| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > imaco | GIF version | ||
| Description: Image of the composition of two classes. (Contributed by Jason Orendorff, 12-Dec-2006.) |
| Ref | Expression |
|---|---|
| imaco | ⊢ ((𝐴 ∘ 𝐵) “ 𝐶) = (𝐴 “ (𝐵 “ 𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-rex 2514 | . . 3 ⊢ (∃𝑦 ∈ (𝐵 “ 𝐶)𝑦𝐴𝑥 ↔ ∃𝑦(𝑦 ∈ (𝐵 “ 𝐶) ∧ 𝑦𝐴𝑥)) | |
| 2 | vex 2802 | . . . 4 ⊢ 𝑥 ∈ V | |
| 3 | 2 | elima 5073 | . . 3 ⊢ (𝑥 ∈ (𝐴 “ (𝐵 “ 𝐶)) ↔ ∃𝑦 ∈ (𝐵 “ 𝐶)𝑦𝐴𝑥) |
| 4 | rexcom4 2823 | . . . . 5 ⊢ (∃𝑧 ∈ 𝐶 ∃𝑦(𝑧𝐵𝑦 ∧ 𝑦𝐴𝑥) ↔ ∃𝑦∃𝑧 ∈ 𝐶 (𝑧𝐵𝑦 ∧ 𝑦𝐴𝑥)) | |
| 5 | r19.41v 2687 | . . . . . 6 ⊢ (∃𝑧 ∈ 𝐶 (𝑧𝐵𝑦 ∧ 𝑦𝐴𝑥) ↔ (∃𝑧 ∈ 𝐶 𝑧𝐵𝑦 ∧ 𝑦𝐴𝑥)) | |
| 6 | 5 | exbii 1651 | . . . . 5 ⊢ (∃𝑦∃𝑧 ∈ 𝐶 (𝑧𝐵𝑦 ∧ 𝑦𝐴𝑥) ↔ ∃𝑦(∃𝑧 ∈ 𝐶 𝑧𝐵𝑦 ∧ 𝑦𝐴𝑥)) |
| 7 | 4, 6 | bitri 184 | . . . 4 ⊢ (∃𝑧 ∈ 𝐶 ∃𝑦(𝑧𝐵𝑦 ∧ 𝑦𝐴𝑥) ↔ ∃𝑦(∃𝑧 ∈ 𝐶 𝑧𝐵𝑦 ∧ 𝑦𝐴𝑥)) |
| 8 | 2 | elima 5073 | . . . . 5 ⊢ (𝑥 ∈ ((𝐴 ∘ 𝐵) “ 𝐶) ↔ ∃𝑧 ∈ 𝐶 𝑧(𝐴 ∘ 𝐵)𝑥) |
| 9 | vex 2802 | . . . . . . 7 ⊢ 𝑧 ∈ V | |
| 10 | 9, 2 | brco 4893 | . . . . . 6 ⊢ (𝑧(𝐴 ∘ 𝐵)𝑥 ↔ ∃𝑦(𝑧𝐵𝑦 ∧ 𝑦𝐴𝑥)) |
| 11 | 10 | rexbii 2537 | . . . . 5 ⊢ (∃𝑧 ∈ 𝐶 𝑧(𝐴 ∘ 𝐵)𝑥 ↔ ∃𝑧 ∈ 𝐶 ∃𝑦(𝑧𝐵𝑦 ∧ 𝑦𝐴𝑥)) |
| 12 | 8, 11 | bitri 184 | . . . 4 ⊢ (𝑥 ∈ ((𝐴 ∘ 𝐵) “ 𝐶) ↔ ∃𝑧 ∈ 𝐶 ∃𝑦(𝑧𝐵𝑦 ∧ 𝑦𝐴𝑥)) |
| 13 | vex 2802 | . . . . . . 7 ⊢ 𝑦 ∈ V | |
| 14 | 13 | elima 5073 | . . . . . 6 ⊢ (𝑦 ∈ (𝐵 “ 𝐶) ↔ ∃𝑧 ∈ 𝐶 𝑧𝐵𝑦) |
| 15 | 14 | anbi1i 458 | . . . . 5 ⊢ ((𝑦 ∈ (𝐵 “ 𝐶) ∧ 𝑦𝐴𝑥) ↔ (∃𝑧 ∈ 𝐶 𝑧𝐵𝑦 ∧ 𝑦𝐴𝑥)) |
| 16 | 15 | exbii 1651 | . . . 4 ⊢ (∃𝑦(𝑦 ∈ (𝐵 “ 𝐶) ∧ 𝑦𝐴𝑥) ↔ ∃𝑦(∃𝑧 ∈ 𝐶 𝑧𝐵𝑦 ∧ 𝑦𝐴𝑥)) |
| 17 | 7, 12, 16 | 3bitr4i 212 | . . 3 ⊢ (𝑥 ∈ ((𝐴 ∘ 𝐵) “ 𝐶) ↔ ∃𝑦(𝑦 ∈ (𝐵 “ 𝐶) ∧ 𝑦𝐴𝑥)) |
| 18 | 1, 3, 17 | 3bitr4ri 213 | . 2 ⊢ (𝑥 ∈ ((𝐴 ∘ 𝐵) “ 𝐶) ↔ 𝑥 ∈ (𝐴 “ (𝐵 “ 𝐶))) |
| 19 | 18 | eqriv 2226 | 1 ⊢ ((𝐴 ∘ 𝐵) “ 𝐶) = (𝐴 “ (𝐵 “ 𝐶)) |
| Colors of variables: wff set class |
| Syntax hints: ∧ wa 104 = wceq 1395 ∃wex 1538 ∈ wcel 2200 ∃wrex 2509 class class class wbr 4083 “ cima 4722 ∘ ccom 4723 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-14 2203 ax-ext 2211 ax-sep 4202 ax-pow 4258 ax-pr 4293 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-v 2801 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-br 4084 df-opab 4146 df-xp 4725 df-cnv 4727 df-co 4728 df-dm 4729 df-rn 4730 df-res 4731 df-ima 4732 |
| This theorem is referenced by: fvco2 5705 cnco 14903 cnptopco 14904 |
| Copyright terms: Public domain | W3C validator |