ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mullocpr GIF version

Theorem mullocpr 7666
Description: Locatedness of multiplication on positive reals. Lemma 12.9 in [BauerTaylor], p. 56 (but where both 𝐴 and 𝐵 are positive, not just 𝐴). (Contributed by Jim Kingdon, 8-Dec-2019.)
Assertion
Ref Expression
mullocpr ((𝐴P𝐵P) → ∀𝑞Q𝑟Q (𝑞 <Q 𝑟 → (𝑞 ∈ (1st ‘(𝐴 ·P 𝐵)) ∨ 𝑟 ∈ (2nd ‘(𝐴 ·P 𝐵)))))
Distinct variable groups:   𝐴,𝑞,𝑟   𝐵,𝑞,𝑟

Proof of Theorem mullocpr
Dummy variables 𝑑 𝑒 𝑡 𝑢 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 prop 7570 . . . . . . . 8 (𝐴P → ⟨(1st𝐴), (2nd𝐴)⟩ ∈ P)
2 prmuloc 7661 . . . . . . . 8 ((⟨(1st𝐴), (2nd𝐴)⟩ ∈ P𝑞 <Q 𝑟) → ∃𝑑Q𝑢Q (𝑑 ∈ (1st𝐴) ∧ 𝑢 ∈ (2nd𝐴) ∧ (𝑢 ·Q 𝑞) <Q (𝑑 ·Q 𝑟)))
31, 2sylan 283 . . . . . . 7 ((𝐴P𝑞 <Q 𝑟) → ∃𝑑Q𝑢Q (𝑑 ∈ (1st𝐴) ∧ 𝑢 ∈ (2nd𝐴) ∧ (𝑢 ·Q 𝑞) <Q (𝑑 ·Q 𝑟)))
4 r2ex 2525 . . . . . . 7 (∃𝑑Q𝑢Q (𝑑 ∈ (1st𝐴) ∧ 𝑢 ∈ (2nd𝐴) ∧ (𝑢 ·Q 𝑞) <Q (𝑑 ·Q 𝑟)) ↔ ∃𝑑𝑢((𝑑Q𝑢Q) ∧ (𝑑 ∈ (1st𝐴) ∧ 𝑢 ∈ (2nd𝐴) ∧ (𝑢 ·Q 𝑞) <Q (𝑑 ·Q 𝑟))))
53, 4sylib 122 . . . . . 6 ((𝐴P𝑞 <Q 𝑟) → ∃𝑑𝑢((𝑑Q𝑢Q) ∧ (𝑑 ∈ (1st𝐴) ∧ 𝑢 ∈ (2nd𝐴) ∧ (𝑢 ·Q 𝑞) <Q (𝑑 ·Q 𝑟))))
65adantlr 477 . . . . 5 (((𝐴P𝐵P) ∧ 𝑞 <Q 𝑟) → ∃𝑑𝑢((𝑑Q𝑢Q) ∧ (𝑑 ∈ (1st𝐴) ∧ 𝑢 ∈ (2nd𝐴) ∧ (𝑢 ·Q 𝑞) <Q (𝑑 ·Q 𝑟))))
76adantlr 477 . . . 4 ((((𝐴P𝐵P) ∧ (𝑞Q𝑟Q)) ∧ 𝑞 <Q 𝑟) → ∃𝑑𝑢((𝑑Q𝑢Q) ∧ (𝑑 ∈ (1st𝐴) ∧ 𝑢 ∈ (2nd𝐴) ∧ (𝑢 ·Q 𝑞) <Q (𝑑 ·Q 𝑟))))
8 simprr3 1049 . . . . . . . 8 (((((𝐴P𝐵P) ∧ (𝑞Q𝑟Q)) ∧ 𝑞 <Q 𝑟) ∧ ((𝑑Q𝑢Q) ∧ (𝑑 ∈ (1st𝐴) ∧ 𝑢 ∈ (2nd𝐴) ∧ (𝑢 ·Q 𝑞) <Q (𝑑 ·Q 𝑟)))) → (𝑢 ·Q 𝑞) <Q (𝑑 ·Q 𝑟))
