ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  lcmgcdlem GIF version

Theorem lcmgcdlem 12112
Description: Lemma for lcmgcd 12113 and lcmdvds 12114. Prove them for positive 𝑀, 𝑁, and 𝐾. (Contributed by Steve Rodriguez, 20-Jan-2020.) (Proof shortened by AV, 16-Sep-2020.)
Assertion
Ref Expression
lcmgcdlem ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (((𝑀 lcm 𝑁) · (𝑀 gcd 𝑁)) = (abs‘(𝑀 · 𝑁)) ∧ ((𝐾 ∈ ℕ ∧ (𝑀𝐾𝑁𝐾)) → (𝑀 lcm 𝑁) ∥ 𝐾)))

Proof of Theorem lcmgcdlem
Dummy variables 𝑛 𝑓 𝑔 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nnmulcl 8971 . . . . 5 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (𝑀 · 𝑁) ∈ ℕ)
21nnred 8963 . . . 4 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (𝑀 · 𝑁) ∈ ℝ)
3 nnz 9303 . . . . . . 7 (𝑀 ∈ ℕ → 𝑀 ∈ ℤ)
43adantr 276 . . . . . 6 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → 𝑀 ∈ ℤ)
54zred 9406 . . . . 5 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → 𝑀 ∈ ℝ)
6 nnz 9303 . . . . . . 7 (𝑁 ∈ ℕ → 𝑁 ∈ ℤ)
76adantl 277 . . . . . 6 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → 𝑁 ∈ ℤ)
87zred 9406 . . . . 5 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → 𝑁 ∈ ℝ)
9 0red 7989 . . . . . . 7 (𝑀 ∈ ℕ → 0 ∈ ℝ)
10 nnre 8957 . . . . . . 7 (𝑀 ∈ ℕ → 𝑀 ∈ ℝ)
11 nngt0 8975 . . . . . . 7 (𝑀 ∈ ℕ → 0 < 𝑀)
129, 10, 11ltled 8107 . . . . . 6 (𝑀 ∈ ℕ → 0 ≤ 𝑀)
1312adantr 276 . . . . 5 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → 0 ≤ 𝑀)
14 0red 7989 . . . . . . 7 (𝑁 ∈ ℕ → 0 ∈ ℝ)
15 nnre 8957 . . . . . . 7 (𝑁 ∈ ℕ → 𝑁 ∈ ℝ)
16 nngt0 8975 . . . . . . 7 (𝑁 ∈ ℕ → 0 < 𝑁)
1714, 15, 16ltled 8107 . . . . . 6 (𝑁 ∈ ℕ → 0 ≤ 𝑁)
1817adantl 277 . . . . 5 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → 0 ≤ 𝑁)
195, 8, 13, 18mulge0d 8609 . . . 4 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → 0 ≤ (𝑀 · 𝑁))
202, 19absidd 11211 . . 3 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (abs‘(𝑀 · 𝑁)) = (𝑀 · 𝑁))
213, 6anim12i 338 . . . . . 6 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))
22 nnne0 8978 . . . . . . . . 9 (𝑀 ∈ ℕ → 𝑀 ≠ 0)
2322neneqd 2381 . . . . . . . 8 (𝑀 ∈ ℕ → ¬ 𝑀 = 0)
24 nnne0 8978 . . . . . . . . 9 (𝑁 ∈ ℕ → 𝑁 ≠ 0)
2524neneqd 2381 . . . . . . . 8 (𝑁 ∈ ℕ → ¬ 𝑁 = 0)
2623, 25anim12i 338 . . . . . . 7 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (¬ 𝑀 = 0 ∧ ¬ 𝑁 = 0))
27 ioran 753 . . . . . . 7 (¬ (𝑀 = 0 ∨ 𝑁 = 0) ↔ (¬ 𝑀 = 0 ∧ ¬ 𝑁 = 0))
2826, 27sylibr 134 . . . . . 6 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → ¬ (𝑀 = 0 ∨ 𝑁 = 0))
29 lcmn0val 12101 . . . . . 6 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ (𝑀 = 0 ∨ 𝑁 = 0)) → (𝑀 lcm 𝑁) = inf({𝑥 ∈ ℕ ∣ (𝑀𝑥𝑁𝑥)}, ℝ, < ))
3021, 28, 29syl2anc 411 . . . . 5 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (𝑀 lcm 𝑁) = inf({𝑥 ∈ ℕ ∣ (𝑀𝑥𝑁𝑥)}, ℝ, < ))
31 lttri3 8068 . . . . . . 7 ((𝑓 ∈ ℝ ∧ 𝑔 ∈ ℝ) → (𝑓 = 𝑔 ↔ (¬ 𝑓 < 𝑔 ∧ ¬ 𝑔 < 𝑓)))
3231adantl 277 . . . . . 6 (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ (𝑓 ∈ ℝ ∧ 𝑔 ∈ ℝ)) → (𝑓 = 𝑔 ↔ (¬ 𝑓 < 𝑔 ∧ ¬ 𝑔 < 𝑓)))
33 gcddvds 11999 . . . . . . . . . . 11 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝑀 gcd 𝑁) ∥ 𝑀 ∧ (𝑀 gcd 𝑁) ∥ 𝑁))
3433simpld 112 . . . . . . . . . 10 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 gcd 𝑁) ∥ 𝑀)
35 gcdcl 12002 . . . . . . . . . . . 12 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 gcd 𝑁) ∈ ℕ0)
3635nn0zd 9404 . . . . . . . . . . 11 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 gcd 𝑁) ∈ ℤ)
37 dvdsmultr1 11873 . . . . . . . . . . . 12 (((𝑀 gcd 𝑁) ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝑀 gcd 𝑁) ∥ 𝑀 → (𝑀 gcd 𝑁) ∥ (𝑀 · 𝑁)))
38373expb 1206 . . . . . . . . . . 11 (((𝑀 gcd 𝑁) ∈ ℤ ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → ((𝑀 gcd 𝑁) ∥ 𝑀 → (𝑀 gcd 𝑁) ∥ (𝑀 · 𝑁)))
3936, 38mpancom 422 . . . . . . . . . 10 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝑀 gcd 𝑁) ∥ 𝑀 → (𝑀 gcd 𝑁) ∥ (𝑀 · 𝑁)))
4034, 39mpd 13 . . . . . . . . 9 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 gcd 𝑁) ∥ (𝑀 · 𝑁))
4121, 40syl 14 . . . . . . . 8 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (𝑀 gcd 𝑁) ∥ (𝑀 · 𝑁))
42 gcdnncl 12003 . . . . . . . . 9 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (𝑀 gcd 𝑁) ∈ ℕ)
