ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  iunxiun GIF version

Theorem iunxiun 3998
Description: Separate an indexed union in the index of an indexed union. (Contributed by Mario Carneiro, 5-Dec-2016.)
Assertion
Ref Expression
iunxiun 𝑥 𝑦𝐴 𝐵𝐶 = 𝑦𝐴 𝑥𝐵 𝐶
Distinct variable groups:   𝑥,𝑦   𝑥,𝐴   𝑦,𝐶
Allowed substitution hints:   𝐴(𝑦)   𝐵(𝑥,𝑦)   𝐶(𝑥)

Proof of Theorem iunxiun
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 eliun 3920 . . . . . . . 8 (𝑥 𝑦𝐴 𝐵 ↔ ∃𝑦𝐴 𝑥𝐵)
21anbi1i 458 . . . . . . 7 ((𝑥 𝑦𝐴 𝐵𝑧𝐶) ↔ (∃𝑦𝐴 𝑥𝐵𝑧𝐶))
3 r19.41v 2653 . . . . . . 7 (∃𝑦𝐴 (𝑥𝐵𝑧𝐶) ↔ (∃𝑦𝐴 𝑥𝐵𝑧𝐶))
42, 3bitr4i 187 . . . . . 6 ((𝑥 𝑦𝐴 𝐵𝑧𝐶) ↔ ∃𝑦𝐴 (𝑥𝐵𝑧𝐶))
54exbii 1619 . . . . 5 (∃𝑥(𝑥 𝑦𝐴 𝐵𝑧𝐶) ↔ ∃𝑥𝑦𝐴 (𝑥𝐵𝑧𝐶))
6 rexcom4 2786 . . . . 5 (∃𝑦𝐴𝑥(𝑥𝐵𝑧𝐶) ↔ ∃𝑥𝑦𝐴 (𝑥𝐵𝑧𝐶))
75, 6bitr4i 187 . . . 4 (∃𝑥(𝑥 𝑦𝐴 𝐵𝑧𝐶) ↔ ∃𝑦𝐴𝑥(𝑥𝐵𝑧𝐶))
8 df-rex 2481 . . . 4 (∃𝑥 𝑦𝐴 𝐵𝑧𝐶 ↔ ∃𝑥(𝑥 𝑦𝐴 𝐵𝑧𝐶))
9 eliun 3920 . . . . . 6 (𝑧 𝑥𝐵 𝐶 ↔ ∃𝑥𝐵 𝑧𝐶)
10 df-rex 2481 . . . . . 6 (∃𝑥𝐵 𝑧𝐶 ↔ ∃𝑥(𝑥𝐵𝑧𝐶))
119, 10bitri 184 . . . . 5 (𝑧 𝑥𝐵 𝐶 ↔ ∃𝑥(𝑥𝐵𝑧𝐶))
1211rexbii 2504 . . . 4 (∃𝑦𝐴 𝑧 𝑥𝐵 𝐶 ↔ ∃𝑦𝐴𝑥(𝑥𝐵𝑧𝐶))
137, 8, 123bitr4i 212 . . 3 (∃𝑥 𝑦𝐴 𝐵𝑧𝐶 ↔ ∃𝑦𝐴 𝑧 𝑥𝐵 𝐶)
14 eliun 3920 . . 3 (𝑧 𝑥 𝑦𝐴 𝐵𝐶 ↔ ∃𝑥 𝑦𝐴 𝐵𝑧𝐶)
15 eliun 3920 . . 3 (𝑧 𝑦𝐴 𝑥𝐵 𝐶 ↔ ∃𝑦𝐴 𝑧 𝑥𝐵 𝐶)
1613, 14, 153bitr4i 212 . 2 (𝑧 𝑥 𝑦𝐴 𝐵𝐶𝑧 𝑦𝐴 𝑥𝐵 𝐶)
1716eqriv 2193 1 𝑥 𝑦𝐴 𝐵𝐶 = 𝑦𝐴 𝑥𝐵 𝐶
Colors of variables: wff set class
Syntax hints:  wa 104   = wceq 1364  wex 1506  wcel 2167  wrex 2476   ciun 3916
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-v 2765  df-iun 3918
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator