ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mullocpr GIF version

Theorem mullocpr 7403
Description: Locatedness of multiplication on positive reals. Lemma 12.9 in [BauerTaylor], p. 56 (but where both 𝐴 and 𝐵 are positive, not just 𝐴). (Contributed by Jim Kingdon, 8-Dec-2019.)
Assertion
Ref Expression
mullocpr ((𝐴P𝐵P) → ∀𝑞Q𝑟Q (𝑞 <Q 𝑟 → (𝑞 ∈ (1st ‘(𝐴 ·P 𝐵)) ∨ 𝑟 ∈ (2nd ‘(𝐴 ·P 𝐵)))))
Distinct variable groups:   𝐴,𝑞,𝑟   𝐵,𝑞,𝑟

Proof of Theorem mullocpr
Dummy variables 𝑑 𝑒 𝑡 𝑢 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 prop 7307 . . . . . . . 8 (𝐴P → ⟨(1st𝐴), (2nd𝐴)⟩ ∈ P)
2 prmuloc 7398 . . . . . . . 8 ((⟨(1st𝐴), (2nd𝐴)⟩ ∈ P𝑞 <Q 𝑟) → ∃𝑑Q𝑢Q (𝑑 ∈ (1st𝐴) ∧ 𝑢 ∈ (2nd𝐴) ∧ (𝑢 ·Q 𝑞) <Q (𝑑 ·Q 𝑟)))
31, 2sylan 281 . . . . . . 7 ((𝐴P𝑞 <Q 𝑟) → ∃𝑑Q𝑢Q (𝑑 ∈ (1st𝐴) ∧ 𝑢 ∈ (2nd𝐴) ∧ (𝑢 ·Q 𝑞) <Q (𝑑 ·Q 𝑟)))
4 r2ex 2458 . . . . . . 7 (∃𝑑Q𝑢Q (𝑑 ∈ (1st𝐴) ∧ 𝑢 ∈ (2nd𝐴) ∧ (𝑢 ·Q 𝑞) <Q (𝑑 ·Q 𝑟)) ↔ ∃𝑑𝑢((𝑑Q𝑢Q) ∧ (𝑑 ∈ (1st𝐴) ∧ 𝑢 ∈ (2nd𝐴) ∧ (𝑢 ·Q 𝑞) <Q (𝑑 ·Q 𝑟))))
53, 4sylib 121 . . . . . 6 ((𝐴P𝑞 <Q 𝑟) → ∃𝑑𝑢((𝑑Q𝑢Q) ∧ (𝑑 ∈ (1st𝐴) ∧ 𝑢 ∈ (2nd𝐴) ∧ (𝑢 ·Q 𝑞) <Q (𝑑 ·Q 𝑟))))
65adantlr 469 . . . . 5 (((𝐴P𝐵P) ∧ 𝑞 <Q 𝑟) → ∃𝑑𝑢((𝑑Q𝑢Q) ∧ (𝑑 ∈ (1st𝐴) ∧ 𝑢 ∈ (2nd𝐴) ∧ (𝑢 ·Q 𝑞) <Q (𝑑 ·Q 𝑟))))
76adantlr 469 . . . 4 ((((𝐴P𝐵P) ∧ (𝑞Q𝑟Q)) ∧ 𝑞 <Q 𝑟) → ∃𝑑𝑢((𝑑Q𝑢Q) ∧ (𝑑 ∈ (1st𝐴) ∧ 𝑢 ∈ (2nd𝐴) ∧ (𝑢 ·Q 𝑞) <Q (𝑑 ·Q 𝑟))))
8 simprr3 1032 . . . . . . . 8 (((((𝐴P𝐵P) ∧ (𝑞Q𝑟Q)) ∧ 𝑞 <Q 𝑟) ∧ ((𝑑Q𝑢Q) ∧ (𝑑 ∈ (1st𝐴) ∧ 𝑢 ∈ (2nd𝐴) ∧ (𝑢 ·Q 𝑞) <Q (𝑑 ·Q 𝑟)))) → (𝑢 ·Q 𝑞) <Q (𝑑 ·Q 𝑟))
9 simprl 521 . . . . . . . . 9 (((((𝐴P𝐵P) ∧ (𝑞Q𝑟Q)) ∧ 𝑞 <Q 𝑟) ∧ ((𝑑Q𝑢Q) ∧ (𝑑 ∈ (1st𝐴) ∧ 𝑢 ∈ (2nd𝐴) ∧ (𝑢 ·Q 𝑞) <Q (𝑑 ·Q 𝑟)))) → (𝑑Q𝑢Q))
10 mulclnq 7208 . . . . . . . . 9 ((𝑑Q𝑢Q) → (𝑑 ·Q 𝑢) ∈ Q)
119, 10syl 14 . . . . . . . 8 (((((𝐴P𝐵P) ∧ (𝑞Q𝑟Q)) ∧ 𝑞 <Q 𝑟) ∧ ((𝑑Q𝑢Q) ∧ (𝑑 ∈ (1st𝐴) ∧ 𝑢 ∈ (2nd𝐴) ∧ (𝑢 ·Q 𝑞) <Q (𝑑 ·Q 𝑟)))) → (𝑑 ·Q 𝑢) ∈ Q)
12 appdivnq 7395 . . . . . . . 8 (((𝑢 ·Q 𝑞) <Q (𝑑 ·Q 𝑟) ∧ (𝑑 ·Q 𝑢) ∈ Q) → ∃𝑒Q ((𝑢 ·Q 𝑞) <Q (𝑒 ·Q (𝑑 ·Q 𝑢)) ∧ (𝑒 ·Q (𝑑 ·Q 𝑢)) <Q (𝑑 ·Q 𝑟)))
138, 11, 12syl2anc 409 . . . . . . 7 (((((𝐴P𝐵P) ∧ (𝑞Q𝑟Q)) ∧ 𝑞 <Q 𝑟) ∧ ((𝑑Q𝑢Q) ∧ (𝑑 ∈ (1st𝐴) ∧ 𝑢 ∈ (2nd𝐴) ∧ (𝑢 ·Q 𝑞) <Q (𝑑 ·Q 𝑟)))) → ∃𝑒Q ((𝑢 ·Q 𝑞) <Q (𝑒 ·Q (𝑑 ·Q 𝑢)) ∧ (𝑒 ·Q (𝑑 ·Q 𝑢)) <Q (𝑑 ·Q 𝑟)))
14 simprrr 530 . . . . . . . . 9 ((((((𝐴P𝐵P) ∧ (𝑞Q𝑟Q)) ∧ 𝑞 <Q 𝑟) ∧ ((𝑑Q𝑢Q) ∧ (𝑑 ∈ (1st𝐴) ∧ 𝑢 ∈ (2nd𝐴) ∧ (𝑢 ·Q 𝑞) <Q (𝑑 ·Q 𝑟)))) ∧ (𝑒Q ∧ ((𝑢 ·Q 𝑞) <Q (𝑒 ·Q (𝑑 ·Q 𝑢)) ∧ (𝑒 ·Q (𝑑 ·Q 𝑢)) <Q (𝑑 ·Q 𝑟)))) → (𝑒 ·Q (𝑑 ·Q 𝑢)) <Q (𝑑 ·Q 𝑟))
1511adantr 274 . . . . . . . . 9 ((((((𝐴P𝐵P) ∧ (𝑞Q𝑟Q)) ∧ 𝑞 <Q 𝑟) ∧ ((𝑑Q𝑢Q) ∧ (𝑑 ∈ (1st𝐴) ∧ 𝑢 ∈ (2nd𝐴) ∧ (𝑢 ·Q 𝑞) <Q (𝑑 ·Q 𝑟)))) ∧ (𝑒Q ∧ ((𝑢 ·Q 𝑞) <Q (𝑒 ·Q (𝑑 ·Q 𝑢)) ∧ (𝑒 ·Q (𝑑 ·Q 𝑢)) <Q (𝑑 ·Q 𝑟)))) → (𝑑 ·Q 𝑢) ∈ Q)