9 simprl 529 . . . . . . . . 9 (((((𝐴P𝐵P) ∧ (𝑞Q𝑟Q)) ∧ 𝑞 <Q 𝑟) ∧ ((𝑑Q𝑢Q) ∧ (𝑑 ∈ (1st𝐴) ∧ 𝑢 ∈ (2nd𝐴) ∧ (𝑢 ·Q 𝑞) <Q (𝑑 ·Q 𝑟)))) → (𝑑Q𝑢Q))
10 mulclnq 7471 . . . . . . . . 9 ((𝑑Q𝑢Q) → (𝑑 ·Q 𝑢) ∈ Q)
119, 10syl 14 . . . . . . . 8 (((((𝐴P𝐵P) ∧ (𝑞Q𝑟Q)) ∧ 𝑞 <Q 𝑟) ∧ ((𝑑Q𝑢Q) ∧ (𝑑 ∈ (1st𝐴) ∧ 𝑢 ∈ (2nd𝐴) ∧ (𝑢 ·Q 𝑞) <Q (𝑑 ·Q 𝑟)))) → (𝑑 ·Q 𝑢) ∈ Q)
12 appdivnq 7658 . . . . . . . 8 (((𝑢 ·Q 𝑞) <Q (𝑑 ·Q 𝑟) ∧ (𝑑 ·Q 𝑢) ∈ Q) → ∃𝑒Q ((𝑢 ·Q 𝑞) <Q (𝑒 ·Q (𝑑 ·Q 𝑢)) ∧ (𝑒 ·Q (𝑑 ·Q 𝑢)) <Q (𝑑 ·Q 𝑟)))
138, 11, 12syl2anc 411 . . . . . . 7 (((((𝐴P𝐵P) ∧ (𝑞Q𝑟Q)) ∧ 𝑞 <Q 𝑟) ∧ ((𝑑Q𝑢Q) ∧ (𝑑 ∈ (1st𝐴) ∧ 𝑢 ∈ (2nd𝐴) ∧ (𝑢 ·Q 𝑞) <Q (𝑑 ·Q 𝑟)))) → ∃𝑒Q ((𝑢 ·Q 𝑞) <Q (𝑒 ·Q (𝑑 ·Q 𝑢)) ∧ (𝑒 ·Q (𝑑 ·Q 𝑢)) <Q (𝑑 ·Q 𝑟)))
14 simprrr 540 . . . . . . . . 9 ((((((𝐴P𝐵P) ∧ (𝑞Q𝑟Q)) ∧ 𝑞 <Q 𝑟) ∧ ((𝑑Q𝑢Q) ∧ (𝑑 ∈ (1st𝐴) ∧ 𝑢 ∈ (2nd𝐴) ∧ (𝑢 ·Q 𝑞) <Q (𝑑 ·Q 𝑟)))) ∧ (𝑒Q ∧ ((𝑢 ·Q 𝑞) <Q (𝑒 ·Q (𝑑 ·Q 𝑢)) ∧ (𝑒 ·Q (𝑑 ·Q 𝑢)) <Q (𝑑 ·Q 𝑟)))) → (𝑒 ·Q (𝑑 ·Q 𝑢)) <Q (𝑑 ·Q 𝑟))
1511adantr 276 . . . . . . . . 9 ((((((𝐴P𝐵P) ∧ (𝑞Q𝑟Q)) ∧ 𝑞 <Q 𝑟) ∧ ((𝑑Q𝑢Q) ∧ (𝑑 ∈ (1st𝐴) ∧ 𝑢 ∈ (2nd𝐴) ∧ (𝑢 ·Q 𝑞) <Q (𝑑 ·Q 𝑟)))) ∧ (𝑒Q ∧ ((𝑢 ·Q 𝑞) <Q (𝑒 ·Q (𝑑 ·Q 𝑢)) ∧ (𝑒 ·Q (𝑑 ·Q 𝑢)) <Q (𝑑 ·Q 𝑟)))) → (𝑑 ·Q 𝑢) ∈ Q)
16 appdivnq 7658 . . . . . . . . 9 (((𝑒 ·Q (𝑑 ·Q 𝑢)) <Q (𝑑 ·Q 𝑟) ∧ (𝑑 ·Q 𝑢) ∈ Q) → ∃𝑡Q ((𝑒 ·Q (𝑑 ·Q 𝑢)) <Q (𝑡 ·Q (𝑑 ·Q 𝑢)) ∧ (𝑡 ·Q (𝑑 ·Q 𝑢)) <Q (𝑑 ·Q 𝑟)))
1714, 15, 16syl2anc 411 . . . . . . . 8 ((((((𝐴P𝐵P) ∧ (𝑞Q𝑟Q)) ∧ 𝑞 <Q 𝑟) ∧ ((𝑑Q𝑢Q) ∧ (𝑑 ∈ (1st𝐴) ∧ 𝑢 ∈ (2nd𝐴) ∧ (𝑢 ·Q 𝑞) <Q (𝑑 ·Q 𝑟)))) ∧ (𝑒Q ∧ ((𝑢 ·Q 𝑞) <Q (𝑒 ·Q (𝑑 ·Q 𝑢)) ∧ (𝑒 ·Q (𝑑 ·Q 𝑢)) <Q (𝑑 ·Q 𝑟)))) → ∃𝑡Q ((𝑒 ·Q (𝑑 ·Q 𝑢)) <Q (𝑡 ·Q (𝑑 ·Q 𝑢)) ∧ (𝑡 ·Q (𝑑 ·Q 𝑢)) <Q (𝑑 ·Q 𝑟)))
18 simplll 533 . . . . . . . . . 10 (((((𝐴P𝐵P) ∧ (𝑞Q𝑟Q)) ∧ 𝑞 <Q 𝑟) ∧ ((𝑑Q𝑢Q) ∧ (𝑑 ∈ (1st𝐴) ∧ 𝑢 ∈ (2nd𝐴) ∧ (𝑢 ·Q 𝑞) <Q (𝑑 ·Q 𝑟)))) → (𝐴P𝐵P))
1918ad2antrr 488 . . . . . . . . 9 (((((((𝐴P𝐵P) ∧ (𝑞Q𝑟Q)) ∧ 𝑞 <Q 𝑟) ∧ ((𝑑Q𝑢Q) ∧ (𝑑 ∈ (1st𝐴) ∧ 𝑢 ∈ (2nd𝐴) ∧ (𝑢 ·Q 𝑞) <Q (𝑑 ·Q 𝑟)))) ∧ (𝑒Q ∧ ((𝑢 ·Q 𝑞) <Q (𝑒 ·Q (𝑑 ·Q 𝑢)) ∧ (𝑒 ·Q (𝑑 ·Q 𝑢)) <Q (𝑑 ·Q 𝑟)))) ∧ (𝑡Q ∧ ((𝑒 ·Q (𝑑 ·Q 𝑢)) <Q (𝑡 ·Q (𝑑 ·Q 𝑢)) ∧ (𝑡 ·Q (𝑑 ·Q 𝑢)) <Q (𝑑 ·Q 𝑟)))) → (𝐴P𝐵P))
20 simprl 529 . . . . . . . . . 10 ((𝑒Q ∧ ((𝑢 ·Q 𝑞) <Q (𝑒 ·Q (𝑑 ·Q 𝑢)) ∧ (𝑒 ·Q (𝑑 ·Q 𝑢)) <Q (𝑑 ·Q 𝑟))) → (𝑢 ·Q 𝑞) <Q (𝑒 ·Q (𝑑 ·Q 𝑢)))
2120ad2antlr 489 . . . . . . . . 9 (((((((𝐴P𝐵P) ∧ (𝑞Q𝑟Q)) ∧ 𝑞 <Q 𝑟) ∧ ((𝑑Q𝑢Q) ∧ (𝑑 ∈ (1st𝐴) ∧ 𝑢 ∈ (2nd𝐴) ∧ (𝑢 ·Q 𝑞) <Q (𝑑 ·Q 𝑟)))) ∧ (𝑒Q ∧ ((𝑢 ·Q 𝑞) <Q (𝑒 ·Q (𝑑 ·Q 𝑢)) ∧ (𝑒 ·Q (𝑑 ·Q 𝑢)) <Q (𝑑 ·Q 𝑟)))) ∧ (𝑡Q ∧ ((𝑒 ·Q (𝑑 ·Q 𝑢)) <Q (𝑡 ·Q (𝑑 ·Q 𝑢)) ∧ (𝑡 ·Q (𝑑 ·Q 𝑢)) <Q (𝑑 ·Q 𝑟)))) → (𝑢 ·Q 𝑞) <Q (𝑒 ·Q (𝑑 ·Q 𝑢)))
22 simprrl 539 . . . . . . . . 9 (((((((𝐴P𝐵P) ∧ (𝑞Q𝑟Q)) ∧ 𝑞 <Q 𝑟) ∧ ((𝑑Q𝑢Q) ∧ (𝑑 ∈ (1st𝐴) ∧ 𝑢 ∈ (2nd𝐴) ∧ (𝑢 ·Q 𝑞) <Q (𝑑 ·Q 𝑟)))) ∧ (𝑒Q ∧ ((𝑢 ·Q 𝑞) <Q (𝑒 ·Q (𝑑 ·Q 𝑢)) ∧ (𝑒 ·Q (𝑑 ·Q 𝑢)) <Q (𝑑 ·Q 𝑟)))) ∧ (𝑡Q ∧ ((𝑒 ·Q (𝑑 ·Q 𝑢)) <Q (𝑡 ·Q (𝑑 ·Q 𝑢)) ∧ (𝑡 ·Q (𝑑 ·Q 𝑢)) <Q (𝑑 ·Q 𝑟)))) → (𝑒 ·Q (𝑑 ·Q 𝑢)) <Q (𝑡 ·Q (𝑑 ·Q 𝑢)))
