| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > lspfval | GIF version | ||
| Description: The span function for a left vector space (or a left module). (Contributed by NM, 8-Dec-2013.) (Revised by Mario Carneiro, 19-Jun-2014.) |
| Ref | Expression |
|---|---|
| lspval.v | ⊢ 𝑉 = (Base‘𝑊) |
| lspval.s | ⊢ 𝑆 = (LSubSp‘𝑊) |
| lspval.n | ⊢ 𝑁 = (LSpan‘𝑊) |
| Ref | Expression |
|---|---|
| lspfval | ⊢ (𝑊 ∈ 𝑋 → 𝑁 = (𝑠 ∈ 𝒫 𝑉 ↦ ∩ {𝑡 ∈ 𝑆 ∣ 𝑠 ⊆ 𝑡})) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lspval.n | . 2 ⊢ 𝑁 = (LSpan‘𝑊) | |
| 2 | df-lsp 14316 | . . 3 ⊢ LSpan = (𝑤 ∈ V ↦ (𝑠 ∈ 𝒫 (Base‘𝑤) ↦ ∩ {𝑡 ∈ (LSubSp‘𝑤) ∣ 𝑠 ⊆ 𝑡})) | |
| 3 | fveq2 5603 | . . . . . 6 ⊢ (𝑤 = 𝑊 → (Base‘𝑤) = (Base‘𝑊)) | |
| 4 | lspval.v | . . . . . 6 ⊢ 𝑉 = (Base‘𝑊) | |
| 5 | 3, 4 | eqtr4di 2260 | . . . . 5 ⊢ (𝑤 = 𝑊 → (Base‘𝑤) = 𝑉) |
| 6 | 5 | pweqd 3634 | . . . 4 ⊢ (𝑤 = 𝑊 → 𝒫 (Base‘𝑤) = 𝒫 𝑉) |
| 7 | fveq2 5603 | . . . . . . 7 ⊢ (𝑤 = 𝑊 → (LSubSp‘𝑤) = (LSubSp‘𝑊)) | |
| 8 | lspval.s | . . . . . . 7 ⊢ 𝑆 = (LSubSp‘𝑊) | |
| 9 | 7, 8 | eqtr4di 2260 | . . . . . 6 ⊢ (𝑤 = 𝑊 → (LSubSp‘𝑤) = 𝑆) |
| 10 | 9 | rabeqdv 2773 | . . . . 5 ⊢ (𝑤 = 𝑊 → {𝑡 ∈ (LSubSp‘𝑤) ∣ 𝑠 ⊆ 𝑡} = {𝑡 ∈ 𝑆 ∣ 𝑠 ⊆ 𝑡}) |
| 11 | 10 | inteqd 3907 | . . . 4 ⊢ (𝑤 = 𝑊 → ∩ {𝑡 ∈ (LSubSp‘𝑤) ∣ 𝑠 ⊆ 𝑡} = ∩ {𝑡 ∈ 𝑆 ∣ 𝑠 ⊆ 𝑡}) |
| 12 | 6, 11 | mpteq12dv 4145 | . . 3 ⊢ (𝑤 = 𝑊 → (𝑠 ∈ 𝒫 (Base‘𝑤) ↦ ∩ {𝑡 ∈ (LSubSp‘𝑤) ∣ 𝑠 ⊆ 𝑡}) = (𝑠 ∈ 𝒫 𝑉 ↦ ∩ {𝑡 ∈ 𝑆 ∣ 𝑠 ⊆ 𝑡})) |
| 13 | elex 2791 | . . 3 ⊢ (𝑊 ∈ 𝑋 → 𝑊 ∈ V) | |
| 14 | basfn 13057 | . . . . . . 7 ⊢ Base Fn V | |
| 15 | funfvex 5620 | . . . . . . . 8 ⊢ ((Fun Base ∧ 𝑊 ∈ dom Base) → (Base‘𝑊) ∈ V) | |
| 16 | 15 | funfni 5399 | . . . . . . 7 ⊢ ((Base Fn V ∧ 𝑊 ∈ V) → (Base‘𝑊) ∈ V) |
| 17 | 14, 13, 16 | sylancr 414 | . . . . . 6 ⊢ (𝑊 ∈ 𝑋 → (Base‘𝑊) ∈ V) |