16 appdivnq 7395 . . . . . . . . 9 (((𝑒 ·Q (𝑑 ·Q 𝑢)) <Q (𝑑 ·Q 𝑟) ∧ (𝑑 ·Q 𝑢) ∈ Q) → ∃𝑡Q ((𝑒 ·Q (𝑑 ·Q 𝑢)) <Q (𝑡 ·Q (𝑑 ·Q 𝑢)) ∧ (𝑡 ·Q (𝑑 ·Q 𝑢)) <Q (𝑑 ·Q 𝑟)))
1714, 15, 16syl2anc 409 . . . . . . . 8 ((((((𝐴P𝐵P) ∧ (𝑞Q𝑟Q)) ∧ 𝑞 <Q 𝑟) ∧ ((𝑑Q𝑢Q) ∧ (𝑑 ∈ (1st𝐴) ∧ 𝑢 ∈ (2nd𝐴) ∧ (𝑢 ·Q 𝑞) <Q (𝑑 ·Q 𝑟)))) ∧ (𝑒Q ∧ ((𝑢 ·Q 𝑞) <Q (𝑒 ·Q (𝑑 ·Q 𝑢)) ∧ (𝑒 ·Q (𝑑 ·Q 𝑢)) <Q (𝑑 ·Q 𝑟)))) → ∃𝑡Q ((𝑒 ·Q (𝑑 ·Q 𝑢)) <Q (𝑡 ·Q (𝑑 ·Q 𝑢)) ∧ (𝑡 ·Q (𝑑 ·Q 𝑢)) <Q (𝑑 ·Q 𝑟)))
18 simplll 523 . . . . . . . . . 10 (((((𝐴P𝐵P) ∧ (𝑞Q𝑟Q)) ∧ 𝑞 <Q 𝑟) ∧ ((𝑑Q𝑢Q) ∧ (𝑑 ∈ (1st𝐴) ∧ 𝑢 ∈ (2nd𝐴) ∧ (𝑢 ·Q 𝑞) <Q (𝑑 ·Q 𝑟)))) → (𝐴P𝐵P))
1918ad2antrr 480 . . . . . . . . 9 (((((((𝐴P𝐵P) ∧ (𝑞Q𝑟Q)) ∧ 𝑞 <Q 𝑟) ∧ ((𝑑Q𝑢Q) ∧ (𝑑 ∈ (1st𝐴) ∧ 𝑢 ∈ (2nd𝐴) ∧ (𝑢 ·Q 𝑞) <Q (𝑑 ·Q 𝑟)))) ∧ (𝑒Q ∧ ((𝑢 ·Q 𝑞) <Q (𝑒 ·Q (𝑑 ·Q 𝑢)) ∧ (𝑒 ·Q (𝑑 ·Q 𝑢)) <Q (𝑑 ·Q 𝑟)))) ∧ (𝑡Q ∧ ((𝑒 ·Q (𝑑 ·Q 𝑢)) <Q (𝑡 ·Q (𝑑 ·Q 𝑢)) ∧ (𝑡 ·Q (𝑑 ·Q 𝑢)) <Q (𝑑 ·Q 𝑟)))) → (𝐴P𝐵P))
20 simprl 521 . . . . . . . . . 10 ((𝑒Q ∧ ((𝑢 ·Q 𝑞) <Q (𝑒 ·Q (𝑑 ·Q 𝑢)) ∧ (𝑒 ·Q (𝑑 ·Q 𝑢)) <Q (𝑑 ·Q 𝑟))) → (𝑢 ·Q 𝑞) <Q (𝑒 ·Q (𝑑 ·Q 𝑢)))
2120ad2antlr 481 . . . . . . . . 9 (((((((𝐴P𝐵P) ∧ (𝑞Q𝑟Q)) ∧ 𝑞 <Q 𝑟) ∧ ((𝑑Q𝑢Q) ∧ (𝑑 ∈ (1st𝐴) ∧ 𝑢 ∈ (2nd𝐴) ∧ (𝑢 ·Q 𝑞) <Q (𝑑 ·Q 𝑟)))) ∧ (𝑒Q ∧ ((𝑢 ·Q 𝑞) <Q (𝑒 ·Q (𝑑 ·Q 𝑢)) ∧ (𝑒 ·Q (𝑑 ·Q 𝑢)) <Q (𝑑 ·Q 𝑟)))) ∧ (𝑡Q ∧ ((𝑒 ·Q (𝑑 ·Q 𝑢)) <Q (𝑡 ·Q (𝑑 ·Q 𝑢)) ∧ (𝑡 ·Q (𝑑 ·Q 𝑢)) <Q (𝑑 ·Q 𝑟)))) → (𝑢 ·Q 𝑞) <Q (𝑒 ·Q (𝑑 ·Q 𝑢)))