23 simprrr 540 . . . . . . . . 9 (((((((𝐴P𝐵P) ∧ (𝑞Q𝑟Q)) ∧ 𝑞 <Q 𝑟) ∧ ((𝑑Q𝑢Q) ∧ (𝑑 ∈ (1st𝐴) ∧ 𝑢 ∈ (2nd𝐴) ∧ (𝑢 ·Q 𝑞) <Q (𝑑 ·Q 𝑟)))) ∧ (𝑒Q ∧ ((𝑢 ·Q 𝑞) <Q (𝑒 ·Q (𝑑 ·Q 𝑢)) ∧ (𝑒 ·Q (𝑑 ·Q 𝑢)) <Q (𝑑 ·Q 𝑟)))) ∧ (𝑡Q ∧ ((𝑒 ·Q (𝑑 ·Q 𝑢)) <Q (𝑡 ·Q (𝑑 ·Q 𝑢)) ∧ (𝑡 ·Q (𝑑 ·Q 𝑢)) <Q (𝑑 ·Q 𝑟)))) → (𝑡 ·Q (𝑑 ·Q 𝑢)) <Q (𝑑 ·Q 𝑟))
24 simpllr 534 . . . . . . . . . 10 (((((𝐴P𝐵P) ∧ (𝑞Q𝑟Q)) ∧ 𝑞 <Q 𝑟) ∧ ((𝑑Q𝑢Q) ∧ (𝑑 ∈ (1st𝐴) ∧ 𝑢 ∈ (2nd𝐴) ∧ (𝑢 ·Q 𝑞) <Q (𝑑 ·Q 𝑟)))) → (𝑞Q𝑟Q))
2524ad2antrr 488 . . . . . . . . 9 (((((((𝐴P𝐵P) ∧ (𝑞Q𝑟Q)) ∧ 𝑞 <Q 𝑟) ∧ ((𝑑Q𝑢Q) ∧ (𝑑 ∈ (1st𝐴) ∧ 𝑢 ∈ (2nd𝐴) ∧ (𝑢 ·Q 𝑞) <Q (𝑑 ·Q 𝑟)))) ∧ (𝑒Q ∧ ((𝑢 ·Q 𝑞) <Q (𝑒 ·Q (𝑑 ·Q 𝑢)) ∧ (𝑒 ·Q (𝑑 ·Q 𝑢)) <Q (𝑑 ·Q 𝑟)))) ∧ (𝑡Q ∧ ((𝑒 ·Q (𝑑 ·Q 𝑢)) <Q (𝑡 ·Q (𝑑 ·Q 𝑢)) ∧ (𝑡 ·Q (𝑑 ·Q 𝑢)) <Q (𝑑 ·Q 𝑟)))) → (𝑞Q𝑟Q))
269ad2antrr 488 . . . . . . . . 9 (((((((𝐴P𝐵P) ∧ (𝑞Q𝑟Q)) ∧ 𝑞 <Q 𝑟) ∧ ((𝑑Q𝑢Q) ∧ (𝑑 ∈ (1st𝐴) ∧ 𝑢 ∈ (2nd𝐴) ∧ (𝑢 ·Q 𝑞) <Q (𝑑 ·Q 𝑟)))) ∧ (𝑒Q ∧ ((𝑢 ·Q 𝑞) <Q (𝑒 ·Q (𝑑 ·Q 𝑢)) ∧ (𝑒 ·Q (𝑑 ·Q 𝑢)) <Q (𝑑 ·Q 𝑟)))) ∧ (𝑡Q ∧ ((𝑒 ·Q (𝑑 ·Q 𝑢)) <Q (𝑡 ·Q (𝑑 ·Q 𝑢)) ∧ (𝑡 ·Q (𝑑 ·Q 𝑢)) <Q (𝑑 ·Q 𝑟)))) → (𝑑Q𝑢Q))
27 3simpa 996 . . . . . . . . . . 11 ((𝑑 ∈ (1st𝐴) ∧ 𝑢 ∈ (2nd𝐴) ∧ (𝑢 ·Q 𝑞) <Q (𝑑 ·Q 𝑟)) → (𝑑 ∈ (1st𝐴) ∧ 𝑢 ∈ (2nd𝐴)))
2827ad2antll 491 . . . . . . . . . 10 (((((𝐴P𝐵P) ∧ (𝑞Q𝑟Q)) ∧ 𝑞 <Q 𝑟) ∧ ((𝑑Q𝑢Q) ∧ (𝑑 ∈ (1st𝐴) ∧ 𝑢 ∈ (2nd𝐴) ∧ (𝑢 ·Q 𝑞) <Q (𝑑 ·Q 𝑟)))) → (𝑑 ∈ (1st𝐴) ∧ 𝑢 ∈ (2nd𝐴)))
2928ad2antrr 488 . . . . . . . . 9 (((((((𝐴P𝐵P) ∧ (𝑞Q𝑟Q)) ∧ 𝑞 <Q 𝑟) ∧ ((𝑑Q𝑢Q) ∧ (𝑑 ∈ (1st𝐴) ∧ 𝑢 ∈ (2nd𝐴) ∧ (𝑢 ·Q 𝑞) <Q (𝑑 ·Q 𝑟)))) ∧ (𝑒Q ∧ ((𝑢 ·Q 𝑞) <Q (𝑒 ·Q (𝑑 ·Q 𝑢)) ∧ (𝑒 ·Q (𝑑 ·Q 𝑢)) <Q (𝑑 ·Q 𝑟)))) ∧ (𝑡Q ∧ ((𝑒 ·Q (𝑑 ·Q 𝑢)) <Q (𝑡 ·Q (𝑑 ·Q 𝑢)) ∧ (𝑡 ·Q (𝑑 ·Q 𝑢)) <Q (𝑑 ·Q 𝑟)))) → (𝑑 ∈ (1st𝐴) ∧ 𝑢 ∈ (2nd𝐴)))
30 simplrl 535 . . . . . . . . . 10 (((((((𝐴P𝐵P) ∧ (𝑞Q𝑟Q)) ∧ 𝑞 <Q 𝑟) ∧ ((𝑑Q𝑢Q) ∧ (𝑑 ∈ (1st𝐴) ∧ 𝑢 ∈ (2nd𝐴) ∧ (𝑢 ·Q 𝑞) <Q (𝑑 ·Q 𝑟)))) ∧ (𝑒Q ∧ ((𝑢 ·Q 𝑞) <Q (𝑒 ·Q (𝑑 ·Q 𝑢)) ∧ (𝑒 ·Q (𝑑 ·Q 𝑢)) <Q (𝑑 ·Q 𝑟)))) ∧ (𝑡Q ∧ ((𝑒 ·Q (𝑑 ·Q 𝑢)) <Q (𝑡 ·Q (𝑑 ·Q 𝑢)) ∧ (𝑡 ·Q (𝑑 ·Q 𝑢)) <Q (𝑑 ·Q 𝑟)))) → 𝑒Q)
31 simprl 529 . . . . . . . . . 10 (((((((𝐴P𝐵P) ∧ (𝑞Q𝑟Q)) ∧ 𝑞 <Q 𝑟) ∧ ((𝑑Q𝑢Q) ∧ (𝑑 ∈ (1st𝐴) ∧ 𝑢 ∈ (2nd𝐴) ∧ (𝑢 ·Q 𝑞) <Q (𝑑 ·Q 𝑟)))) ∧ (𝑒Q ∧ ((𝑢 ·Q 𝑞) <Q (𝑒 ·Q (𝑑 ·Q 𝑢)) ∧ (𝑒 ·Q (𝑑 ·Q 𝑢)) <Q (𝑑 ·Q 𝑟)))) ∧ (𝑡Q ∧ ((𝑒 ·Q (𝑑 ·Q 𝑢)) <Q (𝑡 ·Q (𝑑 ·Q 𝑢)) ∧ (𝑡 ·Q (𝑑 ·Q 𝑢)) <Q (𝑑 ·Q 𝑟)))) → 𝑡Q)
3230, 31jca 306 . . . . . . . . 9 (((((((𝐴P𝐵P) ∧ (𝑞Q𝑟Q)) ∧ 𝑞 <Q 𝑟) ∧ ((𝑑Q𝑢Q) ∧ (𝑑 ∈ (1st𝐴) ∧ 𝑢 ∈ (2nd𝐴) ∧ (𝑢 ·Q 𝑞) <Q (𝑑 ·Q 𝑟)))) ∧ (𝑒Q ∧ ((𝑢 ·Q 𝑞) <Q (𝑒 ·Q (𝑑 ·Q 𝑢)) ∧ (𝑒 ·Q (𝑑 ·Q 𝑢)) <Q (𝑑 ·Q 𝑟)))) ∧ (𝑡Q ∧ ((𝑒 ·Q (𝑑 ·Q 𝑢)) <Q (𝑡 ·Q (𝑑 ·Q 𝑢)) ∧ (𝑡 ·Q (𝑑 ·Q 𝑢)) <Q (𝑑 ·Q 𝑟)))) → (𝑒Q𝑡Q))
3319, 21, 22, 23, 25, 26, 29, 32mullocprlem 7665 . . . . . . . 8 (((((((𝐴P𝐵P) ∧ (𝑞Q𝑟Q)) ∧ 𝑞 <Q 𝑟) ∧ ((𝑑Q𝑢Q) ∧ (𝑑 ∈ (1st𝐴) ∧ 𝑢 ∈ (2nd𝐴) ∧ (𝑢 ·Q 𝑞) <Q (𝑑 ·Q 𝑟)))) ∧ (𝑒Q ∧ ((𝑢 ·Q 𝑞) <Q (𝑒 ·Q (𝑑 ·Q 𝑢)) ∧ (𝑒 ·Q (𝑑 ·Q 𝑢)) <Q (𝑑 ·Q 𝑟)))) ∧ (𝑡Q ∧ ((𝑒 ·Q (𝑑 ·Q 𝑢)) <Q (𝑡 ·Q (𝑑 ·Q 𝑢)) ∧ (𝑡 ·Q (𝑑 ·Q 𝑢)) <Q (𝑑 ·Q 𝑟)))) → (𝑞 ∈ (1st ‘(𝐴 ·P 𝐵)) ∨ 𝑟 ∈ (2nd ‘(𝐴 ·P 𝐵))))
