ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  lspfval GIF version

Theorem lspfval 14020
Description: The span function for a left vector space (or a left module). (Contributed by NM, 8-Dec-2013.) (Revised by Mario Carneiro, 19-Jun-2014.)
Hypotheses
Ref Expression
lspval.v 𝑉 = (Base‘𝑊)
lspval.s 𝑆 = (LSubSp‘𝑊)
lspval.n 𝑁 = (LSpan‘𝑊)
Assertion
Ref Expression
lspfval (𝑊𝑋𝑁 = (𝑠 ∈ 𝒫 𝑉 {𝑡𝑆𝑠𝑡}))
Distinct variable groups:   𝑡,𝑠,𝑆   𝑉,𝑠,𝑡   𝑊,𝑠
Allowed substitution hints:   𝑁(𝑡,𝑠)   𝑊(𝑡)   𝑋(𝑡,𝑠)

Proof of Theorem lspfval
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 lspval.n . 2 𝑁 = (LSpan‘𝑊)
2 df-lsp 14019 . . 3 LSpan = (𝑤 ∈ V ↦ (𝑠 ∈ 𝒫 (Base‘𝑤) ↦ {𝑡 ∈ (LSubSp‘𝑤) ∣ 𝑠𝑡}))
3 fveq2 5561 . . . . . 6 (𝑤 = 𝑊 → (Base‘𝑤) = (Base‘𝑊))
4 lspval.v . . . . . 6 𝑉 = (Base‘𝑊)
53, 4eqtr4di 2247 . . . . 5 (𝑤 = 𝑊 → (Base‘𝑤) = 𝑉)
65pweqd 3611 . . . 4 (𝑤 = 𝑊 → 𝒫 (Base‘𝑤) = 𝒫 𝑉)
7 fveq2 5561 . . . . . . 7 (𝑤 = 𝑊 → (LSubSp‘𝑤) = (LSubSp‘𝑊))
8 lspval.s . . . . . . 7 𝑆 = (LSubSp‘𝑊)
97, 8eqtr4di 2247 . . . . . 6 (𝑤 = 𝑊 → (LSubSp‘𝑤) = 𝑆)
109rabeqdv 2757 . . . . 5 (𝑤 = 𝑊 → {𝑡 ∈ (LSubSp‘𝑤) ∣ 𝑠𝑡} = {𝑡𝑆𝑠𝑡})
1110inteqd 3880 . . . 4 (𝑤 = 𝑊 {𝑡 ∈ (LSubSp‘𝑤) ∣ 𝑠𝑡} = {𝑡𝑆𝑠𝑡})
126, 11mpteq12dv 4116 . . 3 (𝑤 = 𝑊 → (𝑠 ∈ 𝒫 (Base‘𝑤) ↦ {𝑡 ∈ (LSubSp‘𝑤) ∣ 𝑠𝑡}) = (𝑠 ∈ 𝒫 𝑉 {𝑡𝑆𝑠𝑡}))
13 elex 2774 . . 3 (𝑊𝑋𝑊 ∈ V)
14 basfn 12761 . . . . . . 7 Base Fn V
15 funfvex 5578 . . . . . . . 8 ((Fun Base ∧ 𝑊 ∈ dom Base) → (Base‘𝑊) ∈ V)
1615funfni 5361 . . . . . . 7 ((Base Fn V ∧ 𝑊 ∈ V) → (Base‘𝑊) ∈ V)
1714, 13, 16sylancr 414 . . . . . 6 (𝑊𝑋 → (Base‘𝑊) ∈ V)
184, 17eqeltrid 2283 . . . . 5 (𝑊𝑋𝑉 ∈ V)
1918pwexd 4215 . . . 4 (𝑊𝑋 → 𝒫 𝑉 ∈ V)
2019mptexd 5792 . . 3 (𝑊𝑋 → (𝑠 ∈ 𝒫 𝑉 {𝑡𝑆𝑠𝑡}) ∈ V)
212, 12, 13, 20fvmptd3 5658 . 2 (𝑊𝑋 → (LSpan‘𝑊) = (𝑠 ∈ 𝒫 𝑉 {𝑡𝑆𝑠𝑡}))
221, 21eqtrid 2241 1 (𝑊𝑋𝑁 = (𝑠 ∈ 𝒫 𝑉 {𝑡𝑆𝑠𝑡}))
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1364  wcel 2167  {crab 2479  Vcvv 2763  wss 3157  𝒫 cpw 3606   cint 3875  cmpt 4095   Fn wfn 5254  cfv 5259  Basecbs 12703  LSubSpclss 13984  LSpanclspn 14018
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4149  ax-sep 4152  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-cnex 7987  ax-resscn 7988  ax-1re 7990  ax-addrcl 7993
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-reu 2482  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-un 3161  df-in 3163  df-ss 3170  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-iun 3919  df-br 4035  df-opab 4096  df-mpt 4097  df-id 4329  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-f1 5264  df-fo 5265  df-f1o 5266  df-fv 5267  df-inn 9008  df-ndx 12706  df-slot 12707  df-base 12709  df-lsp 14019
This theorem is referenced by:  lspf  14021  lspval  14022  lspex  14027  lsppropd  14064
  Copyright terms: Public domain W3C validator