22 simprrl 529 . . . . . . . . 9 (((((((𝐴P𝐵P) ∧ (𝑞Q𝑟Q)) ∧ 𝑞 <Q 𝑟) ∧ ((𝑑Q𝑢Q) ∧ (𝑑 ∈ (1st𝐴) ∧ 𝑢 ∈ (2nd𝐴) ∧ (𝑢 ·Q 𝑞) <Q (𝑑 ·Q 𝑟)))) ∧ (𝑒Q ∧ ((𝑢 ·Q 𝑞) <Q (𝑒 ·Q (𝑑 ·Q 𝑢)) ∧ (𝑒 ·Q (𝑑 ·Q 𝑢)) <Q (𝑑 ·Q 𝑟)))) ∧ (𝑡Q ∧ ((𝑒 ·Q (𝑑 ·Q 𝑢)) <Q (𝑡 ·Q (𝑑 ·Q 𝑢)) ∧ (𝑡 ·Q (𝑑 ·Q 𝑢)) <Q (𝑑 ·Q 𝑟)))) → (𝑒 ·Q (𝑑 ·Q 𝑢)) <Q (𝑡 ·Q (𝑑 ·Q 𝑢)))
23 simprrr 530 . . . . . . . . 9 (((((((𝐴P𝐵P) ∧ (𝑞Q𝑟Q)) ∧ 𝑞 <Q 𝑟) ∧ ((𝑑Q𝑢Q) ∧ (𝑑 ∈ (1st𝐴) ∧ 𝑢 ∈ (2nd𝐴) ∧ (𝑢 ·Q 𝑞) <Q (𝑑 ·Q 𝑟)))) ∧ (𝑒Q ∧ ((𝑢 ·Q 𝑞) <Q (𝑒 ·Q (𝑑 ·Q 𝑢)) ∧ (𝑒 ·Q (𝑑 ·Q 𝑢)) <Q (𝑑 ·Q 𝑟)))) ∧ (𝑡Q ∧ ((𝑒 ·Q (𝑑 ·Q 𝑢)) <Q (𝑡 ·Q (𝑑 ·Q 𝑢)) ∧ (𝑡 ·Q (𝑑 ·Q 𝑢)) <Q (𝑑 ·Q 𝑟)))) → (𝑡 ·Q (𝑑 ·Q 𝑢)) <Q (𝑑 ·Q 𝑟))
24 simpllr 524 . . . . . . . . . 10 (((((𝐴P𝐵P) ∧ (𝑞Q𝑟Q)) ∧ 𝑞 <Q 𝑟) ∧ ((𝑑Q𝑢Q) ∧ (𝑑 ∈ (1st𝐴) ∧ 𝑢 ∈ (2nd𝐴) ∧ (𝑢 ·Q 𝑞) <Q (𝑑 ·Q 𝑟)))) → (𝑞Q𝑟Q))
2524ad2antrr 480 . . . . . . . . 9 (((((((𝐴P𝐵P) ∧ (𝑞Q𝑟Q)) ∧ 𝑞 <Q 𝑟) ∧ ((𝑑Q𝑢Q) ∧ (𝑑 ∈ (1st𝐴) ∧ 𝑢 ∈ (2nd𝐴) ∧ (𝑢 ·Q 𝑞) <Q (𝑑 ·Q 𝑟)))) ∧ (𝑒Q ∧ ((𝑢 ·Q 𝑞) <Q (𝑒 ·Q (𝑑 ·Q 𝑢)) ∧ (𝑒 ·Q (𝑑 ·Q 𝑢)) <Q (𝑑 ·Q 𝑟)))) ∧ (𝑡Q ∧ ((𝑒 ·Q (𝑑 ·Q 𝑢)) <Q (𝑡 ·Q (𝑑 ·Q 𝑢)) ∧ (𝑡 ·Q (𝑑 ·Q 𝑢)) <Q (𝑑 ·Q 𝑟)))) → (𝑞Q𝑟Q))