43 nndivdvds 11838 . . . . . . . . 9 (((𝑀 · 𝑁) ∈ ℕ ∧ (𝑀 gcd 𝑁) ∈ ℕ) → ((𝑀 gcd 𝑁) ∥ (𝑀 · 𝑁) ↔ ((𝑀 · 𝑁) / (𝑀 gcd 𝑁)) ∈ ℕ))
441, 42, 43syl2anc 411 . . . . . . . 8 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → ((𝑀 gcd 𝑁) ∥ (𝑀 · 𝑁) ↔ ((𝑀 · 𝑁) / (𝑀 gcd 𝑁)) ∈ ℕ))
4541, 44mpbid 147 . . . . . . 7 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → ((𝑀 · 𝑁) / (𝑀 gcd 𝑁)) ∈ ℕ)
4645nnred 8963 . . . . . 6 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → ((𝑀 · 𝑁) / (𝑀 gcd 𝑁)) ∈ ℝ)
4733simprd 114 . . . . . . . . . . . 12 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 gcd 𝑁) ∥ 𝑁)
4821, 47syl 14 . . . . . . . . . . 11 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (𝑀 gcd 𝑁) ∥ 𝑁)
4921, 36syl 14 . . . . . . . . . . . 12 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (𝑀 gcd 𝑁) ∈ ℤ)
5042nnne0d 8995 . . . . . . . . . . . 12 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (𝑀 gcd 𝑁) ≠ 0)
51 dvdsval2 11832 . . . . . . . . . . . 12 (((𝑀 gcd 𝑁) ∈ ℤ ∧ (𝑀 gcd 𝑁) ≠ 0 ∧ 𝑁 ∈ ℤ) → ((𝑀 gcd 𝑁) ∥ 𝑁 ↔ (𝑁 / (𝑀 gcd 𝑁)) ∈ ℤ))
5249, 50, 7, 51syl3anc 1249 . . . . . . . . . . 11 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → ((𝑀 gcd 𝑁) ∥ 𝑁 ↔ (𝑁 / (𝑀 gcd 𝑁)) ∈ ℤ))
5348, 52mpbid 147 . . . . . . . . . 10 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (𝑁 / (𝑀 gcd 𝑁)) ∈ ℤ)
54 dvdsmul1 11855 . . . . . . . . . 10 ((𝑀 ∈ ℤ ∧ (𝑁 / (𝑀 gcd 𝑁)) ∈ ℤ) → 𝑀 ∥ (𝑀 · (𝑁 / (𝑀 gcd 𝑁))))
554, 53, 54syl2anc 411 . . . . . . . . 9 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → 𝑀 ∥ (𝑀 · (𝑁 / (𝑀 gcd 𝑁))))
56 nncn 8958 . . . . . . . . . . 11 (𝑀 ∈ ℕ → 𝑀 ∈ ℂ)
5756adantr 276 . . . . . . . . . 10 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → 𝑀 ∈ ℂ)
58 nncn 8958 . . . . . . . . . . 11 (𝑁 ∈ ℕ → 𝑁 ∈ ℂ)
5958adantl 277 . . . . . . . . . 10 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → 𝑁 ∈ ℂ)
6042nncnd 8964 . . . . . . . . . 10 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (𝑀 gcd 𝑁) ∈ ℂ)
6142nnap0d 8996 . . . . . . . . . 10 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (𝑀 gcd 𝑁) # 0)
6257, 59, 60, 61divassapd 8814 . . . . . . . . 9 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → ((𝑀 · 𝑁) / (𝑀 gcd 𝑁)) = (𝑀 · (𝑁 / (𝑀 gcd 𝑁))))
6355, 62breqtrrd 4046 . . . . . . . 8 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → 𝑀 ∥ ((𝑀 · 𝑁) / (𝑀 gcd 𝑁)))
6421, 34syl 14 . . . . . . . . . . 11 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (𝑀 gcd 𝑁) ∥ 𝑀)
65 dvdsval2 11832 . . . . . . . . . . . 12 (((𝑀 gcd 𝑁) ∈ ℤ ∧ (𝑀 gcd 𝑁) ≠ 0 ∧ 𝑀 ∈ ℤ) → ((𝑀 gcd 𝑁) ∥ 𝑀 ↔ (𝑀 / (𝑀 gcd 𝑁)) ∈ ℤ))
6649, 50, 4, 65syl3anc 1249 . . . . . . . . . . 11 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → ((𝑀 gcd 𝑁) ∥ 𝑀 ↔ (𝑀 / (𝑀 gcd 𝑁)) ∈ ℤ))
6764, 66mpbid 147 . . . . . . . . . 10 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (𝑀 / (𝑀 gcd 𝑁)) ∈ ℤ)
68 dvdsmul1 11855 . . . . . . . . . 10 ((𝑁 ∈ ℤ ∧ (𝑀 / (𝑀 gcd 𝑁)) ∈ ℤ) → 𝑁 ∥ (𝑁 · (𝑀 / (𝑀 gcd 𝑁))))
697, 67, 68syl2anc 411 . . . . . . . . 9 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → 𝑁 ∥ (𝑁 · (𝑀 / (𝑀 gcd 𝑁))))
7057, 59mulcomd 8010 . . . . . . . . . . 11 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (𝑀 · 𝑁) = (𝑁 · 𝑀))
7170oveq1d 5912 . . . . . . . . . 10 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → ((𝑀 · 𝑁) / (𝑀 gcd 𝑁)) = ((𝑁 · 𝑀) / (𝑀 gcd 𝑁)))
7259, 57, 60, 61divassapd 8814 . . . . . . . . . 10 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → ((𝑁 · 𝑀) / (𝑀 gcd 𝑁)) = (𝑁 · (𝑀 / (𝑀 gcd 𝑁))))
7371, 72eqtrd 2222 . . . . . . . . 9 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → ((𝑀 · 𝑁) / (𝑀 gcd 𝑁)) = (𝑁 · (𝑀 / (𝑀 gcd 𝑁))))
7469, 73breqtrrd 4046 . . . . . . . 8 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → 𝑁 ∥ ((𝑀 · 𝑁) / (𝑀 gcd 𝑁)))
7563, 74jca 306 . . . . . . 7 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (𝑀 ∥ ((𝑀 · 𝑁) / (𝑀 gcd 𝑁)) ∧ 𝑁 ∥ ((𝑀 · 𝑁) / (𝑀 gcd 𝑁))))
76 breq2 4022 . . . . . . . . 9 (𝑥 = ((𝑀 · 𝑁) / (𝑀 gcd 𝑁)) → (𝑀𝑥𝑀 ∥ ((𝑀 · 𝑁) / (𝑀 gcd 𝑁))))
77 breq2 4022 . . . . . . . . 9 (𝑥 = ((𝑀 · 𝑁) / (𝑀 gcd 𝑁)) → (𝑁𝑥𝑁 ∥ ((𝑀 · 𝑁) / (𝑀 gcd 𝑁))))
7876, 77anbi12d 473 . . . . . . . 8 (𝑥 = ((𝑀 · 𝑁) / (𝑀 gcd 𝑁)) → ((𝑀𝑥𝑁𝑥) ↔ (𝑀 ∥ ((𝑀 · 𝑁) / (𝑀 gcd 𝑁)) ∧ 𝑁 ∥ ((𝑀 · 𝑁) / (𝑀 gcd 𝑁)))))
7978elrab 2908 . . . . . . 7 (((𝑀 · 𝑁) / (𝑀 gcd 𝑁)) ∈ {𝑥 ∈ ℕ ∣ (𝑀𝑥𝑁𝑥)} ↔ (((𝑀 · 𝑁) / (𝑀 gcd 𝑁)) ∈ ℕ ∧ (𝑀 ∥ ((𝑀 · 𝑁) / (𝑀 gcd 𝑁)) ∧ 𝑁 ∥ ((𝑀 · 𝑁) / (𝑀 gcd 𝑁)))))
