ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  imaco GIF version

Theorem imaco 5114
Description: Image of the composition of two classes. (Contributed by Jason Orendorff, 12-Dec-2006.)
Assertion
Ref Expression
imaco ((𝐴𝐵) “ 𝐶) = (𝐴 “ (𝐵𝐶))

Proof of Theorem imaco
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-rex 2454 . . 3 (∃𝑦 ∈ (𝐵𝐶)𝑦𝐴𝑥 ↔ ∃𝑦(𝑦 ∈ (𝐵𝐶) ∧ 𝑦𝐴𝑥))
2 vex 2733 . . . 4 𝑥 ∈ V
32elima 4956 . . 3 (𝑥 ∈ (𝐴 “ (𝐵𝐶)) ↔ ∃𝑦 ∈ (𝐵𝐶)𝑦𝐴𝑥)
4 rexcom4 2753 . . . . 5 (∃𝑧𝐶𝑦(𝑧𝐵𝑦𝑦𝐴𝑥) ↔ ∃𝑦𝑧𝐶 (𝑧𝐵𝑦𝑦𝐴𝑥))
5 r19.41v 2626 . . . . . 6 (∃𝑧𝐶 (𝑧𝐵𝑦𝑦𝐴𝑥) ↔ (∃𝑧𝐶 𝑧𝐵𝑦𝑦𝐴𝑥))
65exbii 1598 . . . . 5 (∃𝑦𝑧𝐶 (𝑧𝐵𝑦𝑦𝐴𝑥) ↔ ∃𝑦(∃𝑧𝐶 𝑧𝐵𝑦𝑦𝐴𝑥))
74, 6bitri 183 . . . 4 (∃𝑧𝐶𝑦(𝑧𝐵𝑦𝑦𝐴𝑥) ↔ ∃𝑦(∃𝑧𝐶 𝑧𝐵𝑦𝑦𝐴𝑥))
82elima 4956 . . . . 5 (𝑥 ∈ ((𝐴𝐵) “ 𝐶) ↔ ∃𝑧𝐶 𝑧(𝐴𝐵)𝑥)
9 vex 2733 . . . . . . 7 𝑧 ∈ V
109, 2brco 4780 . . . . . 6 (𝑧(𝐴𝐵)𝑥 ↔ ∃𝑦(𝑧𝐵𝑦𝑦𝐴𝑥))
1110rexbii 2477 . . . . 5 (∃𝑧𝐶 𝑧(𝐴𝐵)𝑥 ↔ ∃𝑧𝐶𝑦(𝑧𝐵𝑦𝑦𝐴𝑥))
128, 11bitri 183 . . . 4 (𝑥 ∈ ((𝐴𝐵) “ 𝐶) ↔ ∃𝑧𝐶𝑦(𝑧𝐵𝑦𝑦𝐴𝑥))
13 vex 2733 . . . . . . 7 𝑦 ∈ V
1413elima 4956 . . . . . 6 (𝑦 ∈ (𝐵𝐶) ↔ ∃𝑧𝐶 𝑧𝐵𝑦)
1514anbi1i 455 . . . . 5 ((𝑦 ∈ (𝐵𝐶) ∧ 𝑦𝐴𝑥) ↔ (∃𝑧𝐶 𝑧𝐵𝑦𝑦𝐴𝑥))
1615exbii 1598 . . . 4 (∃𝑦(𝑦 ∈ (𝐵𝐶) ∧ 𝑦𝐴𝑥) ↔ ∃𝑦(∃𝑧𝐶 𝑧𝐵𝑦𝑦𝐴𝑥))
177, 12, 163bitr4i 211 . . 3 (𝑥 ∈ ((𝐴𝐵) “ 𝐶) ↔ ∃𝑦(𝑦 ∈ (𝐵𝐶) ∧ 𝑦𝐴𝑥))
181, 3, 173bitr4ri 212 . 2 (𝑥 ∈ ((𝐴𝐵) “ 𝐶) ↔ 𝑥 ∈ (𝐴 “ (𝐵𝐶)))
1918eqriv 2167 1 ((𝐴𝐵) “ 𝐶) = (𝐴 “ (𝐵𝐶))
Colors of variables: wff set class
Syntax hints:  wa 103   = wceq 1348  wex 1485  wcel 2141  wrex 2449   class class class wbr 3987  cima 4612  ccom 4613
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-14 2144  ax-ext 2152  ax-sep 4105  ax-pow 4158  ax-pr 4192
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ral 2453  df-rex 2454  df-v 2732  df-un 3125  df-in 3127  df-ss 3134  df-pw 3566  df-sn 3587  df-pr 3588  df-op 3590  df-br 3988  df-opab 4049  df-xp 4615  df-cnv 4617  df-co 4618  df-dm 4619  df-rn 4620  df-res 4621  df-ima 4622
This theorem is referenced by:  fvco2  5563  cnco  12974  cnptopco  12975
  Copyright terms: Public domain W3C validator