ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  r2al GIF version

Theorem r2al 2485
Description: Double restricted universal quantification. (Contributed by NM, 19-Nov-1995.)
Assertion
Ref Expression
r2al (∀𝑥𝐴𝑦𝐵 𝜑 ↔ ∀𝑥𝑦((𝑥𝐴𝑦𝐵) → 𝜑))
Distinct variable groups:   𝑥,𝑦   𝑦,𝐴
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝐴(𝑥)   𝐵(𝑥,𝑦)

Proof of Theorem r2al
StepHypRef Expression
1 nfcv 2308 . 2 𝑦𝐴
21r2alf 2483 1 (∀𝑥𝐴𝑦𝐵 𝜑 ↔ ∀𝑥𝑦((𝑥𝐴𝑦𝐵) → 𝜑))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104  wal 1341  wcel 2136  wral 2444
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-nf 1449  df-sb 1751  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ral 2449
This theorem is referenced by:  r3al  2510  raliunxp  4745  codir  4992  qfto  4993  fununi  5256  dff13  5736  mpo2eqb  5951  qliftfun  6583  cnmpt12  12927  cnmpt22  12934
  Copyright terms: Public domain W3C validator