)) |
10 | 1, 4, 9 | 3bitr4ri 213 | . . 3 ⊢ (∃𝑧(𝑧 ∈ ∪ 𝑥 ∈ 𝐵 𝐶 ∧ 〈𝑧, 𝑦〉 ∈ 𝐴) ↔ ∃𝑥 ∈ 𝐵 𝑦 ∈ (𝐴 “ 𝐶)) |
11 | 2 | elima3 5013 | . . 3 ⊢ (𝑦 ∈ (𝐴 “ ∪ 𝑥 ∈ 𝐵 𝐶) ↔ ∃𝑧(𝑧 ∈ ∪ 𝑥 ∈ 𝐵 𝐶 ∧ 〈𝑧, 𝑦〉 ∈ 𝐴)) |
12 | eliun 3917 | . . 3 ⊢ (𝑦 ∈ ∪ 𝑥 ∈ 𝐵 (𝐴 “ 𝐶) ↔ ∃𝑥 ∈ 𝐵 𝑦 ∈ (𝐴 “ 𝐶)) | |
13 | 10, 11, 12 | 3bitr4i 212 | . 2 ⊢ (𝑦 ∈ (𝐴 “ ∪ 𝑥 ∈ 𝐵 𝐶) ↔ 𝑦 ∈ ∪ 𝑥 ∈ 𝐵 (𝐴 “ 𝐶)) |
14 | 13 | eqriv 2190 | 1 ⊢ (𝐴 “ ∪ 𝑥 ∈ 𝐵 𝐶) = ∪ 𝑥 ∈ 𝐵 (𝐴 “ 𝐶) |
Colors of variables: wff set class |
Syntax hints: ∧ wa 104 = wceq 1364 ∃wex 1503 ∈ wcel 2164 ∃wrex 2473 〈cop 3622 ∪ ciun 3913 “ cima 4663 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-14 2167 ax-ext 2175 ax-sep 4148 ax-pow 4204 ax-pr 4239 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ral 2477 df-rex 2478 df-v 2762 df-un 3158 df-in 3160 df-ss 3167 df-pw 3604 df-sn 3625 df-pr 3626 df-op 3628 df-iun 3915 df-br 4031 df-opab 4092 df-xp 4666 df-cnv 4668 df-dm 4670 df-rn 4671 df-res 4672 df-ima 4673 |
This theorem is referenced by: imauni 5805 uniqs 6649 |
Copyright terms: Public domain | W3C validator |