3417, 33rexlimddv 2627 . . . . . . 7 ((((((𝐴P𝐵P) ∧ (𝑞Q𝑟Q)) ∧ 𝑞 <Q 𝑟) ∧ ((𝑑Q𝑢Q) ∧ (𝑑 ∈ (1st𝐴) ∧ 𝑢 ∈ (2nd𝐴) ∧ (𝑢 ·Q 𝑞) <Q (𝑑 ·Q 𝑟)))) ∧ (𝑒Q ∧ ((𝑢 ·Q 𝑞) <Q (𝑒 ·Q (𝑑 ·Q 𝑢)) ∧ (𝑒 ·Q (𝑑 ·Q 𝑢)) <Q (𝑑 ·Q 𝑟)))) → (𝑞 ∈ (1st ‘(𝐴 ·P 𝐵)) ∨ 𝑟 ∈ (2nd ‘(𝐴 ·P 𝐵))))
3513, 34rexlimddv 2627 . . . . . 6 (((((𝐴P𝐵P) ∧ (𝑞Q𝑟Q)) ∧ 𝑞 <Q 𝑟) ∧ ((𝑑Q𝑢Q) ∧ (𝑑 ∈ (1st𝐴) ∧ 𝑢 ∈ (2nd𝐴) ∧ (𝑢 ·Q 𝑞) <Q (𝑑 ·Q 𝑟)))) → (𝑞 ∈ (1st ‘(𝐴 ·P 𝐵)) ∨ 𝑟 ∈ (2nd ‘(𝐴 ·P 𝐵))))
3635ex 115 . . . . 5 ((((𝐴P𝐵P) ∧ (𝑞Q𝑟Q)) ∧ 𝑞 <Q 𝑟) → (((𝑑Q𝑢Q) ∧ (𝑑 ∈ (1st𝐴) ∧ 𝑢 ∈ (2nd𝐴) ∧ (𝑢 ·Q 𝑞) <Q (𝑑 ·Q 𝑟))) → (𝑞 ∈ (1st ‘(𝐴 ·P 𝐵)) ∨ 𝑟 ∈ (2nd ‘(𝐴 ·P 𝐵)))))
3736exlimdvv 1920 . . . 4 ((((𝐴P𝐵P) ∧ (𝑞Q𝑟Q)) ∧ 𝑞 <Q 𝑟) → (∃𝑑𝑢((𝑑Q𝑢Q) ∧ (𝑑 ∈ (1st𝐴) ∧ 𝑢 ∈ (2nd𝐴) ∧ (𝑢 ·Q 𝑞) <Q (𝑑 ·Q 𝑟))) → (𝑞 ∈ (1st ‘(𝐴 ·P 𝐵)) ∨ 𝑟 ∈ (2nd ‘(𝐴 ·P 𝐵)))))
387, 37mpd 13 . . 3 ((((𝐴P𝐵P) ∧ (𝑞Q𝑟Q)) ∧ 𝑞 <Q 𝑟) → (𝑞 ∈ (1st ‘(𝐴 ·P 𝐵)) ∨ 𝑟 ∈ (2nd ‘(𝐴 ·P 𝐵))))
3938ex 115 . 2 (((𝐴P𝐵P) ∧ (𝑞Q𝑟Q)) → (𝑞 <Q 𝑟 → (𝑞 ∈ (1st ‘(𝐴 ·P 𝐵)) ∨ 𝑟 ∈ (2nd ‘(𝐴 ·P 𝐵)))))
4039ralrimivva 2587 1 ((𝐴P𝐵P) → ∀𝑞Q𝑟Q (𝑞 <Q 𝑟 → (𝑞 ∈ (1st ‘(𝐴 ·P 𝐵)) ∨ 𝑟 ∈ (2nd ‘(𝐴 ·P 𝐵)))))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wo 709  w3a 980  wex 1514  wcel 2175  wral 2483  wrex 2484  cop 3635   class class class wbr 4043  cfv 5268  (class class class)co 5934  1st c1st 6214  2nd c2nd 6215  Qcnq 7375   ·Q cmq 7378   <Q cltq 7380  Pcnp 7386   ·P cmp 7389
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-13 2177  ax-14 2178  ax-ext 2186  ax-coll 4158  ax-sep 4161  ax-nul 4169  ax-pow 4217  ax-pr 4252  ax-un 4478  ax-setind 4583  ax-iinf 4634