269ad2antrr 480 . . . . . . . . 9 (((((((𝐴P𝐵P) ∧ (𝑞Q𝑟Q)) ∧ 𝑞 <Q 𝑟) ∧ ((𝑑Q𝑢Q) ∧ (𝑑 ∈ (1st𝐴) ∧ 𝑢 ∈ (2nd𝐴) ∧ (𝑢 ·Q 𝑞) <Q (𝑑 ·Q 𝑟)))) ∧ (𝑒Q ∧ ((𝑢 ·Q 𝑞) <Q (𝑒 ·Q (𝑑 ·Q 𝑢)) ∧ (𝑒 ·Q (𝑑 ·Q 𝑢)) <Q (𝑑 ·Q 𝑟)))) ∧ (𝑡Q ∧ ((𝑒 ·Q (𝑑 ·Q 𝑢)) <Q (𝑡 ·Q (𝑑 ·Q 𝑢)) ∧ (𝑡 ·Q (𝑑 ·Q 𝑢)) <Q (𝑑 ·Q 𝑟)))) → (𝑑Q𝑢Q))
27 3simpa 979 . . . . . . . . . . 11 ((𝑑 ∈ (1st𝐴) ∧ 𝑢 ∈ (2nd𝐴) ∧ (𝑢 ·Q 𝑞) <Q (𝑑 ·Q 𝑟)) → (𝑑 ∈ (1st𝐴) ∧ 𝑢 ∈ (2nd𝐴)))
2827ad2antll 483 . . . . . . . . . 10 (((((𝐴P𝐵P) ∧ (𝑞Q𝑟Q)) ∧ 𝑞 <Q 𝑟) ∧ ((𝑑Q𝑢Q) ∧ (𝑑 ∈ (1st𝐴) ∧ 𝑢 ∈ (2nd𝐴) ∧ (𝑢 ·Q 𝑞) <Q (𝑑 ·Q 𝑟)))) → (𝑑 ∈ (1st𝐴) ∧ 𝑢 ∈ (2nd𝐴)))
2928ad2antrr 480 . . . . . . . . 9 (((((((𝐴P𝐵P) ∧ (𝑞Q𝑟Q)) ∧ 𝑞 <Q 𝑟) ∧ ((𝑑Q𝑢Q) ∧ (𝑑 ∈ (1st𝐴) ∧ 𝑢 ∈ (2nd𝐴) ∧ (𝑢 ·Q 𝑞) <Q (𝑑 ·Q 𝑟)))) ∧ (𝑒Q ∧ ((𝑢 ·Q 𝑞) <Q (𝑒 ·Q (𝑑 ·Q 𝑢)) ∧ (𝑒 ·Q (𝑑 ·Q 𝑢)) <Q (𝑑 ·Q 𝑟)))) ∧ (𝑡Q ∧ ((𝑒 ·Q (𝑑 ·Q 𝑢)) <Q (𝑡 ·Q (𝑑 ·Q 𝑢)) ∧ (𝑡 ·Q (𝑑 ·Q 𝑢)) <Q (𝑑 ·Q 𝑟)))) → (𝑑 ∈ (1st𝐴) ∧ 𝑢 ∈ (2nd𝐴)))
30 simplrl 525 . . . . . . . . . 10 (((((((𝐴P𝐵P) ∧ (𝑞Q𝑟Q)) ∧ 𝑞 <Q 𝑟) ∧ ((𝑑Q𝑢Q) ∧ (𝑑 ∈ (1st𝐴) ∧ 𝑢 ∈ (2nd𝐴) ∧ (𝑢 ·Q 𝑞) <Q (𝑑 ·Q 𝑟)))) ∧ (𝑒Q ∧ ((𝑢 ·Q 𝑞) <Q (𝑒 ·Q (𝑑 ·Q 𝑢)) ∧ (𝑒 ·Q (𝑑 ·Q 𝑢)) <Q (𝑑 ·Q 𝑟)))) ∧ (𝑡Q ∧ ((𝑒 ·Q (𝑑 ·Q 𝑢)) <Q (𝑡 ·Q (𝑑 ·Q 𝑢)) ∧ (𝑡 ·Q (𝑑 ·Q 𝑢)) <Q (𝑑 ·Q 𝑟)))) → 𝑒Q)
