ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  lspfval GIF version

Theorem lspfval 14360
Description: The span function for a left vector space (or a left module). (Contributed by NM, 8-Dec-2013.) (Revised by Mario Carneiro, 19-Jun-2014.)
Hypotheses
Ref Expression
lspval.v 𝑉 = (Base‘𝑊)
lspval.s 𝑆 = (LSubSp‘𝑊)
lspval.n 𝑁 = (LSpan‘𝑊)
Assertion
Ref Expression
lspfval (𝑊𝑋𝑁 = (𝑠 ∈ 𝒫 𝑉 {𝑡𝑆𝑠𝑡}))
Distinct variable groups:   𝑡,𝑠,𝑆   𝑉,𝑠,𝑡   𝑊,𝑠
Allowed substitution hints:   𝑁(𝑡,𝑠)   𝑊(𝑡)   𝑋(𝑡,𝑠)

Proof of Theorem lspfval
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 lspval.n . 2 𝑁 = (LSpan‘𝑊)
2 df-lsp 14359 . . 3 LSpan = (𝑤 ∈ V ↦ (𝑠 ∈ 𝒫 (Base‘𝑤) ↦ {𝑡 ∈ (LSubSp‘𝑤) ∣ 𝑠𝑡}))
3 fveq2 5629 . . . . . 6 (𝑤 = 𝑊 → (Base‘𝑤) = (Base‘𝑊))
4 lspval.v . . . . . 6 𝑉 = (Base‘𝑊)
53, 4eqtr4di 2280 . . . . 5 (𝑤 = 𝑊 → (Base‘𝑤) = 𝑉)
65pweqd 3654 . . . 4 (𝑤 = 𝑊 → 𝒫 (Base‘𝑤) = 𝒫 𝑉)
7 fveq2 5629 . . . . . . 7 (𝑤 = 𝑊 → (LSubSp‘𝑤) = (LSubSp‘𝑊))
8 lspval.s . . . . . . 7 𝑆 = (LSubSp‘𝑊)
97, 8eqtr4di 2280 . . . . . 6 (𝑤 = 𝑊 → (LSubSp‘𝑤) = 𝑆)
109rabeqdv 2793 . . . . 5 (𝑤 = 𝑊 → {𝑡 ∈ (LSubSp‘𝑤) ∣ 𝑠𝑡} = {𝑡𝑆𝑠𝑡})
1110inteqd 3928 . . . 4 (𝑤 = 𝑊 {𝑡 ∈ (LSubSp‘𝑤) ∣ 𝑠𝑡} = {𝑡𝑆𝑠𝑡})
126, 11mpteq12dv 4166 . . 3 (𝑤 = 𝑊 → (𝑠 ∈ 𝒫 (Base‘𝑤) ↦ {𝑡 ∈ (LSubSp‘𝑤) ∣ 𝑠𝑡}) = (𝑠 ∈ 𝒫 𝑉 {𝑡𝑆𝑠𝑡}))
13 elex 2811 . . 3 (𝑊𝑋𝑊 ∈ V)
14 basfn 13099 . . . . . . 7 Base Fn V
15 funfvex 5646 . . . . . . . 8 ((Fun Base ∧ 𝑊 ∈ dom Base) → (Base‘𝑊) ∈ V)
1615funfni 5423 . . . . . . 7 ((Base Fn V ∧ 𝑊 ∈ V) → (Base‘𝑊) ∈ V)
1714, 13, 16sylancr 414 . . . . . 6 (𝑊𝑋 → (Base‘𝑊) ∈ V)
184, 17eqeltrid 2316 . . . . 5 (𝑊𝑋𝑉 ∈ V)
1918pwexd 4265 . . . 4 (𝑊𝑋 → 𝒫 𝑉 ∈ V)
2019mptexd 5870 . . 3 (𝑊𝑋 → (𝑠 ∈ 𝒫 𝑉 {𝑡𝑆𝑠𝑡}) ∈ V)
212, 12, 13, 20fvmptd3 5730 . 2 (𝑊𝑋 → (LSpan‘𝑊) = (𝑠 ∈ 𝒫 𝑉 {𝑡𝑆𝑠𝑡}))
221, 21eqtrid 2274 1 (𝑊𝑋𝑁 = (𝑠 ∈ 𝒫 𝑉 {𝑡𝑆𝑠𝑡}))
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1395  wcel 2200  {crab 2512  Vcvv 2799  wss 3197  𝒫 cpw 3649   cint 3923  cmpt 4145   Fn wfn 5313  cfv 5318  Basecbs 13040  LSubSpclss 14324  LSpanclspn 14358
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4199  ax-sep 4202  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-cnex 8098  ax-resscn 8099  ax-1re 8101  ax-addrcl 8104
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-int 3924  df-iun 3967  df-br 4084  df-opab 4146  df-mpt 4147  df-id 4384  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-f1 5323  df-fo 5324  df-f1o 5325  df-fv 5326  df-inn 9119  df-ndx 13043  df-slot 13044  df-base 13046  df-lsp 14359
This theorem is referenced by:  lspf  14361  lspval  14362  lspex  14367  lsppropd  14404
  Copyright terms: Public domain W3C validator