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1375  df-fal 1378  df-nf 1483  df-sb 1785  df-eu 2056  df-mo 2057  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ne 2376  df-ral 2488  df-rex 2489  df-reu 2490  df-rab 2492  df-v 2773  df-sbc 2998  df-csb 3093  df-dif 3167  df-un 3169  df-in 3171  df-ss 3178  df-nul 3460  df-pw 3617  df-sn 3638  df-pr 3639  df-op 3641  df-uni 3850  df-int 3885  df-iun 3928  df-br 4044  df-opab 4105  df-mpt 4106  df-tr 4142  df-eprel 4334  df-id 4338  df-po 4341  df-iso 4342  df-iord 4411  df-on 4413  df-suc 4416  df-iom 4637  df-xp 4679  df-rel 4680  df-cnv 4681  df-co 4682  df-dm 4683  df-rn 4684  df-res 4685  df-ima 4686  df-iota 5229  df-fun 5270  df-fn 5271  df-f 5272  df-f1 5273  df-fo 5274  df-f1o 5275  df-fv 5276  df-ov 5937  df-oprab 5938  df-mpo 5939  df-1st 6216  df-2nd 6217  df-recs 6381  df-irdg 6446  df-1o 6492  df-2o 6493  df-oadd 6496  df-omul 6497  df-er 6610  df-ec 6612  df-qs 6616  df-ni 7399  df-pli 7400  df-mi 7401  df-lti 7402  df-plpq 7439  df-mpq 7440  df-enq 7442  df-nqqs 7443  df-plqqs 7444  df-mqqs 7445  df-1nqqs 7446  df-rq 7447  df-ltnqqs 7448  df-enq0 7519  df-nq0 7520  df-0nq0 7521  df-plq0 7522  df-mq0 7523  df-inp 7561  df-imp 7564
This theorem is referenced by:  mulclpr  7667
  Copyright terms: Public domain W3C validator