| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > lspfval | GIF version | ||
| Description: The span function for a left vector space (or a left module). (Contributed by NM, 8-Dec-2013.) (Revised by Mario Carneiro, 19-Jun-2014.) |
| Ref | Expression |
|---|---|
| lspval.v | ⊢ 𝑉 = (Base‘𝑊) |
| lspval.s | ⊢ 𝑆 = (LSubSp‘𝑊) |
| lspval.n | ⊢ 𝑁 = (LSpan‘𝑊) |
| Ref | Expression |
|---|---|
| lspfval | ⊢ (𝑊 ∈ 𝑋 → 𝑁 = (𝑠 ∈ 𝒫 𝑉 ↦ ∩ {𝑡 ∈ 𝑆 ∣ 𝑠 ⊆ 𝑡})) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lspval.n | . 2 ⊢ 𝑁 = (LSpan‘𝑊) | |
| 2 | df-lsp 13943 | . . 3 ⊢ LSpan = (𝑤 ∈ V ↦ (𝑠 ∈ 𝒫 (Base‘𝑤) ↦ ∩ {𝑡 ∈ (LSubSp‘𝑤) ∣ 𝑠 ⊆ 𝑡})) | |
| 3 | fveq2 5558 | . . . . . 6 ⊢ (𝑤 = 𝑊 → (Base‘𝑤) = (Base‘𝑊)) | |
| 4 | lspval.v | . . . . . 6 ⊢ 𝑉 = (Base‘𝑊) | |
| 5 | 3, 4 | eqtr4di 2247 | . . . . 5 ⊢ (𝑤 = 𝑊 → (Base‘𝑤) = 𝑉) |
| 6 | 5 | pweqd 3610 | . . . 4 ⊢ (𝑤 = 𝑊 → 𝒫 (Base‘𝑤) = 𝒫 𝑉) |
| 7 | fveq2 5558 | . . . . . . 7 ⊢ (𝑤 = 𝑊 → (LSubSp‘𝑤) = (LSubSp‘𝑊)) | |
| 8 | lspval.s | . . . . . . 7 ⊢ 𝑆 = (LSubSp‘𝑊) | |
| 9 | 7, 8 | eqtr4di 2247 | . . . . . 6 ⊢ (𝑤 = 𝑊 → (LSubSp‘𝑤) = 𝑆) |
| 10 | 9 | rabeqdv 2757 | . . . . 5 ⊢ (𝑤 = 𝑊 → {𝑡 ∈ (LSubSp‘𝑤) ∣ 𝑠 ⊆ 𝑡} = {𝑡 ∈ 𝑆 ∣ 𝑠 ⊆ 𝑡}) |
| 11 | 10 | inteqd 3879 | . . . 4 ⊢ (𝑤 = 𝑊 → ∩ {𝑡 ∈ (LSubSp‘𝑤) ∣ 𝑠 ⊆ 𝑡} = ∩ {𝑡 ∈ 𝑆 ∣ 𝑠 ⊆ 𝑡}) |
| 12 | 6, 11 | mpteq12dv 4115 | . . 3 ⊢ (𝑤 = 𝑊 → (𝑠 ∈ 𝒫 (Base‘𝑤) ↦ ∩ {𝑡 ∈ (LSubSp‘𝑤) ∣ 𝑠 ⊆ 𝑡}) = (𝑠 ∈ 𝒫 𝑉 ↦ ∩ {𝑡 ∈ 𝑆 ∣ 𝑠 ⊆ 𝑡})) |
| 13 | elex 2774 | . . 3 ⊢ (𝑊 ∈ 𝑋 → 𝑊 ∈ V) | |
| 14 | basfn 12736 | . . . . . . 7 ⊢ Base Fn V | |
| 15 | funfvex 5575 | . . . . . . . 8 ⊢ ((Fun Base ∧ 𝑊 ∈ dom Base) → (Base‘𝑊) ∈ V) | |
| 16 | 15 | funfni 5358 | . . . . . . 7 ⊢ ((Base Fn V ∧ 𝑊 ∈ V) → (Base‘𝑊) ∈ V) |
| 17 | 14, 13, 16 | sylancr 414 | . . . . . 6 ⊢ (𝑊 ∈ 𝑋 → (Base‘𝑊) ∈ V) |
| 18 | 4, 17 | eqeltrid 2283 | . . . . 5 ⊢ (𝑊 ∈ 𝑋 → 𝑉 ∈ V) |
| 19 | 18 | pwexd 4214 | . . . 4 ⊢ (𝑊 ∈ 𝑋 → 𝒫 𝑉 ∈ V) |
| 20 | 19 | mptexd 5789 | . . 3 ⊢ (𝑊 ∈ 𝑋 → (𝑠 ∈ 𝒫 𝑉 ↦ ∩ {𝑡 ∈ 𝑆 ∣ 𝑠 ⊆ 𝑡}) ∈ V) |
| 21 | 2, 12, 13, 20 | fvmptd3 5655 | . 2 ⊢ (𝑊 ∈ 𝑋 → (LSpan‘𝑊) = (𝑠 ∈ 𝒫 𝑉 ↦ ∩ {𝑡 ∈ 𝑆 ∣ 𝑠 ⊆ 𝑡})) |
| 22 | 1, 21 | eqtrid 2241 | 1 ⊢ (𝑊 ∈ 𝑋 → 𝑁 = (𝑠 ∈ 𝒫 𝑉 ↦ ∩ {𝑡 ∈ 𝑆 ∣ 𝑠 ⊆ 𝑡})) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1364 ∈ wcel 2167 {crab 2479 Vcvv 2763 ⊆ wss 3157 𝒫 cpw 3605 ∩ cint 3874 ↦ cmpt 4094 Fn wfn 5253 ‘cfv 5258 Basecbs 12678 LSubSpclss 13908 LSpanclspn 13942 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-coll 4148 ax-sep 4151 ax-pow 4207 ax-pr 4242 ax-un 4468 ax-cnex 7970 ax-resscn 7971 ax-1re 7973 ax-addrcl 7976 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-reu 2482 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-un 3161 df-in 3163 df-ss 3170 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-int 3875 df-iun 3918 df-br 4034 df-opab 4095 df-mpt 4096 df-id 4328 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-rn 4674 df-res 4675 df-ima 4676 df-iota 5219 df-fun 5260 df-fn 5261 df-f 5262 df-f1 5263 df-fo 5264 df-f1o 5265 df-fv 5266 df-inn 8991 df-ndx 12681 df-slot 12682 df-base 12684 df-lsp 13943 |
| This theorem is referenced by: lspf 13945 lspval 13946 lspex 13951 lsppropd 13988 |
| Copyright terms: Public domain | W3C validator |