ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dvdsr02 GIF version

Theorem dvdsr02 13785
Description: Only zero is divisible by zero. (Contributed by Stefan O'Rear, 29-Mar-2015.)
Hypotheses
Ref Expression
dvdsr0.b 𝐵 = (Base‘𝑅)
dvdsr0.d = (∥r𝑅)
dvdsr0.z 0 = (0g𝑅)
Assertion
Ref Expression
dvdsr02 ((𝑅 ∈ Ring ∧ 𝑋𝐵) → ( 0 𝑋𝑋 = 0 ))

Proof of Theorem dvdsr02
Dummy variables 𝑥 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dvdsr0.b . . . 4 𝐵 = (Base‘𝑅)
21a1i 9 . . 3 ((𝑅 ∈ Ring ∧ 𝑋𝐵) → 𝐵 = (Base‘𝑅))
3 dvdsr0.d . . . 4 = (∥r𝑅)
43a1i 9 . . 3 ((𝑅 ∈ Ring ∧ 𝑋𝐵) → = (∥r𝑅))
5 ringsrg 13727 . . . 4 (𝑅 ∈ Ring → 𝑅 ∈ SRing)
65adantr 276 . . 3 ((𝑅 ∈ Ring ∧ 𝑋𝐵) → 𝑅 ∈ SRing)
7 eqid 2204 . . . 4 (.r𝑅) = (.r𝑅)
87a1i 9 . . 3 ((𝑅 ∈ Ring ∧ 𝑋𝐵) → (.r𝑅) = (.r𝑅))
9 dvdsr0.z . . . . 5 0 = (0g𝑅)
101, 9ring0cl 13701 . . . 4 (𝑅 ∈ Ring → 0𝐵)
1110adantr 276 . . 3 ((𝑅 ∈ Ring ∧ 𝑋𝐵) → 0𝐵)
122, 4, 6, 8, 11dvdsr2d 13775 . 2 ((𝑅 ∈ Ring ∧ 𝑋𝐵) → ( 0 𝑋 ↔ ∃𝑥𝐵 (𝑥(.r𝑅) 0 ) = 𝑋))
131, 7, 9ringrz 13724 . . . . . . 7 ((𝑅 ∈ Ring ∧ 𝑥𝐵) → (𝑥(.r𝑅) 0 ) = 0 )
1413eqeq1d 2213 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝑥𝐵) → ((𝑥(.r𝑅) 0 ) = 𝑋0 = 𝑋))
15 eqcom 2206 . . . . . 6 ( 0 = 𝑋𝑋 = 0 )
1614, 15bitrdi 196 . . . . 5 ((𝑅 ∈ Ring ∧ 𝑥𝐵) → ((𝑥(.r𝑅) 0 ) = 𝑋𝑋 = 0 ))
1716rexbidva 2502 . . . 4 (𝑅 ∈ Ring → (∃𝑥𝐵 (𝑥(.r𝑅) 0 ) = 𝑋 ↔ ∃𝑥𝐵 𝑋 = 0 ))
18 elex2 2787 . . . . 5 ( 0𝐵 → ∃𝑤 𝑤𝐵)
19 r19.9rmv 3551 . . . . 5 (∃𝑤 𝑤𝐵 → (𝑋 = 0 ↔ ∃𝑥𝐵 𝑋 = 0 ))
2010, 18, 193syl 17 . . . 4 (𝑅 ∈ Ring → (𝑋 = 0 ↔ ∃𝑥𝐵 𝑋 = 0 ))
2117, 20bitr4d 191 . . 3 (𝑅 ∈ Ring → (∃𝑥𝐵 (𝑥(.r𝑅) 0 ) = 𝑋𝑋 = 0 ))
2221adantr 276 . 2 ((𝑅 ∈ Ring ∧ 𝑋𝐵) → (∃𝑥𝐵 (𝑥(.r𝑅) 0 ) = 𝑋𝑋 = 0 ))
2312, 22bitrd 188 1 ((𝑅 ∈ Ring ∧ 𝑋𝐵) → ( 0 𝑋𝑋 = 0 ))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1372  wex 1514  wcel 2175  wrex 2484   class class class wbr 4043  cfv 5268  (class class class)co 5934  Basecbs 12751  .rcmulr 12829  0gc0g 13006  SRingcsrg 13643  Ringcrg 13676  rcdsr 13766
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-13 2177  ax-14 2178  ax-ext 2186  ax-coll 4158  ax-sep 4161  ax-pow 4217  ax-pr 4252  ax-un 4478  ax-setind 4583  ax-cnex 7998  ax-resscn 7999  ax-1cn 8000  ax-1re 8001  ax-icn 8002  ax-addcl 8003  ax-addrcl 8004  ax-mulcl 8005  ax-addcom 8007  ax-addass 8009  ax-i2m1 8012  ax-0lt1 8013  ax-0id 8015  ax-rnegex 8016  ax-pre-ltirr 8019  ax-pre-ltadd 8023
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1375  df-fal 1378  df-nf 1483  df-sb 1785  df-eu 2056  df-mo 2057  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ne 2376  df-nel 2471  df-ral 2488  df-rex 2489  df-reu 2490  df-rmo 2491  df-rab 2492  df-v 2773  df-sbc 2998  df-csb 3093  df-dif 3167  df-un 3169  df-in 3171  df-ss 3178  df-nul 3460  df-pw 3617  df-sn 3638  df-pr 3639  df-op 3641  df-uni 3850  df-int 3885  df-iun 3928  df-br 4044  df-opab 4105  df-mpt 4106  df-id 4338  df-xp 4679  df-rel 4680  df-cnv 4681  df-co 4682  df-dm 4683  df-rn 4684  df-res 4685  df-ima 4686  df-iota 5229  df-fun 5270  df-fn 5271  df-f 5272  df-f1 5273  df-fo 5274  df-f1o 5275  df-fv 5276  df-riota 5889  df-ov 5937  df-oprab 5938  df-mpo 5939  df-pnf 8091  df-mnf 8092  df-ltxr 8094  df-inn 9019  df-2 9077  df-3 9078  df-ndx 12754  df-slot 12755  df-base 12757  df-sets 12758  df-plusg 12841  df-mulr 12842  df-0g 13008  df-mgm 13106  df-sgrp 13152  df-mnd 13167  df-grp 13253  df-minusg 13254  df-cmn 13540  df-abl 13541  df-mgp 13601  df-ur 13640  df-srg 13644  df-ring 13678  df-dvdsr 13769
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator