ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  lspfval GIF version

Theorem lspfval 14317
Description: The span function for a left vector space (or a left module). (Contributed by NM, 8-Dec-2013.) (Revised by Mario Carneiro, 19-Jun-2014.)
Hypotheses
Ref Expression
lspval.v 𝑉 = (Base‘𝑊)
lspval.s 𝑆 = (LSubSp‘𝑊)
lspval.n 𝑁 = (LSpan‘𝑊)
Assertion
Ref Expression
lspfval (𝑊𝑋𝑁 = (𝑠 ∈ 𝒫 𝑉 {𝑡𝑆𝑠𝑡}))
Distinct variable groups:   𝑡,𝑠,𝑆   𝑉,𝑠,𝑡   𝑊,𝑠
Allowed substitution hints:   𝑁(𝑡,𝑠)   𝑊(𝑡)   𝑋(𝑡,𝑠)

Proof of Theorem lspfval
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 lspval.n . 2 𝑁 = (LSpan‘𝑊)
2 df-lsp 14316 . . 3 LSpan = (𝑤 ∈ V ↦ (𝑠 ∈ 𝒫 (Base‘𝑤) ↦ {𝑡 ∈ (LSubSp‘𝑤) ∣ 𝑠𝑡}))
3 fveq2 5603 . . . . . 6 (𝑤 = 𝑊 → (Base‘𝑤) = (Base‘𝑊))
4 lspval.v . . . . . 6 𝑉 = (Base‘𝑊)
53, 4eqtr4di 2260 . . . . 5 (𝑤 = 𝑊 → (Base‘𝑤) = 𝑉)
65pweqd 3634 . . . 4 (𝑤 = 𝑊 → 𝒫 (Base‘𝑤) = 𝒫 𝑉)
7 fveq2 5603 . . . . . . 7 (𝑤 = 𝑊 → (LSubSp‘𝑤) = (LSubSp‘𝑊))
8 lspval.s . . . . . . 7 𝑆 = (LSubSp‘𝑊)
97, 8eqtr4di 2260 . . . . . 6 (𝑤 = 𝑊 → (LSubSp‘𝑤) = 𝑆)
109rabeqdv 2773 . . . . 5 (𝑤 = 𝑊 → {𝑡 ∈ (LSubSp‘𝑤) ∣ 𝑠𝑡} = {𝑡𝑆𝑠𝑡})
1110inteqd 3907 . . . 4 (𝑤 = 𝑊 {𝑡 ∈ (LSubSp‘𝑤) ∣ 𝑠𝑡} = {𝑡𝑆𝑠𝑡})
126, 11mpteq12dv 4145 . . 3 (𝑤 = 𝑊 → (𝑠 ∈ 𝒫 (Base‘𝑤) ↦ {𝑡 ∈ (LSubSp‘𝑤) ∣ 𝑠𝑡}) = (𝑠 ∈ 𝒫 𝑉 {𝑡𝑆𝑠𝑡}))
13 elex 2791 . . 3 (𝑊𝑋𝑊 ∈ V)
14 basfn 13057 . . . . . . 7 Base Fn V
15 funfvex 5620 . . . . . . . 8 ((Fun Base ∧ 𝑊 ∈ dom Base) → (Base‘𝑊) ∈ V)
1615funfni 5399 . . . . . . 7 ((Base Fn V ∧ 𝑊 ∈ V) → (Base‘𝑊) ∈ V)
1714, 13, 16sylancr 414 . . . . . 6 (𝑊𝑋 → (Base‘𝑊) ∈ V)
184, 17eqeltrid 2296 . . . . 5 (𝑊𝑋𝑉 ∈ V)
1918pwexd 4244 . . . 4 (𝑊𝑋 → 𝒫 𝑉 ∈ V)
2019mptexd 5839 . . 3 (𝑊𝑋 → (𝑠 ∈ 𝒫 𝑉 {𝑡𝑆𝑠𝑡}) ∈ V)
212, 12, 13, 20fvmptd3 5701 . 2 (𝑊𝑋 → (LSpan‘𝑊) = (𝑠 ∈ 𝒫 𝑉 {𝑡𝑆𝑠𝑡}))
221, 21eqtrid 2254 1 (𝑊𝑋𝑁 = (𝑠 ∈ 𝒫 𝑉 {𝑡𝑆𝑠𝑡}))
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1375  wcel 2180  {crab 2492  Vcvv 2779  wss 3177  𝒫 cpw 3629   cint 3902  cmpt 4124   Fn wfn 5289  cfv 5294  Basecbs 12998  LSubSpclss 14281  LSpanclspn 14315
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 713  ax-5 1473  ax-7 1474  ax-gen 1475  ax-ie1 1519  ax-ie2 1520  ax-8 1530  ax-10 1531  ax-11 1532  ax-i12 1533  ax-bndl 1535  ax-4 1536  ax-17 1552  ax-i9 1556  ax-ial 1560  ax-i5r 1561  ax-13 2182  ax-14 2183  ax-ext 2191  ax-coll 4178  ax-sep 4181  ax-pow 4237  ax-pr 4272  ax-un 4501  ax-cnex 8058  ax-resscn 8059  ax-1re 8061  ax-addrcl 8064
This theorem depends on definitions:  df-bi 117  df-3an 985  df-tru 1378  df-nf 1487  df-sb 1789  df-eu 2060  df-mo 2061  df-clab 2196  df-cleq 2202  df-clel 2205  df-nfc 2341  df-ral 2493  df-rex 2494  df-reu 2495  df-rab 2497  df-v 2781  df-sbc 3009  df-csb 3105  df-un 3181  df-in 3183  df-ss 3190  df-pw 3631  df-sn 3652  df-pr 3653  df-op 3655  df-uni 3868  df-int 3903  df-iun 3946  df-br 4063  df-opab 4125  df-mpt 4126  df-id 4361  df-xp 4702  df-rel 4703  df-cnv 4704  df-co 4705  df-dm 4706  df-rn 4707  df-res 4708  df-ima 4709  df-iota 5254  df-fun 5296  df-fn 5297  df-f 5298  df-f1 5299  df-fo 5300  df-f1o 5301  df-fv 5302  df-inn 9079  df-ndx 13001  df-slot 13002  df-base 13004  df-lsp 14316
This theorem is referenced by:  lspf  14318  lspval  14319  lspex  14324  lsppropd  14361
  Copyright terms: Public domain W3C validator