| 18 | 4, 17 | eqeltrid 2296 | . . . . 5 ⊢ (𝑊 ∈ 𝑋 → 𝑉 ∈ V) |
| 19 | 18 | pwexd 4244 | . . . 4 ⊢ (𝑊 ∈ 𝑋 → 𝒫 𝑉 ∈ V) |
| 20 | 19 | mptexd 5839 | . . 3 ⊢ (𝑊 ∈ 𝑋 → (𝑠 ∈ 𝒫 𝑉 ↦ ∩ {𝑡 ∈ 𝑆 ∣ 𝑠 ⊆ 𝑡}) ∈ V) |
| 21 | 2, 12, 13, 20 | fvmptd3 5701 | . 2 ⊢ (𝑊 ∈ 𝑋 → (LSpan‘𝑊) = (𝑠 ∈ 𝒫 𝑉 ↦ ∩ {𝑡 ∈ 𝑆 ∣ 𝑠 ⊆ 𝑡})) |
| 22 | 1, 21 | eqtrid 2254 | 1 ⊢ (𝑊 ∈ 𝑋 → 𝑁 = (𝑠 ∈ 𝒫 𝑉 ↦ ∩ {𝑡 ∈ 𝑆 ∣ 𝑠 ⊆ 𝑡})) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1375 ∈ wcel 2180 {crab 2492 Vcvv 2779 ⊆ wss 3177 𝒫 cpw 3629 ∩ cint 3902 ↦ cmpt 4124 Fn wfn 5289 ‘cfv 5294 Basecbs 12998 LSubSpclss 14281 LSpanclspn 14315 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 713 ax-5 1473 ax-7 1474 ax-gen 1475 ax-ie1 1519 ax-ie2 1520 ax-8 1530 ax-10 1531 ax-11 1532 ax-i12 1533 ax-bndl 1535 ax-4 1536 ax-17 1552 ax-i9 1556 ax-ial 1560 ax-i5r 1561 ax-13 2182 ax-14 2183 ax-ext 2191 ax-coll 4178 ax-sep 4181 ax-pow 4237 ax-pr 4272 ax-un 4501 ax-cnex 8058 ax-resscn 8059 ax-1re 8061 ax-addrcl 8064 |
| This theorem depends on definitions: df-bi 117 df-3an 985 df-tru 1378 df-nf 1487 df-sb 1789 df-eu 2060 df-mo 2061 df-clab 2196 df-cleq 2202 df-clel 2205 df-nfc 2341 df-ral 2493 df-rex 2494 df-reu 2495 df-rab 2497 df-v 2781 df-sbc 3009 df-csb 3105 df-un 3181 df-in 3183 df-ss 3190 df-pw 3631 df-sn 3652 df-pr 3653 df-op 3655 df-uni 3868 df-int 3903 df-iun 3946 df-br 4063 df-opab 4125 df-mpt 4126 df-id 4361 df-xp 4702 df-rel 4703 df-cnv 4704 df-co 4705 df-dm 4706 df-rn 4707 df-res 4708 df-ima 4709 df-iota 5254 df-fun 5296 df-fn 5297 df-f 5298 df-f1 5299 df-fo 5300 df-f1o 5301 df-fv 5302 df-inn 9079 df-ndx 13001 df-slot 13002 df-base 13004 df-lsp 14316 |
| This theorem is referenced by: lspf 14318 lspval 14319 lspex 14324 lsppropd 14361 |
| Copyright terms: Public domain | W3C validator |