ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mullocpr GIF version

Theorem mullocpr 7638
Description: Locatedness of multiplication on positive reals. Lemma 12.9 in [BauerTaylor], p. 56 (but where both 𝐴 and 𝐵 are positive, not just 𝐴). (Contributed by Jim Kingdon, 8-Dec-2019.)
Assertion
Ref Expression
mullocpr ((𝐴P𝐵P) → ∀𝑞Q𝑟Q (𝑞 <Q 𝑟 → (𝑞 ∈ (1st ‘(𝐴 ·P 𝐵)) ∨ 𝑟 ∈ (2nd ‘(𝐴 ·P 𝐵)))))
Distinct variable groups:   𝐴,𝑞,𝑟   𝐵,𝑞,𝑟

Proof of Theorem mullocpr
Dummy variables 𝑑 𝑒 𝑡 𝑢 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 prop 7542 . . . . . . . 8 (𝐴P → ⟨(1st𝐴), (2nd𝐴)⟩ ∈ P)
2 prmuloc 7633 . . . . . . . 8 ((⟨(1st𝐴), (2nd𝐴)⟩ ∈ P𝑞 <Q 𝑟) → ∃𝑑Q𝑢Q (𝑑 ∈ (1st𝐴) ∧ 𝑢 ∈ (2nd𝐴) ∧ (𝑢 ·Q 𝑞) <Q (𝑑 ·Q 𝑟)))
31, 2sylan 283 . . . . . . 7 ((𝐴P𝑞 <Q 𝑟) → ∃𝑑Q𝑢Q (𝑑 ∈ (1st𝐴) ∧ 𝑢 ∈ (2nd𝐴) ∧ (𝑢 ·Q 𝑞) <Q (𝑑 ·Q 𝑟)))
4 r2ex 2517 . . . . . . 7 (∃𝑑Q𝑢Q (𝑑 ∈ (1st𝐴) ∧ 𝑢 ∈ (2nd𝐴) ∧ (𝑢 ·Q 𝑞) <Q (𝑑 ·Q 𝑟)) ↔ ∃𝑑𝑢((𝑑Q𝑢Q) ∧ (𝑑 ∈ (1st𝐴) ∧ 𝑢 ∈ (2nd𝐴) ∧ (𝑢 ·Q 𝑞) <Q (𝑑 ·Q 𝑟))))
53, 4sylib 122 . . . . . 6 ((𝐴P𝑞 <Q 𝑟) → ∃𝑑𝑢((𝑑Q𝑢Q) ∧ (𝑑 ∈ (1st𝐴) ∧ 𝑢 ∈ (2nd𝐴) ∧ (𝑢 ·Q 𝑞) <Q (𝑑 ·Q 𝑟))))
65adantlr 477 . . . . 5 (((𝐴P𝐵P) ∧ 𝑞 <Q 𝑟) → ∃𝑑𝑢((𝑑Q𝑢Q) ∧ (𝑑 ∈ (1st𝐴) ∧ 𝑢 ∈ (2nd𝐴) ∧ (𝑢 ·Q 𝑞) <Q (𝑑 ·Q 𝑟))))
76adantlr 477 . . . 4 ((((𝐴P𝐵P) ∧ (𝑞Q𝑟Q)) ∧ 𝑞 <Q 𝑟) → ∃𝑑𝑢((𝑑Q𝑢Q) ∧ (𝑑 ∈ (1st𝐴) ∧ 𝑢 ∈ (2nd𝐴) ∧ (𝑢 ·Q 𝑞) <Q (𝑑 ·Q 𝑟))))