31 simprl 521 . . . . . . . . . 10 (((((((𝐴P𝐵P) ∧ (𝑞Q𝑟Q)) ∧ 𝑞 <Q 𝑟) ∧ ((𝑑Q𝑢Q) ∧ (𝑑 ∈ (1st𝐴) ∧ 𝑢 ∈ (2nd𝐴) ∧ (𝑢 ·Q 𝑞) <Q (𝑑 ·Q 𝑟)))) ∧ (𝑒Q ∧ ((𝑢 ·Q 𝑞) <Q (𝑒 ·Q (𝑑 ·Q 𝑢)) ∧ (𝑒 ·Q (𝑑 ·Q 𝑢)) <Q (𝑑 ·Q 𝑟)))) ∧ (𝑡Q ∧ ((𝑒 ·Q (𝑑 ·Q 𝑢)) <Q (𝑡 ·Q (𝑑 ·Q 𝑢)) ∧ (𝑡 ·Q (𝑑 ·Q 𝑢)) <Q (𝑑 ·Q 𝑟)))) → 𝑡Q)
3230, 31jca 304 . . . . . . . . 9 (((((((𝐴P𝐵P) ∧ (𝑞Q𝑟Q)) ∧ 𝑞 <Q 𝑟) ∧ ((𝑑Q𝑢Q) ∧ (𝑑 ∈ (1st𝐴) ∧ 𝑢 ∈ (2nd𝐴) ∧ (𝑢 ·Q 𝑞) <Q (𝑑 ·Q 𝑟)))) ∧ (𝑒Q ∧ ((𝑢 ·Q 𝑞) <Q (𝑒 ·Q (𝑑 ·Q 𝑢)) ∧ (𝑒 ·Q (𝑑 ·Q 𝑢)) <Q (𝑑 ·Q 𝑟)))) ∧ (𝑡Q ∧ ((𝑒 ·Q (𝑑 ·Q 𝑢)) <Q (𝑡 ·Q (𝑑 ·Q 𝑢)) ∧ (𝑡 ·Q (𝑑 ·Q 𝑢)) <Q (𝑑 ·Q 𝑟)))) → (𝑒Q𝑡Q))
3319, 21, 22, 23, 25, 26, 29, 32mullocprlem 7402 . . . . . . . 8 (((((((𝐴P𝐵P) ∧ (𝑞Q𝑟Q)) ∧ 𝑞 <Q 𝑟) ∧ ((𝑑Q𝑢Q) ∧ (𝑑 ∈ (1st𝐴) ∧ 𝑢 ∈ (2nd𝐴) ∧ (𝑢 ·Q 𝑞) <Q (𝑑 ·Q 𝑟)))) ∧ (𝑒Q ∧ ((𝑢 ·Q 𝑞) <Q (𝑒 ·Q (𝑑 ·Q 𝑢)) ∧ (𝑒 ·Q (𝑑 ·Q 𝑢)) <Q (𝑑 ·Q 𝑟)))) ∧ (𝑡Q ∧ ((𝑒 ·Q (𝑑 ·Q 𝑢)) <Q (𝑡 ·Q (𝑑 ·Q 𝑢)) ∧ (𝑡 ·Q (𝑑 ·Q 𝑢)) <Q (𝑑 ·Q 𝑟)))) → (𝑞 ∈ (1st ‘(𝐴 ·P 𝐵)) ∨ 𝑟 ∈ (2nd ‘(𝐴 ·P 𝐵))))
3417, 33rexlimddv 2557 . . . . . . 7 ((((((𝐴P𝐵P) ∧ (𝑞Q𝑟Q)) ∧ 𝑞 <Q 𝑟) ∧ ((𝑑Q𝑢Q) ∧ (𝑑 ∈ (1st𝐴) ∧ 𝑢 ∈ (2nd𝐴) ∧ (𝑢 ·Q 𝑞) <Q (𝑑 ·Q 𝑟)))) ∧ (𝑒Q ∧ ((𝑢 ·Q 𝑞) <Q (𝑒 ·Q (𝑑 ·Q 𝑢)) ∧ (𝑒 ·Q (𝑑 ·Q 𝑢)) <Q (𝑑 ·Q 𝑟)))) → (𝑞 ∈ (1st ‘(𝐴 ·P 𝐵)) ∨ 𝑟 ∈ (2nd ‘(𝐴 ·P 𝐵))))
3513, 34rexlimddv 2557 . . . . . 6 (((((𝐴P𝐵P) ∧ (𝑞Q𝑟Q)) ∧ 𝑞 <Q 𝑟) ∧ ((𝑑Q𝑢Q) ∧ (𝑑 ∈ (1st𝐴) ∧ 𝑢 ∈ (2nd𝐴) ∧ (𝑢 ·Q 𝑞) <Q (𝑑 ·Q 𝑟)))) → (𝑞 ∈ (1st ‘(𝐴 ·P 𝐵)) ∨ 𝑟 ∈ (2nd ‘(𝐴 ·P 𝐵))))
3635ex 114 . . . . 5 ((((𝐴P𝐵P) ∧ (𝑞Q𝑟Q)) ∧ 𝑞 <Q 𝑟) → (((𝑑Q𝑢Q) ∧ (𝑑 ∈ (1st𝐴) ∧ 𝑢 ∈ (2nd𝐴) ∧ (𝑢 ·Q 𝑞) <Q (𝑑 ·Q 𝑟))) → (𝑞 ∈ (1st ‘(𝐴 ·P 𝐵)) ∨ 𝑟 ∈ (2nd ‘(𝐴 ·P 𝐵)))))
3736exlimdvv 1870 . . . 4 ((((𝐴P𝐵P) ∧ (𝑞Q𝑟Q)) ∧ 𝑞 <Q 𝑟) → (∃𝑑𝑢((𝑑Q𝑢Q) ∧ (𝑑 ∈ (1st𝐴) ∧ 𝑢 ∈ (2nd𝐴) ∧ (𝑢 ·Q 𝑞) <Q (𝑑 ·Q 𝑟))) → (𝑞 ∈ (1st ‘(𝐴 ·P 𝐵)) ∨ 𝑟 ∈ (2nd ‘(𝐴 ·P 𝐵)))))
387, 37mpd 13 . . 3 ((((𝐴P𝐵P) ∧ (𝑞Q𝑟Q)) ∧ 𝑞 <Q 𝑟) → (𝑞 ∈ (1st ‘(𝐴 ·P 𝐵)) ∨ 𝑟 ∈ (2nd ‘(𝐴 ·P 𝐵))))
3938ex 114 . 2 (((𝐴P𝐵P) ∧ (𝑞Q𝑟Q)) → (𝑞 <Q 𝑟 → (𝑞 ∈ (1st ‘(𝐴 ·P 𝐵)) ∨ 𝑟 ∈ (2nd ‘(𝐴 ·P 𝐵)))))
4039ralrimivva 2517 1 ((𝐴P𝐵P) → ∀𝑞Q𝑟Q (𝑞 <Q 𝑟 → (𝑞 ∈ (1st ‘(𝐴 ·P 𝐵)) ∨ 𝑟 ∈ (2nd ‘(𝐴 ·P 𝐵)))))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wo 698  w3a 963  wex 1469  wcel 1481  wral 2417  wrex 2418  cop 3535   class class class wbr 3937  cfv 5131  (class class class)co 5782  1st c1st 6044  2nd c2nd 6045  Qcnq 7112   ·Q cmq 7115   <Q cltq 7117  Pcnp 7123   ·P cmp 7126
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-13 1492  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-coll 4051  ax-sep 4054  ax-nul 4062  ax-pow 4106  ax-pr 4139  ax-un 4363  ax-setind 4460  ax-iinf 4510
