ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  iunxiun GIF version

Theorem iunxiun 4008
Description: Separate an indexed union in the index of an indexed union. (Contributed by Mario Carneiro, 5-Dec-2016.)
Assertion
Ref Expression
iunxiun 𝑥 𝑦𝐴 𝐵𝐶 = 𝑦𝐴 𝑥𝐵 𝐶
Distinct variable groups:   𝑥,𝑦   𝑥,𝐴   𝑦,𝐶
Allowed substitution hints:   𝐴(𝑦)   𝐵(𝑥,𝑦)   𝐶(𝑥)

Proof of Theorem iunxiun
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 eliun 3930 . . . . . . . 8 (𝑥 𝑦𝐴 𝐵 ↔ ∃𝑦𝐴 𝑥𝐵)
21anbi1i 458 . . . . . . 7 ((𝑥 𝑦𝐴 𝐵𝑧𝐶) ↔ (∃𝑦𝐴 𝑥𝐵𝑧𝐶))
3 r19.41v 2661 . . . . . . 7 (∃𝑦𝐴 (𝑥𝐵𝑧𝐶) ↔ (∃𝑦𝐴 𝑥𝐵𝑧𝐶))
42, 3bitr4i 187 . . . . . 6 ((𝑥 𝑦𝐴 𝐵𝑧𝐶) ↔ ∃𝑦𝐴 (𝑥𝐵𝑧𝐶))
54exbii 1627 . . . . 5 (∃𝑥(𝑥 𝑦𝐴 𝐵𝑧𝐶) ↔ ∃𝑥𝑦𝐴 (𝑥𝐵𝑧𝐶))
6 rexcom4 2794 . . . . 5 (∃𝑦𝐴𝑥(𝑥𝐵𝑧𝐶) ↔ ∃𝑥𝑦𝐴 (𝑥𝐵𝑧𝐶))
75, 6bitr4i 187 . . . 4 (∃𝑥(𝑥 𝑦𝐴 𝐵𝑧𝐶) ↔ ∃𝑦𝐴𝑥(𝑥𝐵𝑧𝐶))
8 df-rex 2489 . . . 4 (∃𝑥 𝑦𝐴 𝐵𝑧𝐶 ↔ ∃𝑥(𝑥 𝑦𝐴 𝐵𝑧𝐶))
9 eliun 3930 . . . . . 6 (𝑧 𝑥𝐵 𝐶 ↔ ∃𝑥𝐵 𝑧𝐶)
10 df-rex 2489 . . . . . 6 (∃𝑥𝐵 𝑧𝐶 ↔ ∃𝑥(𝑥𝐵𝑧𝐶))
119, 10bitri 184 . . . . 5 (𝑧 𝑥𝐵 𝐶 ↔ ∃𝑥(𝑥𝐵𝑧𝐶))
1211rexbii 2512 . . . 4 (∃𝑦𝐴 𝑧 𝑥𝐵 𝐶 ↔ ∃𝑦𝐴𝑥(𝑥𝐵𝑧𝐶))
137, 8, 123bitr4i 212 . . 3 (∃𝑥 𝑦𝐴 𝐵𝑧𝐶 ↔ ∃𝑦𝐴 𝑧 𝑥𝐵 𝐶)
14 eliun 3930 . . 3 (𝑧 𝑥 𝑦𝐴 𝐵𝐶 ↔ ∃𝑥 𝑦𝐴 𝐵𝑧𝐶)
15 eliun 3930 . . 3 (𝑧 𝑦𝐴 𝑥𝐵 𝐶 ↔ ∃𝑦𝐴 𝑧 𝑥𝐵 𝐶)
1613, 14, 153bitr4i 212 . 2 (𝑧 𝑥 𝑦𝐴 𝐵𝐶𝑧 𝑦𝐴 𝑥𝐵 𝐶)
1716eqriv 2201 1 𝑥 𝑦𝐴 𝐵𝐶 = 𝑦𝐴 𝑥𝐵 𝐶
Colors of variables: wff set class
Syntax hints:  wa 104   = wceq 1372  wex 1514  wcel 2175  wrex 2484   ciun 3926
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-ext 2186
This theorem depends on definitions:  df-bi 117  df-tru 1375  df-nf 1483  df-sb 1785  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ral 2488  df-rex 2489  df-v 2773  df-iun 3928
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator