ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  r2al GIF version

Theorem r2al 2496
Description: Double restricted universal quantification. (Contributed by NM, 19-Nov-1995.)
Assertion
Ref Expression
r2al (∀𝑥𝐴𝑦𝐵 𝜑 ↔ ∀𝑥𝑦((𝑥𝐴𝑦𝐵) → 𝜑))
Distinct variable groups:   𝑥,𝑦   𝑦,𝐴
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝐴(𝑥)   𝐵(𝑥,𝑦)

Proof of Theorem r2al
StepHypRef Expression
1 nfcv 2319 . 2 𝑦𝐴
21r2alf 2494 1 (∀𝑥𝐴𝑦𝐵 𝜑 ↔ ∀𝑥𝑦((𝑥𝐴𝑦𝐵) → 𝜑))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  wal 1351  wcel 2148  wral 2455
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-ext 2159
This theorem depends on definitions:  df-bi 117  df-nf 1461  df-sb 1763  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460
This theorem is referenced by:  r3al  2521  raliunxp  4769  codir  5018  qfto  5019  fununi  5285  dff13  5769  mpo2eqb  5984  qliftfun  6617  cnmpt12  13790  cnmpt22  13797
  Copyright terms: Public domain W3C validator