8045, 75, 79sylanbrc 417 . . . . . 6 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → ((𝑀 · 𝑁) / (𝑀 gcd 𝑁)) ∈ {𝑥 ∈ ℕ ∣ (𝑀𝑥𝑁𝑥)})
8146adantr 276 . . . . . . 7 (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ 𝑛 ∈ {𝑥 ∈ ℕ ∣ (𝑀𝑥𝑁𝑥)}) → ((𝑀 · 𝑁) / (𝑀 gcd 𝑁)) ∈ ℝ)
82 elrabi 2905 . . . . . . . . 9 (𝑛 ∈ {𝑥 ∈ ℕ ∣ (𝑀𝑥𝑁𝑥)} → 𝑛 ∈ ℕ)
8382nnred 8963 . . . . . . . 8 (𝑛 ∈ {𝑥 ∈ ℕ ∣ (𝑀𝑥𝑁𝑥)} → 𝑛 ∈ ℝ)
8483adantl 277 . . . . . . 7 (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ 𝑛 ∈ {𝑥 ∈ ℕ ∣ (𝑀𝑥𝑁𝑥)}) → 𝑛 ∈ ℝ)
85 breq2 4022 . . . . . . . . . 10 (𝑥 = 𝑛 → (𝑀𝑥𝑀𝑛))
86 breq2 4022 . . . . . . . . . 10 (𝑥 = 𝑛 → (𝑁𝑥𝑁𝑛))
8785, 86anbi12d 473 . . . . . . . . 9 (𝑥 = 𝑛 → ((𝑀𝑥𝑁𝑥) ↔ (𝑀𝑛𝑁𝑛)))
8887elrab 2908 . . . . . . . 8 (𝑛 ∈ {𝑥 ∈ ℕ ∣ (𝑀𝑥𝑁𝑥)} ↔ (𝑛 ∈ ℕ ∧ (𝑀𝑛𝑁𝑛)))
89 bezout 12047 . . . . . . . . . . . . 13 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ (𝑀 gcd 𝑁) = ((𝑀 · 𝑥) + (𝑁 · 𝑦)))
9021, 89syl 14 . . . . . . . . . . . 12 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ (𝑀 gcd 𝑁) = ((𝑀 · 𝑥) + (𝑁 · 𝑦)))
9190adantr 276 . . . . . . . . . . 11 (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ (𝑛 ∈ ℕ ∧ (𝑀𝑛𝑁𝑛))) → ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ (𝑀 gcd 𝑁) = ((𝑀 · 𝑥) + (𝑁 · 𝑦)))
92 nncn 8958 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑛 ∈ ℕ → 𝑛 ∈ ℂ)
9392ad2antlr 489 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ 𝑛 ∈ ℕ) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → 𝑛 ∈ ℂ)
941nncnd 8964 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (𝑀 · 𝑁) ∈ ℂ)
9594ad2antrr 488 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ 𝑛 ∈ ℕ) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → (𝑀 · 𝑁) ∈ ℂ)
9660ad2antrr 488 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ 𝑛 ∈ ℕ) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → (𝑀 gcd 𝑁) ∈ ℂ)
9757ad2antrr 488 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ 𝑛 ∈ ℕ) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → 𝑀 ∈ ℂ)
9858ad3antlr 493 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ 𝑛 ∈ ℕ) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → 𝑁 ∈ ℂ)
99 simplll 533 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ 𝑛 ∈ ℕ) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → 𝑀 ∈ ℕ)
10099nnap0d 8996 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ 𝑛 ∈ ℕ) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → 𝑀 # 0)
101 simpllr 534 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ 𝑛 ∈ ℕ) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → 𝑁 ∈ ℕ)
102101nnap0d 8996 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ 𝑛 ∈ ℕ) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → 𝑁 # 0)
10397, 98, 100, 102mulap0d 8646 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ 𝑛 ∈ ℕ) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → (𝑀 · 𝑁) # 0)
10461ad2antrr 488 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ 𝑛 ∈ ℕ) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → (𝑀 gcd 𝑁) # 0)
10593, 95, 96, 103, 104divdivap2d 8811 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ 𝑛 ∈ ℕ) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → (𝑛 / ((𝑀 · 𝑁) / (𝑀 gcd 𝑁))) = ((𝑛 · (𝑀 gcd 𝑁)) / (𝑀 · 𝑁)))
106105adantr 276 . . . . . . . . . . . . . . . . . . . . 21 (((((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ 𝑛 ∈ ℕ) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) ∧ (𝑀 gcd 𝑁) = ((𝑀 · 𝑥) + (𝑁 · 𝑦))) → (𝑛 / ((𝑀 · 𝑁) / (𝑀 gcd 𝑁))) = ((𝑛 · (𝑀 gcd 𝑁)) / (𝑀 · 𝑁)))
107 oveq2 5905 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑀 gcd 𝑁) = ((𝑀 · 𝑥) + (𝑁 · 𝑦)) → (𝑛 · (𝑀 gcd 𝑁)) = (𝑛 · ((𝑀 · 𝑥) + (𝑁 · 𝑦))))
108107oveq1d 5912 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑀 gcd 𝑁) = ((𝑀 · 𝑥) + (𝑁 · 𝑦)) → ((𝑛 · (𝑀 gcd 𝑁)) / (𝑀 · 𝑁)) = ((𝑛 · ((𝑀 · 𝑥) + (𝑁 · 𝑦))) / (𝑀 · 𝑁)))
109 zcn 9289 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑥 ∈ ℤ → 𝑥 ∈ ℂ)
110109ad2antrl 490 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ 𝑛 ∈ ℕ) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → 𝑥 ∈ ℂ)
11197, 110mulcld 8009 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ 𝑛 ∈ ℕ) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → (𝑀 · 𝑥) ∈ ℂ)
112 zcn 9289 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑦 ∈ ℤ → 𝑦 ∈ ℂ)
113112ad2antll 491 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ 𝑛 ∈ ℕ) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → 𝑦 ∈ ℂ)
11498, 113mulcld 8009 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ 𝑛 ∈ ℕ) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → (𝑁 · 𝑦) ∈ ℂ)
11593, 111, 114adddid 8013 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ 𝑛 ∈ ℕ) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → (𝑛 · ((𝑀 · 𝑥) + (𝑁 · 𝑦))) = ((𝑛 · (𝑀 · 𝑥)) + (𝑛 · (𝑁 · 𝑦))))
116115oveq1d 5912 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ 𝑛 ∈ ℕ) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → ((𝑛 · ((𝑀 · 𝑥) + (𝑁 · 𝑦))) / (𝑀 · 𝑁)) = (((𝑛 · (𝑀 · 𝑥)) + (𝑛 · (𝑁 · 𝑦))) / (𝑀 · 𝑁)))
11793, 111mulcld 8009 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ 𝑛 ∈ ℕ) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → (𝑛 · (𝑀 · 𝑥)) ∈ ℂ)
11893, 114mulcld 8009 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ 𝑛 ∈ ℕ) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → (𝑛 · (𝑁 · 𝑦)) ∈ ℂ)
119117, 118, 95, 103divdirapd 8817 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ 𝑛 ∈ ℕ) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → (((𝑛 · (𝑀 · 𝑥)) + (𝑛 · (𝑁 · 𝑦))) / (𝑀 · 𝑁)) = (((𝑛 · (𝑀 · 𝑥)) / (𝑀 · 𝑁)) + ((𝑛 · (𝑁 · 𝑦)) / (𝑀 · 𝑁))))
120116, 119eqtrd 2222 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ 𝑛 ∈ ℕ) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → ((𝑛 · ((𝑀 · 𝑥) + (𝑁 · 𝑦))) / (𝑀 · 𝑁)) = (((𝑛 · (𝑀 · 𝑥)) / (𝑀 · 𝑁)) + ((𝑛 · (𝑁 · 𝑦)) / (𝑀 · 𝑁))))
121108, 120sylan9eqr 2244 . . . . . . . . . . . . . . . . . . . . 21 (((((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ 𝑛 ∈ ℕ) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) ∧ (𝑀 gcd 𝑁) = ((𝑀 · 𝑥) + (𝑁 · 𝑦))) → ((𝑛 · (𝑀 gcd 𝑁)) / (𝑀 · 𝑁)) = (((𝑛 · (𝑀 · 𝑥)) / (𝑀 · 𝑁)) + ((𝑛 · (𝑁 · 𝑦)) / (𝑀 · 𝑁))))
12293, 97, 110mul12d 8140 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ 𝑛 ∈ ℕ) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → (𝑛 · (𝑀 · 𝑥)) = (𝑀 · (𝑛 · 𝑥)))
123122oveq1d 5912 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ 𝑛 ∈ ℕ) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → ((𝑛 · (𝑀 · 𝑥)) / (𝑀 · 𝑁)) = ((𝑀 · (𝑛 · 𝑥)) / (𝑀 · 𝑁)))
12493, 110mulcld 8009 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ 𝑛 ∈ ℕ) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → (𝑛 · 𝑥) ∈ ℂ)
125124, 98, 97, 102, 100divcanap5d 8805 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ 𝑛 ∈ ℕ) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → ((𝑀 · (𝑛 · 𝑥)) / (𝑀 · 𝑁)) = ((𝑛 · 𝑥) / 𝑁))
126123, 125eqtrd 2222 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ 𝑛 ∈ ℕ) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → ((𝑛 · (𝑀 · 𝑥)) / (𝑀 · 𝑁)) = ((𝑛 · 𝑥) / 𝑁))
12793, 98, 113mul12d 8140 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ 𝑛 ∈ ℕ) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → (𝑛 · (𝑁 · 𝑦)) = (𝑁 · (𝑛 · 𝑦)))
128127oveq1d 5912 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ 𝑛 ∈ ℕ) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → ((𝑛 · (𝑁 · 𝑦)) / (𝑀 · 𝑁)) = ((𝑁 · (𝑛 · 𝑦)) / (𝑀 · 𝑁)))
12970ad2antrr 488 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ 𝑛 ∈ ℕ) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → (𝑀 · 𝑁) = (𝑁 · 𝑀))
130129oveq2d 5913 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ 𝑛 ∈ ℕ) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → ((𝑁 · (𝑛 · 𝑦)) / (𝑀 · 𝑁)) = ((𝑁 · (𝑛 · 𝑦)) / (𝑁 · 𝑀)))
13193, 113mulcld 8009 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ 𝑛 ∈ ℕ) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → (𝑛 · 𝑦) ∈ ℂ)
132131, 97, 98, 100, 102divcanap5d 8805 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ 𝑛 ∈ ℕ) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → ((𝑁 · (𝑛 · 𝑦)) / (𝑁 · 𝑀)) = ((𝑛 · 𝑦) / 𝑀))
133128, 130, 1323eqtrd 2226 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ 𝑛 ∈ ℕ) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → ((𝑛 · (𝑁 · 𝑦)) / (𝑀 · 𝑁)) = ((𝑛 · 𝑦) / 𝑀))
134126, 133oveq12d 5915 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ 𝑛 ∈ ℕ) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → (((𝑛 · (𝑀 · 𝑥)) / (𝑀 · 𝑁)) + ((𝑛 · (𝑁 · 𝑦)) / (𝑀 · 𝑁))) = (((𝑛 · 𝑥) / 𝑁) + ((𝑛 · 𝑦) / 𝑀)))
135134adantr 276 . . . . . . . . . . . . . . . . . . . . 21 (((((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ 𝑛 ∈ ℕ) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) ∧ (𝑀 gcd 𝑁) = ((𝑀 · 𝑥) + (𝑁 · 𝑦))) → (((𝑛 · (𝑀 · 𝑥)) / (𝑀 · 𝑁)) + ((𝑛 · (𝑁 · 𝑦)) / (𝑀 · 𝑁))) = (((𝑛 · 𝑥) / 𝑁) + ((𝑛 · 𝑦) / 𝑀)))
136106, 121, 1353eqtrd 2226 . . . . . . . . . . . . . . . . . . . 20 (((((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ 𝑛 ∈ ℕ) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) ∧ (𝑀 gcd 𝑁) = ((𝑀 · 𝑥) + (𝑁 · 𝑦))) → (𝑛 / ((𝑀 · 𝑁) / (𝑀 gcd 𝑁))) = (((𝑛 · 𝑥) / 𝑁) + ((𝑛 · 𝑦) / 𝑀)))
137136ex 115 . . . . . . . . . . . . . . . . . . 19 ((((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ 𝑛 ∈ ℕ) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → ((𝑀 gcd 𝑁) = ((𝑀 · 𝑥) + (𝑁 · 𝑦)) → (𝑛 / ((𝑀 · 𝑁) / (𝑀 gcd 𝑁))) = (((𝑛 · 𝑥) / 𝑁) + ((𝑛 · 𝑦) / 𝑀))))
138137adantlrr 483 . . . . . . . . . . . . . . . . . 18 ((((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ (𝑛 ∈ ℕ ∧ (𝑀𝑛𝑁𝑛))) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → ((𝑀 gcd 𝑁) = ((𝑀 · 𝑥) + (𝑁 · 𝑦)) → (𝑛 / ((𝑀 · 𝑁) / (𝑀 gcd 𝑁))) = (((𝑛 · 𝑥) / 𝑁) + ((𝑛 · 𝑦) / 𝑀))))
139138imp 124 . . . . . . . . . . . . . . . . 17 (((((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ (𝑛 ∈ ℕ ∧ (𝑀𝑛𝑁𝑛))) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) ∧ (𝑀 gcd 𝑁) = ((𝑀 · 𝑥) + (𝑁 · 𝑦))) → (𝑛 / ((𝑀 · 𝑁) / (𝑀 gcd 𝑁))) = (((𝑛 · 𝑥) / 𝑁) + ((𝑛 · 𝑦) / 𝑀)))
1406ad3antlr 493 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ 𝑛 ∈ ℕ) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → 𝑁 ∈ ℤ)
141 nnz 9303 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑛 ∈ ℕ → 𝑛 ∈ ℤ)
142141ad2antlr 489 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ 𝑛 ∈ ℕ) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → 𝑛 ∈ ℤ)
143 simprl 529 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ 𝑛 ∈ ℕ) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → 𝑥 ∈ ℤ)
144 dvdsmultr1 11873 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑁 ∈ ℤ ∧ 𝑛 ∈ ℤ ∧ 𝑥 ∈ ℤ) → (𝑁𝑛𝑁 ∥ (𝑛 · 𝑥)))
145140, 142, 143, 144syl3anc 1249 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ 𝑛 ∈ ℕ) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → (𝑁𝑛𝑁 ∥ (𝑛 · 𝑥)))
14624ad3antlr 493 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ 𝑛 ∈ ℕ) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → 𝑁 ≠ 0)
147142, 143zmulcld 9412 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ 𝑛 ∈ ℕ) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → (𝑛 · 𝑥) ∈ ℤ)
148 dvdsval2 11832 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑁 ∈ ℤ ∧ 𝑁 ≠ 0 ∧ (𝑛 · 𝑥) ∈ ℤ) → (𝑁 ∥ (𝑛 · 𝑥) ↔ ((𝑛 · 𝑥) / 𝑁) ∈ ℤ))
149140, 146, 147, 148syl3anc 1249 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ 𝑛 ∈ ℕ) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → (𝑁 ∥ (𝑛 · 𝑥) ↔ ((𝑛 · 𝑥) / 𝑁) ∈ ℤ))
150145, 149sylibd 149 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ 𝑛 ∈ ℕ) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → (𝑁𝑛 → ((𝑛 · 𝑥) / 𝑁) ∈ ℤ))
151150adantld 278 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ 𝑛 ∈ ℕ) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → ((𝑀𝑛𝑁𝑛) → ((𝑛 · 𝑥) / 𝑁) ∈ ℤ))
1521513impia 1202 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ 𝑛 ∈ ℕ) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) ∧ (𝑀𝑛𝑁𝑛)) → ((𝑛 · 𝑥) / 𝑁) ∈ ℤ)
1533ad3antrrr 492 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ 𝑛 ∈ ℕ) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → 𝑀 ∈ ℤ)
154 simprr 531 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ 𝑛 ∈ ℕ) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → 𝑦 ∈ ℤ)
155 dvdsmultr1 11873 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑀 ∈ ℤ ∧ 𝑛 ∈ ℤ ∧ 𝑦 ∈ ℤ) → (𝑀𝑛𝑀 ∥ (𝑛 · 𝑦)))
156153, 142, 154, 155syl3anc 1249 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ 𝑛 ∈ ℕ) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → (𝑀𝑛𝑀 ∥ (𝑛 · 𝑦)))
15722ad3antrrr 492 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ 𝑛 ∈ ℕ) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → 𝑀 ≠ 0)
158142, 154zmulcld 9412 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ 𝑛 ∈ ℕ) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → (𝑛 · 𝑦) ∈ ℤ)
159 dvdsval2 11832 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑀 ∈ ℤ ∧ 𝑀 ≠ 0 ∧ (𝑛 · 𝑦) ∈ ℤ) → (𝑀 ∥ (𝑛 · 𝑦) ↔ ((𝑛 · 𝑦) / 𝑀) ∈ ℤ))
160153, 157, 158, 159syl3anc 1249 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ 𝑛 ∈ ℕ) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → (𝑀 ∥ (𝑛 · 𝑦) ↔ ((𝑛 · 𝑦) / 𝑀) ∈ ℤ))
161156, 160sylibd 149 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ 𝑛 ∈ ℕ) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → (𝑀𝑛 → ((𝑛 · 𝑦) / 𝑀) ∈ ℤ))
162161adantrd 279 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ 𝑛 ∈ ℕ) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → ((𝑀𝑛𝑁𝑛) → ((𝑛 · 𝑦) / 𝑀) ∈ ℤ))
1631623impia 1202 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ 𝑛 ∈ ℕ) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) ∧ (𝑀𝑛𝑁𝑛)) → ((𝑛 · 𝑦) / 𝑀) ∈ ℤ)
164152, 163zaddcld 9410 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ 𝑛 ∈ ℕ) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) ∧ (𝑀𝑛𝑁𝑛)) → (((𝑛 · 𝑥) / 𝑁) + ((𝑛 · 𝑦) / 𝑀)) ∈ ℤ)
1651643expia 1207 . . . . . . . . . . . . . . . . . . . . 21 ((((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ 𝑛 ∈ ℕ) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → ((𝑀𝑛𝑁𝑛) → (((𝑛 · 𝑥) / 𝑁) + ((𝑛 · 𝑦) / 𝑀)) ∈ ℤ))
166165an32s 568 . . . . . . . . . . . . . . . . . . . 20 ((((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) ∧ 𝑛 ∈ ℕ) → ((𝑀𝑛𝑁𝑛) → (((𝑛 · 𝑥) / 𝑁) + ((𝑛 · 𝑦) / 𝑀)) ∈ ℤ))
167166impr 379 . . . . . . . . . . . . . . . . . . 19 ((((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) ∧ (𝑛 ∈ ℕ ∧ (𝑀𝑛𝑁𝑛))) → (((𝑛 · 𝑥) / 𝑁) + ((𝑛 · 𝑦) / 𝑀)) ∈ ℤ)
168167an32s 568 . . . . . . . . . . . . . . . . . 18 ((((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ (𝑛 ∈ ℕ ∧ (𝑀𝑛𝑁𝑛))) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → (((𝑛 · 𝑥) / 𝑁) + ((𝑛 · 𝑦) / 𝑀)) ∈ ℤ)
169168adantr 276 . . . . . . . . . . . . . . . . 17 (((((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ (𝑛 ∈ ℕ ∧ (𝑀𝑛𝑁𝑛))) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) ∧ (𝑀 gcd 𝑁) = ((𝑀 · 𝑥) + (𝑁 · 𝑦))) → (((𝑛 · 𝑥) / 𝑁) + ((𝑛 · 𝑦) / 𝑀)) ∈ ℤ)
170139, 169eqeltrd 2266 . . . . . . . . . . . . . . . 16 (((((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ (𝑛 ∈ ℕ ∧ (𝑀𝑛𝑁𝑛))) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) ∧ (𝑀 gcd 𝑁) = ((𝑀 · 𝑥) + (𝑁 · 𝑦))) → (𝑛 / ((𝑀 · 𝑁) / (𝑀 gcd 𝑁))) ∈ ℤ)
17145nnzd 9405 . . . . . . . . . . . . . . . . . . 19 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → ((𝑀 · 𝑁) / (𝑀 gcd 𝑁)) ∈ ℤ)
172171ad2antrr 488 . . . . . . . . . . . . . . . . . 18 ((((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ (𝑛 ∈ ℕ ∧ (𝑀𝑛𝑁𝑛))) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → ((𝑀 · 𝑁) / (𝑀 gcd 𝑁)) ∈ ℤ)
17345nnne0d 8995 . . . . . . . . . . . . . . . . . . 19 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → ((𝑀 · 𝑁) / (𝑀 gcd 𝑁)) ≠ 0)
174173ad2antrr 488 . . . . . . . . . . . . . . . . . 18 ((((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ (𝑛 ∈ ℕ ∧ (𝑀𝑛𝑁𝑛))) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → ((𝑀 · 𝑁) / (𝑀 gcd 𝑁)) ≠ 0)
175142adantlrr 483 . . . . . . . . . . . . . . . . . 18 ((((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ (𝑛 ∈ ℕ ∧ (𝑀𝑛𝑁𝑛))) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → 𝑛 ∈ ℤ)
176 dvdsval2 11832 . . . . . . . . . . . . . . . . . 18 ((((𝑀 · 𝑁) / (𝑀 gcd 𝑁)) ∈ ℤ ∧ ((𝑀 · 𝑁) / (𝑀 gcd 𝑁)) ≠ 0 ∧ 𝑛 ∈ ℤ) → (((𝑀 · 𝑁) / (𝑀 gcd 𝑁)) ∥ 𝑛 ↔ (𝑛 / ((𝑀 · 𝑁) / (𝑀 gcd 𝑁))) ∈ ℤ))
177172, 174, 175, 176syl3anc 1249 . . . . . . . . . . . . . . . . 17 ((((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ (𝑛 ∈ ℕ ∧ (𝑀𝑛𝑁𝑛))) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → (((𝑀 · 𝑁) / (𝑀 gcd 𝑁)) ∥ 𝑛 ↔ (𝑛 / ((𝑀 · 𝑁) / (𝑀 gcd 𝑁))) ∈ ℤ))
178177adantr 276 . . . . . . . . . . . . . . . 16 (((((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ (𝑛 ∈ ℕ ∧ (𝑀𝑛𝑁𝑛))) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) ∧ (𝑀 gcd 𝑁) = ((𝑀 · 𝑥) + (𝑁 · 𝑦))) → (((𝑀 · 𝑁) / (𝑀 gcd 𝑁)) ∥ 𝑛 ↔ (𝑛 / ((𝑀 · 𝑁) / (𝑀 gcd 𝑁))) ∈ ℤ))
179170, 178mpbird 167 . . . . . . . . . . . . . . 15 (((((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ (𝑛 ∈ ℕ ∧ (𝑀𝑛𝑁𝑛))) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) ∧ (𝑀 gcd 𝑁) = ((𝑀 · 𝑥) + (𝑁 · 𝑦))) → ((𝑀 · 𝑁) / (𝑀 gcd 𝑁)) ∥ 𝑛)
180179ex 115 . . . . . . . . . . . . . 14 ((((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ (𝑛 ∈ ℕ ∧ (𝑀𝑛𝑁𝑛))) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → ((𝑀 gcd 𝑁) = ((𝑀 · 𝑥) + (𝑁 · 𝑦)) → ((𝑀 · 𝑁) / (𝑀 gcd 𝑁)) ∥ 𝑛))
181180anassrs 400 . . . . . . . . . . . . 13 (((((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ (𝑛 ∈ ℕ ∧ (𝑀𝑛𝑁𝑛))) ∧ 𝑥 ∈ ℤ) ∧ 𝑦 ∈ ℤ) → ((𝑀 gcd 𝑁) = ((𝑀 · 𝑥) + (𝑁 · 𝑦)) → ((𝑀 · 𝑁) / (𝑀 gcd 𝑁)) ∥ 𝑛))
182181reximdva 2592 . . . . . . . . . . . 12 ((((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ (𝑛 ∈ ℕ ∧ (𝑀𝑛𝑁𝑛))) ∧ 𝑥 ∈ ℤ) → (∃𝑦 ∈ ℤ (𝑀 gcd 𝑁) = ((𝑀 · 𝑥) + (𝑁 · 𝑦)) → ∃𝑦 ∈ ℤ ((𝑀 · 𝑁) / (𝑀 gcd 𝑁)) ∥ 𝑛))
183182reximdva 2592 . . . . . . . . . . 11 (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ (𝑛 ∈ ℕ ∧ (𝑀𝑛𝑁𝑛))) → (∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ (𝑀 gcd 𝑁) = ((𝑀 · 𝑥) + (𝑁 · 𝑦)) → ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ ((𝑀 · 𝑁) / (𝑀 gcd 𝑁)) ∥ 𝑛))
18491, 183mpd 13 . . . . . . . . . 10 (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ (𝑛 ∈ ℕ ∧ (𝑀𝑛𝑁𝑛))) → ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ ((𝑀 · 𝑁) / (𝑀 gcd 𝑁)) ∥ 𝑛)
185 1z 9310 . . . . . . . . . . . 12 1 ∈ ℤ
186 elex2 2768 . . . . . . . . . . . 12 (1 ∈ ℤ → ∃𝑤 𝑤 ∈ ℤ)
187 r19.9rmv 3529 . . . . . . . . . . . 12 (∃𝑤 𝑤 ∈ ℤ → (((𝑀 · 𝑁) / (𝑀 gcd 𝑁)) ∥ 𝑛 ↔ ∃𝑦 ∈ ℤ ((𝑀 · 𝑁) / (𝑀 gcd 𝑁)) ∥ 𝑛))
188185, 186, 187mp2b 8 . . . . . . . . . . 11 (((𝑀 · 𝑁) / (𝑀 gcd 𝑁)) ∥ 𝑛 ↔ ∃𝑦 ∈ ℤ ((𝑀 · 𝑁) / (𝑀 gcd 𝑁)) ∥ 𝑛)
189 r19.9rmv 3529 . . . . . . . . . . . 12 (∃𝑤 𝑤 ∈ ℤ → (∃𝑦 ∈ ℤ ((𝑀 · 𝑁) / (𝑀 gcd 𝑁)) ∥ 𝑛 ↔ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ ((𝑀 · 𝑁) / (𝑀 gcd 𝑁)) ∥ 𝑛))
190185, 186, 189mp2b 8 . . . . . . . . . . 11 (∃𝑦 ∈ ℤ ((𝑀 · 𝑁) / (𝑀 gcd 𝑁)) ∥ 𝑛 ↔ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ ((𝑀 · 𝑁) / (𝑀 gcd 𝑁)) ∥ 𝑛)
191188, 190bitri 184 . . . . . . . . . 10 (((𝑀 · 𝑁) / (𝑀 gcd 𝑁)) ∥ 𝑛 ↔ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ ((𝑀 · 𝑁) / (𝑀 gcd 𝑁)) ∥ 𝑛)
192184, 191sylibr 134 . . . . . . . . 9 (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ (𝑛 ∈ ℕ ∧ (𝑀𝑛𝑁𝑛))) → ((𝑀 · 𝑁) / (𝑀 gcd 𝑁)) ∥ 𝑛)
193171adantr 276 . . . . . . . . . 10 (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ (𝑛 ∈ ℕ ∧ (𝑀𝑛𝑁𝑛))) → ((𝑀 · 𝑁) / (𝑀 gcd 𝑁)) ∈ ℤ)
194 simprl 529 . . . . . . . . . 10 (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ (𝑛 ∈ ℕ ∧ (𝑀𝑛𝑁𝑛))) → 𝑛 ∈ ℕ)
195 dvdsle 11885 . . . . . . . . . 10 ((((𝑀 · 𝑁) / (𝑀 gcd 𝑁)) ∈ ℤ ∧ 𝑛 ∈ ℕ) → (((𝑀 · 𝑁) / (𝑀 gcd 𝑁)) ∥ 𝑛 → ((𝑀 · 𝑁) / (𝑀 gcd 𝑁)) ≤ 𝑛))
196193, 194, 195syl2anc 411 . . . . . . . . 9 (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ (𝑛 ∈ ℕ ∧ (𝑀𝑛𝑁𝑛))) → (((𝑀 · 𝑁) / (𝑀 gcd 𝑁)) ∥ 𝑛 → ((𝑀 · 𝑁) / (𝑀 gcd 𝑁)) ≤ 𝑛))
197192, 196mpd 13 . . . . . . . 8 (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ (𝑛 ∈ ℕ ∧ (𝑀𝑛𝑁𝑛))) → ((𝑀 · 𝑁) / (𝑀 gcd 𝑁)) ≤ 𝑛)
19888, 197sylan2b 287 . . . . . . 7 (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ 𝑛 ∈ {𝑥 ∈ ℕ ∣ (𝑀𝑥𝑁𝑥)}) → ((𝑀 · 𝑁) / (𝑀 gcd 𝑁)) ≤ 𝑛)
19981, 84, 198lensymd 8110 . . . . . 6 (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ 𝑛 ∈ {𝑥 ∈ ℕ ∣ (𝑀𝑥𝑁𝑥)}) → ¬ 𝑛 < ((𝑀 · 𝑁) / (𝑀 gcd 𝑁)))
20032, 46, 80, 199infminti 7057 . . . . 5 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → inf({𝑥 ∈ ℕ ∣ (𝑀𝑥𝑁𝑥)}, ℝ, < ) = ((𝑀 · 𝑁) / (𝑀 gcd 𝑁)))
20130, 200eqtr2d 2223 . . . 4 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → ((𝑀 · 𝑁) / (𝑀 gcd 𝑁)) = (𝑀 lcm 𝑁))
202201, 45eqeltrrd 2267 . . . . . 6 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (𝑀 lcm 𝑁) ∈ ℕ)
203202nncnd 8964 . . . . 5 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (𝑀 lcm 𝑁) ∈ ℂ)
20494, 203, 60, 61divmulap3d 8813 . . . 4 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (((𝑀 · 𝑁) / (𝑀 gcd 𝑁)) = (𝑀 lcm 𝑁) ↔ (𝑀 · 𝑁) = ((𝑀 lcm 𝑁) · (𝑀 gcd 𝑁))))
205201, 204mpbid 147 . . 3 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (𝑀 · 𝑁) = ((𝑀 lcm 𝑁) · (𝑀 gcd 𝑁)))
20620, 205eqtr2d 2223 . 2 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → ((𝑀 lcm 𝑁) · (𝑀 gcd 𝑁)) = (abs‘(𝑀 · 𝑁)))
207 simprl 529 . . . 4 (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ ℕ ∧ (𝑀𝐾𝑁𝐾))) → 𝐾 ∈ ℕ)
208 eleq1 2252 . . . . . . . 8 (𝑛 = 𝐾 → (𝑛 ∈ ℕ ↔ 𝐾 ∈ ℕ))
