![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > lspfval | GIF version |
Description: The span function for a left vector space (or a left module). (Contributed by NM, 8-Dec-2013.) (Revised by Mario Carneiro, 19-Jun-2014.) |
Ref | Expression |
---|---|
lspval.v | β’ π = (Baseβπ) |
lspval.s | β’ π = (LSubSpβπ) |
lspval.n | β’ π = (LSpanβπ) |
Ref | Expression |
---|---|
lspfval | β’ (π β π β π = (π β π« π β¦ β© {π‘ β π β£ π β π‘})) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lspval.n | . 2 β’ π = (LSpanβπ) | |
2 | df-lsp 13479 | . . 3 β’ LSpan = (π€ β V β¦ (π β π« (Baseβπ€) β¦ β© {π‘ β (LSubSpβπ€) β£ π β π‘})) | |
3 | fveq2 5517 | . . . . . 6 β’ (π€ = π β (Baseβπ€) = (Baseβπ)) | |
4 | lspval.v | . . . . . 6 β’ π = (Baseβπ) | |
5 | 3, 4 | eqtr4di 2228 | . . . . 5 β’ (π€ = π β (Baseβπ€) = π) |
6 | 5 | pweqd 3582 | . . . 4 β’ (π€ = π β π« (Baseβπ€) = π« π) |
7 | fveq2 5517 | . . . . . . 7 β’ (π€ = π β (LSubSpβπ€) = (LSubSpβπ)) | |
8 | lspval.s | . . . . . . 7 β’ π = (LSubSpβπ) | |
9 | 7, 8 | eqtr4di 2228 | . . . . . 6 β’ (π€ = π β (LSubSpβπ€) = π) |
10 | 9 | rabeqdv 2733 | . . . . 5 β’ (π€ = π β {π‘ β (LSubSpβπ€) β£ π β π‘} = {π‘ β π β£ π β π‘}) |
11 | 10 | inteqd 3851 | . . . 4 β’ (π€ = π β β© {π‘ β (LSubSpβπ€) β£ π β π‘} = β© {π‘ β π β£ π β π‘}) |
12 | 6, 11 | mpteq12dv 4087 | . . 3 β’ (π€ = π β (π β π« (Baseβπ€) β¦ β© {π‘ β (LSubSpβπ€) β£ π β π‘}) = (π β π« π β¦ β© {π‘ β π β£ π β π‘})) |
13 | elex 2750 | . . 3 β’ (π β π β π β V) | |
14 | basfn 12522 | . . . . . . 7 β’ Base Fn V | |
15 | funfvex 5534 | . . . . . . . 8 β’ ((Fun Base β§ π β dom Base) β (Baseβπ) β V) | |
16 | 15 | funfni 5318 | . . . . . . 7 β’ ((Base Fn V β§ π β V) β (Baseβπ) β V) |
17 | 14, 13, 16 | sylancr 414 | . . . . . 6 β’ (π β π β (Baseβπ) β V) |
18 | 4, 17 | eqeltrid 2264 | . . . . 5 β’ (π β π β π β V) |
19 | 18 | pwexd 4183 | . . . 4 β’ (π β π β π« π β V) |
20 | 19 | mptexd 5745 | . . 3 β’ (π β π β (π β π« π β¦ β© {π‘ β π β£ π β π‘}) β V) |
21 | 2, 12, 13, 20 | fvmptd3 5611 | . 2 β’ (π β π β (LSpanβπ) = (π β π« π β¦ β© {π‘ β π β£ π β π‘})) |
22 | 1, 21 | eqtrid 2222 | 1 β’ (π β π β π = (π β π« π β¦ β© {π‘ β π β£ π β π‘})) |
Colors of variables: wff set class |
Syntax hints: β wi 4 = wceq 1353 β wcel 2148 {crab 2459 Vcvv 2739 β wss 3131 π« cpw 3577 β© cint 3846 β¦ cmpt 4066 Fn wfn 5213 βcfv 5218 Basecbs 12464 LSubSpclss 13447 LSpanclspn 13478 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-13 2150 ax-14 2151 ax-ext 2159 ax-coll 4120 ax-sep 4123 ax-pow 4176 ax-pr 4211 ax-un 4435 ax-cnex 7904 ax-resscn 7905 ax-1re 7907 ax-addrcl 7910 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-nf 1461 df-sb 1763 df-eu 2029 df-mo 2030 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ral 2460 df-rex 2461 df-reu 2462 df-rab 2464 df-v 2741 df-sbc 2965 df-csb 3060 df-un 3135 df-in 3137 df-ss 3144 df-pw 3579 df-sn 3600 df-pr 3601 df-op 3603 df-uni 3812 df-int 3847 df-iun 3890 df-br 4006 df-opab 4067 df-mpt 4068 df-id 4295 df-xp 4634 df-rel 4635 df-cnv 4636 df-co 4637 df-dm 4638 df-rn 4639 df-res 4640 df-ima 4641 df-iota 5180 df-fun 5220 df-fn 5221 df-f 5222 df-f1 5223 df-fo 5224 df-f1o 5225 df-fv 5226 df-inn 8922 df-ndx 12467 df-slot 12468 df-base 12470 df-lsp 13479 |
This theorem is referenced by: lspf 13481 lspval 13482 lsppropd 13523 |
Copyright terms: Public domain | W3C validator |