This theorem depends on definitions:  df-bi 116  df-dc 821  df-3or 964  df-3an 965  df-tru 1335  df-fal 1338  df-nf 1438  df-sb 1737  df-eu 2003  df-mo 2004  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ne 2310  df-ral 2422  df-rex 2423  df-reu 2424  df-rab 2426  df-v 2691  df-sbc 2914  df-csb 3008  df-dif 3078  df-un 3080  df-in 3082  df-ss 3089  df-nul 3369  df-pw 3517  df-sn 3538  df-pr 3539  df-op 3541  df-uni 3745  df-int 3780  df-iun 3823  df-br 3938  df-opab 3998  df-mpt 3999  df-tr 4035  df-eprel 4219  df-id 4223  df-po 4226  df-iso 4227  df-iord 4296  df-on 4298  df-suc 4301  df-iom 4513  df-xp 4553  df-rel 4554  df-cnv 4555  df-co 4556  df-dm 4557  df-rn 4558  df-res 4559  df-ima 4560  df-iota 5096  df-fun 5133  df-fn 5134  df-f 5135  df-f1 5136  df-fo 5137  df-f1o 5138  df-fv 5139  df-ov 5785  df-oprab 5786  df-mpo 5787  df-1st 6046  df-2nd 6047  df-recs 6210  df-irdg 6275  df-1o 6321  df-2o 6322  df-oadd 6325  df-omul 6326  df-er 6437  df-ec 6439  df-qs 6443  df-ni 7136  df-pli 7137  df-mi 7138  df-lti 7139  df-plpq 7176  df-mpq 7177  df-enq 7179  df-nqqs 7180  df-plqqs 7181  df-mqqs 7182  df-1nqqs 7183  df-rq 7184  df-ltnqqs 7185  df-enq0 7256  df-nq0 7257  df-0nq0 7258  df-plq0 7259  df-mq0 7260  df-inp 7298  df-imp 7301
This theorem is referenced by:  mulclpr  7404
  Copyright terms: Public domain W3C validator