8 simprr3 1049 . . . . . . . 8 (((((𝐴P𝐵P) ∧ (𝑞Q𝑟Q)) ∧ 𝑞 <Q 𝑟) ∧ ((𝑑Q𝑢Q) ∧ (𝑑 ∈ (1st𝐴) ∧ 𝑢 ∈ (2nd𝐴) ∧ (𝑢 ·Q 𝑞) <Q (𝑑 ·Q 𝑟)))) → (𝑢 ·Q 𝑞) <Q (𝑑 ·Q 𝑟))
9 simprl 529 . . . . . . . . 9 (((((𝐴P𝐵P) ∧ (𝑞Q𝑟Q)) ∧ 𝑞 <Q 𝑟) ∧ ((𝑑Q𝑢Q) ∧ (𝑑 ∈ (1st𝐴) ∧ 𝑢 ∈ (2nd𝐴) ∧ (𝑢 ·Q 𝑞) <Q (𝑑 ·Q 𝑟)))) → (𝑑Q𝑢Q))
10 mulclnq 7443 . . . . . . . . 9 ((𝑑Q𝑢Q) → (𝑑 ·Q 𝑢) ∈ Q)
119, 10syl 14 . . . . . . . 8 (((((𝐴P𝐵P) ∧ (𝑞Q𝑟Q)) ∧ 𝑞 <Q 𝑟) ∧ ((𝑑Q𝑢Q) ∧ (𝑑 ∈ (1st𝐴) ∧ 𝑢 ∈ (2nd𝐴) ∧ (𝑢 ·Q 𝑞) <Q (𝑑 ·Q 𝑟)))) → (𝑑 ·Q 𝑢) ∈ Q)
12 appdivnq 7630 . . . . . . . 8 (((𝑢 ·Q 𝑞) <Q (𝑑 ·Q 𝑟) ∧ (𝑑 ·Q 𝑢) ∈ Q) → ∃𝑒Q ((𝑢 ·Q 𝑞) <Q (𝑒 ·Q (𝑑 ·Q 𝑢)) ∧ (𝑒 ·Q (𝑑 ·Q 𝑢)) <Q (𝑑 ·Q 𝑟)))
138, 11, 12syl2anc 411 . . . . . . 7 (((((𝐴P𝐵P) ∧ (𝑞Q𝑟Q)) ∧ 𝑞 <Q 𝑟) ∧ ((𝑑Q𝑢Q) ∧ (𝑑 ∈ (1st𝐴) ∧ 𝑢 ∈ (2nd𝐴) ∧ (𝑢 ·Q 𝑞) <Q (𝑑 ·Q 𝑟)))) → ∃𝑒Q ((𝑢 ·Q 𝑞) <Q (𝑒 ·Q (𝑑 ·Q 𝑢)) ∧ (𝑒 ·Q (𝑑 ·Q 𝑢)) <Q (𝑑 ·Q 𝑟)))
14 simprrr 540 . . . . . . . . 9 ((((((𝐴P𝐵P) ∧ (𝑞Q𝑟Q)) ∧ 𝑞 <Q 𝑟) ∧ ((𝑑Q𝑢Q) ∧ (𝑑 ∈ (1st𝐴) ∧ 𝑢 ∈ (2nd𝐴) ∧ (𝑢 ·Q 𝑞) <Q (𝑑 ·Q 𝑟)))) ∧ (𝑒Q ∧ ((𝑢 ·Q 𝑞) <Q (𝑒 ·Q (𝑑 ·Q 𝑢)) ∧ (𝑒 ·Q (𝑑 ·Q 𝑢)) <Q (𝑑 ·Q 𝑟)))) → (𝑒 ·Q (𝑑 ·Q 𝑢)) <Q (𝑑 ·Q 𝑟))
1511adantr 276 . . . . . . . . 9 ((((((𝐴P𝐵P) ∧ (𝑞Q𝑟Q)) ∧ 𝑞 <Q 𝑟) ∧ ((𝑑Q𝑢Q) ∧ (𝑑 ∈ (1st𝐴) ∧ 𝑢 ∈ (2nd𝐴) ∧ (𝑢 ·Q 𝑞) <Q (𝑑 ·Q 𝑟)))) ∧ (𝑒Q ∧ ((𝑢 ·Q 𝑞) <Q (𝑒 ·Q (𝑑 ·Q 𝑢)) ∧ (𝑒 ·Q (𝑑 ·Q 𝑢)) <Q (𝑑 ·Q 𝑟)))) → (𝑑 ·Q 𝑢) ∈ Q)
16 appdivnq 7630 . . . . . . . . 9 (((𝑒 ·Q (𝑑 ·Q 𝑢)) <Q (𝑑 ·Q 𝑟) ∧ (𝑑 ·Q 𝑢) ∈ Q) → ∃𝑡Q ((𝑒 ·Q (𝑑 ·Q 𝑢)) <Q (𝑡 ·Q (𝑑 ·Q 𝑢)) ∧ (𝑡 ·Q (𝑑 ·Q 𝑢)) <Q (𝑑 ·Q 𝑟)))
1714, 15, 16syl2anc 411 . . . . . . . 8 ((((((𝐴P𝐵P) ∧ (𝑞Q𝑟Q)) ∧ 𝑞 <Q 𝑟) ∧ ((𝑑Q𝑢Q) ∧ (𝑑 ∈ (1st𝐴) ∧ 𝑢 ∈ (2nd𝐴) ∧ (𝑢 ·Q 𝑞) <Q (𝑑 ·Q 𝑟)))) ∧ (𝑒Q ∧ ((𝑢 ·Q 𝑞) <Q (𝑒 ·Q (𝑑 ·Q 𝑢)) ∧ (𝑒 ·Q (𝑑 ·Q 𝑢)) <Q (𝑑 ·Q 𝑟)))) → ∃𝑡Q ((𝑒 ·Q (𝑑 ·Q 𝑢)) <Q (𝑡 ·Q (𝑑 ·Q 𝑢)) ∧ (𝑡 ·Q (𝑑 ·Q 𝑢)) <Q (𝑑 ·Q 𝑟)))
18 simplll 533 . . . . . . . . . 10 (((((𝐴P𝐵P) ∧ (𝑞Q𝑟Q)) ∧ 𝑞 <Q 𝑟) ∧ ((𝑑Q𝑢Q) ∧ (𝑑 ∈ (1st𝐴) ∧ 𝑢 ∈ (2nd𝐴) ∧ (𝑢 ·Q 𝑞) <Q (𝑑 ·Q 𝑟)))) → (𝐴P𝐵P))
1918ad2antrr 488 . . . . . . . . 9 (((((((𝐴P𝐵P) ∧ (𝑞Q𝑟Q)) ∧ 𝑞 <Q 𝑟) ∧ ((𝑑Q𝑢Q) ∧ (𝑑 ∈ (1st𝐴) ∧ 𝑢 ∈ (2nd𝐴) ∧ (𝑢 ·Q 𝑞) <Q (𝑑 ·Q 𝑟)))) ∧ (𝑒Q ∧ ((𝑢 ·Q 𝑞) <Q (𝑒 ·Q (𝑑 ·Q 𝑢)) ∧ (𝑒 ·Q (𝑑 ·Q 𝑢)) <Q (𝑑 ·Q 𝑟)))) ∧ (𝑡Q ∧ ((𝑒 ·Q (𝑑 ·Q 𝑢)) <Q (𝑡 ·Q (𝑑 ·Q 𝑢)) ∧ (𝑡 ·Q (𝑑 ·Q 𝑢)) <Q (𝑑 ·Q 𝑟)))) → (𝐴P𝐵P))
20 simprl 529 . . . . . . . . . 10 ((𝑒Q ∧ ((𝑢 ·Q 𝑞) <Q (𝑒 ·Q (𝑑 ·Q 𝑢)) ∧ (𝑒 ·Q (𝑑 ·Q 𝑢)) <Q (𝑑 ·Q 𝑟))) → (𝑢 ·Q 𝑞) <Q (𝑒 ·Q (𝑑 ·Q 𝑢)))
2120ad2antlr 489 . . . . . . . . 9 (((((((𝐴P𝐵P) ∧ (𝑞Q𝑟Q)) ∧ 𝑞 <Q 𝑟) ∧ ((𝑑Q𝑢Q) ∧ (𝑑 ∈ (1st𝐴) ∧ 𝑢 ∈ (2nd𝐴) ∧ (𝑢 ·Q 𝑞) <Q (𝑑 ·Q 𝑟)))) ∧ (𝑒Q ∧ ((𝑢 ·Q 𝑞) <Q (𝑒 ·Q (𝑑 ·Q 𝑢)) ∧ (𝑒 ·Q (𝑑 ·Q 𝑢)) <Q (𝑑 ·Q 𝑟)))) ∧ (𝑡Q ∧ ((𝑒 ·Q (𝑑 ·Q 𝑢)) <Q (𝑡 ·Q (𝑑 ·Q 𝑢)) ∧ (𝑡 ·Q (𝑑 ·Q 𝑢)) <Q (𝑑 ·Q 𝑟)))) → (𝑢 ·Q 𝑞) <Q (𝑒 ·Q (𝑑 ·Q 𝑢)))
22 simprrl 539 . . . . . . . . 9 (((((((𝐴P𝐵P) ∧ (𝑞Q𝑟Q)) ∧ 𝑞 <Q 𝑟) ∧ ((𝑑Q𝑢Q) ∧ (𝑑 ∈ (1st𝐴) ∧ 𝑢 ∈ (2nd𝐴) ∧ (𝑢 ·Q 𝑞) <Q (𝑑 ·Q 𝑟)))) ∧ (𝑒Q ∧ ((𝑢 ·Q 𝑞) <Q (𝑒 ·Q (𝑑 ·Q 𝑢)) ∧ (𝑒 ·Q (𝑑 ·Q 𝑢)) <Q (𝑑 ·Q 𝑟)))) ∧ (𝑡Q ∧ ((𝑒 ·Q (𝑑 ·Q 𝑢)) <Q (𝑡 ·Q (𝑑 ·Q 𝑢)) ∧ (𝑡 ·Q (𝑑 ·Q 𝑢)) <Q (𝑑 ·Q 𝑟)))) → (𝑒 ·Q (𝑑 ·Q 𝑢)) <Q (𝑡 ·Q (𝑑 ·Q 𝑢)))
23 simprrr 540 . . . . . . . . 9 (((((((𝐴P𝐵P) ∧ (𝑞Q𝑟Q)) ∧ 𝑞 <Q 𝑟) ∧ ((𝑑Q𝑢Q) ∧ (𝑑 ∈ (1st𝐴) ∧ 𝑢 ∈ (2nd𝐴) ∧ (𝑢 ·Q 𝑞) <Q (𝑑 ·Q 𝑟)))) ∧ (𝑒Q ∧ ((𝑢 ·Q 𝑞) <Q (𝑒 ·Q (𝑑 ·Q 𝑢)) ∧ (𝑒 ·Q (𝑑 ·Q 𝑢)) <Q (𝑑 ·Q 𝑟)))) ∧ (𝑡Q ∧ ((𝑒 ·Q (𝑑 ·Q 𝑢)) <Q (𝑡 ·Q (𝑑 ·Q 𝑢)) ∧ (𝑡 ·Q (𝑑 ·Q 𝑢)) <Q (𝑑 ·Q 𝑟)))) → (𝑡 ·Q (𝑑 ·Q 𝑢)) <Q (𝑑 ·Q 𝑟))
24 simpllr 534 . . . . . . . . . 10 (((((𝐴P𝐵P) ∧ (𝑞Q𝑟Q)) ∧ 𝑞 <Q 𝑟) ∧ ((𝑑Q𝑢Q) ∧ (𝑑 ∈ (1st𝐴) ∧ 𝑢 ∈ (2nd𝐴) ∧ (𝑢 ·Q 𝑞) <Q (𝑑 ·Q 𝑟)))) → (𝑞Q𝑟Q))
2524ad2antrr 488 . . . . . . . . 9 (((((((𝐴P𝐵P) ∧ (𝑞Q𝑟Q)) ∧ 𝑞 <Q 𝑟) ∧ ((𝑑Q𝑢Q) ∧ (𝑑 ∈ (1st𝐴) ∧ 𝑢 ∈ (2nd𝐴) ∧ (𝑢 ·Q 𝑞) <Q (𝑑 ·Q 𝑟)))) ∧ (𝑒Q ∧ ((𝑢 ·Q 𝑞) <Q (𝑒 ·Q (𝑑 ·Q 𝑢)) ∧ (𝑒 ·Q (𝑑 ·Q 𝑢)) <Q (𝑑 ·Q 𝑟)))) ∧ (𝑡Q ∧ ((𝑒 ·Q (𝑑 ·Q 𝑢)) <Q (𝑡 ·Q (𝑑 ·Q 𝑢)) ∧ (𝑡 ·Q (𝑑 ·Q 𝑢)) <Q (𝑑 ·Q 𝑟)))) → (𝑞Q𝑟Q))
269ad2antrr 488 . . . . . . . . 9 (((((((𝐴P𝐵P) ∧ (𝑞Q𝑟Q)) ∧ 𝑞 <Q 𝑟) ∧ ((𝑑Q𝑢Q) ∧ (𝑑 ∈ (1st𝐴) ∧ 𝑢 ∈ (2nd𝐴) ∧ (𝑢 ·Q 𝑞) <Q (𝑑 ·Q 𝑟)))) ∧ (𝑒Q ∧ ((𝑢 ·Q 𝑞) <Q (𝑒 ·Q (𝑑 ·Q 𝑢)) ∧ (𝑒 ·Q (𝑑 ·Q 𝑢)) <Q (𝑑 ·Q 𝑟)))) ∧ (𝑡Q ∧ ((𝑒 ·Q (𝑑 ·Q 𝑢)) <Q (𝑡 ·Q (𝑑 ·Q 𝑢)) ∧ (𝑡 ·Q (𝑑 ·Q 𝑢)) <Q (𝑑 ·Q 𝑟)))) → (𝑑Q𝑢Q))
27 3simpa 996 . . . . . . . . . . 11 ((𝑑 ∈ (1st𝐴) ∧ 𝑢 ∈ (2nd𝐴) ∧ (𝑢 ·Q 𝑞) <Q (𝑑 ·Q 𝑟)) → (𝑑 ∈ (1st𝐴) ∧ 𝑢 ∈ (2nd𝐴)))
2827ad2antll 491 . . . . . . . . . 10 (((((𝐴P𝐵P) ∧ (𝑞Q𝑟Q)) ∧ 𝑞 <Q 𝑟) ∧ ((𝑑Q𝑢Q) ∧ (𝑑 ∈ (1st𝐴) ∧ 𝑢 ∈ (2nd𝐴) ∧ (𝑢 ·Q 𝑞) <Q (𝑑 ·Q 𝑟)))) → (𝑑 ∈ (1st𝐴) ∧ 𝑢 ∈ (2nd𝐴)))
2928ad2antrr 488 . . . . . . . . 9 (((((((𝐴P𝐵P) ∧ (𝑞Q𝑟Q)) ∧ 𝑞 <Q 𝑟) ∧ ((𝑑Q𝑢Q) ∧ (𝑑 ∈ (1st𝐴) ∧ 𝑢 ∈ (2nd𝐴) ∧ (𝑢 ·Q 𝑞) <Q (𝑑 ·Q 𝑟)))) ∧ (𝑒Q ∧ ((𝑢 ·Q 𝑞) <Q (𝑒 ·Q (𝑑 ·Q 𝑢)) ∧ (𝑒 ·Q (𝑑 ·Q 𝑢)) <Q (𝑑 ·Q 𝑟)))) ∧ (𝑡Q ∧ ((𝑒 ·Q (𝑑 ·Q 𝑢)) <Q (𝑡 ·Q (𝑑 ·Q 𝑢)) ∧ (𝑡 ·Q (𝑑 ·Q 𝑢)) <Q (𝑑 ·Q 𝑟)))) → (𝑑 ∈ (1st𝐴) ∧ 𝑢 ∈ (2nd𝐴)))
30 simplrl 535 . . . . . . . . . 10 (((((((𝐴P𝐵P) ∧ (𝑞Q𝑟Q)) ∧ 𝑞 <Q 𝑟) ∧ ((𝑑Q𝑢Q) ∧ (𝑑 ∈ (1st𝐴) ∧ 𝑢 ∈ (2nd𝐴) ∧ (𝑢 ·Q 𝑞) <Q (𝑑 ·Q 𝑟)))) ∧ (𝑒Q ∧ ((𝑢 ·Q 𝑞) <Q (𝑒 ·Q (𝑑 ·Q 𝑢)) ∧ (𝑒 ·Q (𝑑 ·Q 𝑢)) <Q (𝑑 ·Q 𝑟)))) ∧ (𝑡Q ∧ ((𝑒 ·Q (𝑑 ·Q 𝑢)) <Q (𝑡 ·Q (𝑑 ·Q 𝑢)) ∧ (𝑡 ·Q (𝑑 ·Q 𝑢)) <Q (𝑑 ·Q 𝑟)))) → 𝑒Q)
31 simprl 529 . . . . . . . . . 10 (((((((𝐴P𝐵P) ∧ (𝑞Q𝑟Q)) ∧ 𝑞 <Q 𝑟) ∧ ((𝑑Q𝑢Q) ∧ (𝑑 ∈ (1st𝐴) ∧ 𝑢 ∈ (2nd𝐴) ∧ (𝑢 ·Q 𝑞) <Q (𝑑 ·Q 𝑟)))) ∧ (𝑒Q ∧ ((𝑢 ·Q 𝑞) <Q (𝑒 ·Q (𝑑 ·Q 𝑢)) ∧ (𝑒 ·Q (𝑑 ·Q 𝑢)) <Q (𝑑 ·Q 𝑟)))) ∧ (𝑡Q ∧ ((𝑒 ·Q (𝑑 ·Q 𝑢)) <Q (𝑡 ·Q (𝑑 ·Q 𝑢)) ∧ (𝑡 ·Q (𝑑 ·Q 𝑢)) <Q (𝑑 ·Q 𝑟)))) → 𝑡Q)
3230, 31jca 306 . . . . . . . . 9 (((((((𝐴P𝐵P) ∧ (𝑞Q𝑟Q)) ∧ 𝑞 <Q 𝑟) ∧ ((𝑑Q𝑢Q) ∧ (𝑑 ∈ (1st𝐴) ∧ 𝑢 ∈ (2nd𝐴) ∧ (𝑢 ·Q 𝑞) <Q (𝑑 ·Q 𝑟)))) ∧ (𝑒Q ∧ ((𝑢 ·Q 𝑞) <Q (𝑒 ·Q (𝑑 ·Q 𝑢)) ∧ (𝑒 ·Q (𝑑 ·Q 𝑢)) <Q (𝑑 ·Q 𝑟)))) ∧ (𝑡Q ∧ ((𝑒 ·Q (𝑑 ·Q 𝑢)) <Q (𝑡 ·Q (𝑑 ·Q 𝑢)) ∧ (𝑡 ·Q (𝑑 ·Q 𝑢)) <Q (𝑑 ·Q 𝑟)))) → (𝑒Q𝑡Q))
3319, 21, 22, 23, 25, 26, 29, 32mullocprlem 7637 . . . . . . . 8 (((((((𝐴P𝐵P) ∧ (𝑞Q𝑟Q)) ∧ 𝑞 <Q 𝑟) ∧ ((𝑑Q𝑢Q) ∧ (𝑑 ∈ (1st𝐴) ∧ 𝑢 ∈ (2nd𝐴) ∧ (𝑢 ·Q 𝑞) <Q (𝑑 ·Q 𝑟)))) ∧ (𝑒Q ∧ ((𝑢 ·Q 𝑞) <Q (𝑒 ·Q (𝑑 ·Q 𝑢)) ∧ (𝑒 ·Q (𝑑 ·Q 𝑢)) <Q (𝑑 ·Q 𝑟)))) ∧ (𝑡Q ∧ ((𝑒 ·Q (𝑑 ·Q 𝑢)) <Q (𝑡 ·Q (𝑑 ·Q 𝑢)) ∧ (𝑡 ·Q (𝑑 ·Q 𝑢)) <Q (𝑑 ·Q 𝑟)))) → (𝑞 ∈ (1st ‘(𝐴 ·P 𝐵)) ∨ 𝑟 ∈ (2nd ‘(𝐴 ·P 𝐵))))
3417, 33rexlimddv 2619 . . . . . . 7 ((((((𝐴P𝐵P) ∧ (𝑞Q𝑟Q)) ∧ 𝑞 <Q 𝑟) ∧ ((𝑑Q𝑢Q) ∧ (𝑑 ∈ (1st𝐴) ∧ 𝑢 ∈ (2nd𝐴) ∧ (𝑢 ·Q 𝑞) <Q (𝑑 ·Q 𝑟)))) ∧ (𝑒Q ∧ ((𝑢 ·Q 𝑞) <Q (𝑒 ·Q (𝑑 ·Q 𝑢)) ∧ (𝑒 ·Q (𝑑 ·Q 𝑢)) <Q (𝑑 ·Q 𝑟)))) → (𝑞 ∈ (1st ‘(𝐴 ·P 𝐵)) ∨ 𝑟 ∈ (2nd ‘(𝐴 ·P 𝐵))))
3513, 34rexlimddv 2619 . . . . . 6 (((((𝐴P𝐵P) ∧ (𝑞Q𝑟Q)) ∧ 𝑞 <Q 𝑟) ∧ ((𝑑Q𝑢Q) ∧ (𝑑 ∈ (1st𝐴) ∧ 𝑢 ∈ (2nd𝐴) ∧ (𝑢 ·Q 𝑞) <Q (𝑑 ·Q 𝑟)))) → (𝑞 ∈ (1st ‘(𝐴 ·P 𝐵)) ∨ 𝑟 ∈ (2nd ‘(𝐴 ·P 𝐵))))
3635ex 115 . . . . 5 ((((𝐴P𝐵P) ∧ (𝑞Q𝑟Q)) ∧ 𝑞 <Q 𝑟) → (((𝑑Q𝑢Q) ∧ (𝑑 ∈ (1st𝐴) ∧ 𝑢 ∈ (2nd𝐴) ∧ (𝑢 ·Q 𝑞) <Q (𝑑 ·Q 𝑟))) → (𝑞 ∈ (1st ‘(𝐴 ·P 𝐵)) ∨ 𝑟 ∈ (2nd ‘(𝐴 ·P 𝐵)))))
3736exlimdvv 1912 . . . 4 ((((𝐴P𝐵P) ∧ (𝑞Q𝑟Q)) ∧ 𝑞 <Q 𝑟) → (∃𝑑𝑢((𝑑Q𝑢Q) ∧ (𝑑 ∈ (1st𝐴) ∧ 𝑢 ∈ (2nd𝐴) ∧ (𝑢 ·Q 𝑞) <Q (𝑑 ·Q 𝑟))) → (𝑞 ∈ (1st ‘(𝐴 ·P 𝐵)) ∨ 𝑟 ∈ (2nd ‘(𝐴 ·P 𝐵)))))
387, 37mpd 13 . . 3 ((((𝐴P𝐵P) ∧ (𝑞Q𝑟Q)) ∧ 𝑞 <Q 𝑟) → (𝑞 ∈ (1st ‘(𝐴 ·P 𝐵)) ∨ 𝑟 ∈ (2nd ‘(𝐴 ·P 𝐵))))
3938ex 115 . 2 (((𝐴P𝐵P) ∧ (𝑞Q𝑟Q)) → (𝑞 <Q 𝑟 → (𝑞 ∈ (1st ‘(𝐴 ·P 𝐵)) ∨ 𝑟 ∈ (2nd ‘(𝐴 ·P 𝐵)))))
4039ralrimivva 2579 1 ((𝐴P𝐵P) → ∀𝑞Q𝑟Q (𝑞 <Q 𝑟 → (𝑞 ∈ (1st ‘(𝐴 ·P 𝐵)) ∨ 𝑟 ∈ (2nd ‘(𝐴 ·P 𝐵)))))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wo 709  w3a 980  wex 1506  wcel 2167  wral 2475  wrex 2476  cop 3625   class class class wbr 4033  cfv 5258  (class class class)co 5922  1st c1st 6196  2nd c2nd 6197  Qcnq 7347   ·Q cmq 7350   <Q cltq 7352  Pcnp 7358   ·P cmp 7361