209 breq2 4022 . . . . . . . . 9 (𝑛 = 𝐾 → (𝑀𝑛𝑀𝐾))
210 breq2 4022 . . . . . . . . 9 (𝑛 = 𝐾 → (𝑁𝑛𝑁𝐾))
211209, 210anbi12d 473 . . . . . . . 8 (𝑛 = 𝐾 → ((𝑀𝑛𝑁𝑛) ↔ (𝑀𝐾𝑁𝐾)))
212208, 211anbi12d 473 . . . . . . 7 (𝑛 = 𝐾 → ((𝑛 ∈ ℕ ∧ (𝑀𝑛𝑁𝑛)) ↔ (𝐾 ∈ ℕ ∧ (𝑀𝐾𝑁𝐾))))
213212anbi2d 464 . . . . . 6 (𝑛 = 𝐾 → (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ (𝑛 ∈ ℕ ∧ (𝑀𝑛𝑁𝑛))) ↔ ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ ℕ ∧ (𝑀𝐾𝑁𝐾)))))
214 breq2 4022 . . . . . 6 (𝑛 = 𝐾 → ((𝑀 lcm 𝑁) ∥ 𝑛 ↔ (𝑀 lcm 𝑁) ∥ 𝐾))
215213, 214imbi12d 234 . . . . 5 (𝑛 = 𝐾 → ((((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ (𝑛 ∈ ℕ ∧ (𝑀𝑛𝑁𝑛))) → (𝑀 lcm 𝑁) ∥ 𝑛) ↔ (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ ℕ ∧ (𝑀𝐾𝑁𝐾))) → (𝑀 lcm 𝑁) ∥ 𝐾)))
216201breq1d 4028 . . . . . . 7 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (((𝑀 · 𝑁) / (𝑀 gcd 𝑁)) ∥ 𝑛 ↔ (𝑀 lcm 𝑁) ∥ 𝑛))
217216adantr 276 . . . . . 6 (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ (𝑛 ∈ ℕ ∧ (𝑀𝑛𝑁𝑛))) → (((𝑀 · 𝑁) / (𝑀 gcd 𝑁)) ∥ 𝑛 ↔ (𝑀 lcm 𝑁) ∥ 𝑛))
218192, 217mpbid 147 . . . . 5 (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ (𝑛 ∈ ℕ ∧ (𝑀𝑛𝑁𝑛))) → (𝑀 lcm 𝑁) ∥ 𝑛)
219215, 218vtoclg 2812 . . . 4 (𝐾 ∈ ℕ → (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ ℕ ∧ (𝑀𝐾𝑁𝐾))) → (𝑀 lcm 𝑁) ∥ 𝐾))
220207, 219mpcom 36 . . 3 (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ ℕ ∧ (𝑀𝐾𝑁𝐾))) → (𝑀 lcm 𝑁) ∥ 𝐾)
221220ex 115 . 2 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → ((𝐾 ∈ ℕ ∧ (𝑀𝐾𝑁𝐾)) → (𝑀 lcm 𝑁) ∥ 𝐾))
222206, 221jca 306 1 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (((𝑀 lcm 𝑁) · (𝑀 gcd 𝑁)) = (abs‘(𝑀 · 𝑁)) ∧ ((𝐾 ∈ ℕ ∧ (𝑀𝐾𝑁𝐾)) → (𝑀 lcm 𝑁) ∥ 𝐾)))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wb 105  wo 709  w3a 980   = wceq 1364  wex 1503  wcel 2160  wne 2360  wrex 2469  {crab 2472   class class class wbr 4018  cfv 5235  (class class class)co 5897  infcinf 7013  cc 7840  cr 7841  0cc0 7842  1c1 7843   + caddc 7845   · cmul 7847   < clt 8023  cle 8024   # cap 8569   / cdiv 8660  cn 8950  cz 9284  abscabs 11041  cdvds 11829   gcd cgcd 11978   lcm clcm 12095
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2162  ax-14 2163  ax-ext 2171  ax-coll 4133  ax-sep 4136  ax-nul 4144  ax-pow 4192  ax-pr 4227  ax-un 4451  ax-setind 4554  ax-iinf 4605  ax-cnex 7933  ax-resscn 7934  ax-1cn 7935  ax-1re 7936  ax-icn 7937  ax-addcl 7938  ax-addrcl 7939  ax-mulcl 7940  ax-mulrcl 7941  ax-addcom 7942  ax-mulcom 7943  ax-addass 7944  ax-mulass 7945  ax-distr 7946  ax-i2m1 7947  ax-0lt1 7948  ax-1rid 7949  ax-0id 7950  ax-rnegex 7951  ax-precex 7952  ax-cnre 7953  ax-pre-ltirr 7954  ax-pre-ltwlin 7955  ax-pre-lttrn 7956  ax-pre-apti 7957  ax-pre-ltadd 7958  ax-pre-mulgt0 7959  ax-pre-mulext 7960  ax-arch 7961  ax-caucvg 7962
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2041  df-mo 2042  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ne 2361  df-nel 2456  df-ral 2473  df-rex 2474  df-reu 2475  df-rmo 2476  df-rab 2477  df-v 2754  df-sbc 2978  df-csb 3073  df-dif 3146  df-un 3148  df-in 3150  df-ss 3157  df-nul 3438  df-if 3550  df-pw 3592  df-sn 3613  df-pr 3614  df-op 3616  df-uni 3825  df-int 3860  df-iun 3903  df-br 4019  df-opab 4080  df-mpt 4081  df-tr 4117  df-id 4311  df-po 4314  df-iso 4315  df-iord 4384  df-on 4386  df-ilim 4387  df-suc 4389  df-iom 4608  df-xp 4650  df-rel 4651  df-cnv 4652  df-co 4653  df-dm 4654  df-rn 4655  df-res 4656  df-ima 4657  df-iota 5196  df-fun 5237  df-fn 5238  df-f 5239  df-f1 5240  df-fo 5241  df-f1o 5242  df-fv 5243  df-isom 5244  df-riota 5852  df-ov 5900  df-oprab 5901  df-mpo 5902  df-1st 6166  df-2nd 6167  df-recs 6331  df-frec 6417  df-sup 7014  df-inf 7015  df-pnf 8025  df-mnf 8026  df-xr 8027  df-ltxr 8028  df-le 8029  df-sub 8161  df-neg 8162  df-reap 8563  df-ap 8570  df-div 8661  df-inn 8951  df-2 9009  df-3 9010  df-4 9011  df-n0 9208  df-z 9285  df-uz 9560  df-q 9652  df-rp 9686  df-fz 10041  df-fzo 10175  df-fl 10303  df-mod 10356  df-seqfrec 10479  df-exp 10554  df-cj 10886  df-re 10887  df-im 10888  df-rsqrt 11042  df-abs 11043  df-dvds 11830  df-gcd 11979  df-lcm 12096
This theorem is referenced by:  lcmgcd  12113  lcmdvds  12114
  Copyright terms: Public domain W3C validator