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4148  ax-sep 4151  ax-nul 4159  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-iinf 4624
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-ral 2480  df-rex 2481  df-reu 2482  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3451  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-int 3875  df-iun 3918  df-br 4034  df-opab 4095  df-mpt 4096  df-tr 4132  df-eprel 4324  df-id 4328  df-po 4331  df-iso 4332  df-iord 4401  df-on 4403  df-suc 4406  df-iom 4627  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-f1 5263  df-fo 5264  df-f1o 5265  df-fv 5266  df-ov 5925  df-oprab 5926  df-mpo 5927  df-1st 6198  df-2nd 6199  df-recs 6363  df-irdg 6428  df-1o 6474  df-2o 6475  df-oadd 6478  df-omul 6479  df-er 6592  df-ec 6594  df-qs 6598  df-ni 7371  df-pli 7372  df-mi 7373  df-lti 7374  df-plpq 7411  df-mpq 7412  df-enq 7414  df-nqqs 7415  df-plqqs 7416  df-mqqs 7417  df-1nqqs 7418  df-rq 7419  df-ltnqqs 7420  df-enq0 7491  df-nq0 7492  df-0nq0 7493  df-plq0 7494  df-mq0 7495  df-inp 7533  df-imp 7536
This theorem is referenced by:  mulclpr  7639
  Copyright terms: Public domain W3C validator