![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > lspfval | GIF version |
Description: The span function for a left vector space (or a left module). (Contributed by NM, 8-Dec-2013.) (Revised by Mario Carneiro, 19-Jun-2014.) |
Ref | Expression |
---|---|
lspval.v | ⊢ 𝑉 = (Base‘𝑊) |
lspval.s | ⊢ 𝑆 = (LSubSp‘𝑊) |
lspval.n | ⊢ 𝑁 = (LSpan‘𝑊) |
Ref | Expression |
---|---|
lspfval | ⊢ (𝑊 ∈ 𝑋 → 𝑁 = (𝑠 ∈ 𝒫 𝑉 ↦ ∩ {𝑡 ∈ 𝑆 ∣ 𝑠 ⊆ 𝑡})) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lspval.n | . 2 ⊢ 𝑁 = (LSpan‘𝑊) | |
2 | df-lsp 13883 | . . 3 ⊢ LSpan = (𝑤 ∈ V ↦ (𝑠 ∈ 𝒫 (Base‘𝑤) ↦ ∩ {𝑡 ∈ (LSubSp‘𝑤) ∣ 𝑠 ⊆ 𝑡})) | |
3 | fveq2 5554 | . . . . . 6 ⊢ (𝑤 = 𝑊 → (Base‘𝑤) = (Base‘𝑊)) | |
4 | lspval.v | . . . . . 6 ⊢ 𝑉 = (Base‘𝑊) | |
5 | 3, 4 | eqtr4di 2244 | . . . . 5 ⊢ (𝑤 = 𝑊 → (Base‘𝑤) = 𝑉) |
6 | 5 | pweqd 3606 | . . . 4 ⊢ (𝑤 = 𝑊 → 𝒫 (Base‘𝑤) = 𝒫 𝑉) |
7 | fveq2 5554 | . . . . . . 7 ⊢ (𝑤 = 𝑊 → (LSubSp‘𝑤) = (LSubSp‘𝑊)) | |
8 | lspval.s | . . . . . . 7 ⊢ 𝑆 = (LSubSp‘𝑊) | |
9 | 7, 8 | eqtr4di 2244 | . . . . . 6 ⊢ (𝑤 = 𝑊 → (LSubSp‘𝑤) = 𝑆) |
10 | 9 | rabeqdv 2754 | . . . . 5 ⊢ (𝑤 = 𝑊 → {𝑡 ∈ (LSubSp‘𝑤) ∣ 𝑠 ⊆ 𝑡} = {𝑡 ∈ 𝑆 ∣ 𝑠 ⊆ 𝑡}) |
11 | 10 | inteqd 3875 | . . . 4 ⊢ (𝑤 = 𝑊 → ∩ {𝑡 ∈ (LSubSp‘𝑤) ∣ 𝑠 ⊆ 𝑡} = ∩ {𝑡 ∈ 𝑆 ∣ 𝑠 ⊆ 𝑡}) |
12 | 6, 11 | mpteq12dv 4111 | . . 3 ⊢ (𝑤 = 𝑊 → (𝑠 ∈ 𝒫 (Base‘𝑤) ↦ ∩ {𝑡 ∈ (LSubSp‘𝑤) ∣ 𝑠 ⊆ 𝑡}) = (𝑠 ∈ 𝒫 𝑉 ↦ ∩ {𝑡 ∈ 𝑆 ∣ 𝑠 ⊆ 𝑡})) |
13 | elex 2771 | . . 3 ⊢ (𝑊 ∈ 𝑋 → 𝑊 ∈ V) | |
14 | basfn 12676 | . . . . . . 7 ⊢ Base Fn V | |
15 | funfvex 5571 | . . . . . . . 8 ⊢ ((Fun Base ∧ 𝑊 ∈ dom Base) → (Base‘𝑊) ∈ V) | |
16 | 15 | funfni 5354 | . . . . . . 7 ⊢ ((Base Fn V ∧ 𝑊 ∈ V) → (Base‘𝑊) ∈ V) |
17 | 14, 13, 16 | sylancr 414 | . . . . . 6 ⊢ (𝑊 ∈ 𝑋 → (Base‘𝑊) ∈ V) |
18 | 4, 17 | eqeltrid 2280 | . . . . 5 ⊢ (𝑊 ∈ 𝑋 → 𝑉 ∈ V) |
19 | 18 | pwexd 4210 | . . . 4 ⊢ (𝑊 ∈ 𝑋 → 𝒫 𝑉 ∈ V) |
20 | 19 | mptexd 5785 | . . 3 ⊢ (𝑊 ∈ 𝑋 → (𝑠 ∈ 𝒫 𝑉 ↦ ∩ {𝑡 ∈ 𝑆 ∣ 𝑠 ⊆ 𝑡}) ∈ V) |
21 | 2, 12, 13, 20 | fvmptd3 5651 | . 2 ⊢ (𝑊 ∈ 𝑋 → (LSpan‘𝑊) = (𝑠 ∈ 𝒫 𝑉 ↦ ∩ {𝑡 ∈ 𝑆 ∣ 𝑠 ⊆ 𝑡})) |
22 | 1, 21 | eqtrid 2238 | 1 ⊢ (𝑊 ∈ 𝑋 → 𝑁 = (𝑠 ∈ 𝒫 𝑉 ↦ ∩ {𝑡 ∈ 𝑆 ∣ 𝑠 ⊆ 𝑡})) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1364 ∈ wcel 2164 {crab 2476 Vcvv 2760 ⊆ wss 3153 𝒫 cpw 3601 ∩ cint 3870 ↦ cmpt 4090 Fn wfn 5249 ‘cfv 5254 Basecbs 12618 LSubSpclss 13848 LSpanclspn 13882 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-coll 4144 ax-sep 4147 ax-pow 4203 ax-pr 4238 ax-un 4464 ax-cnex 7963 ax-resscn 7964 ax-1re 7966 ax-addrcl 7969 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ral 2477 df-rex 2478 df-reu 2479 df-rab 2481 df-v 2762 df-sbc 2986 df-csb 3081 df-un 3157 df-in 3159 df-ss 3166 df-pw 3603 df-sn 3624 df-pr 3625 df-op 3627 df-uni 3836 df-int 3871 df-iun 3914 df-br 4030 df-opab 4091 df-mpt 4092 df-id 4324 df-xp 4665 df-rel 4666 df-cnv 4667 df-co 4668 df-dm 4669 df-rn 4670 df-res 4671 df-ima 4672 df-iota 5215 df-fun 5256 df-fn 5257 df-f 5258 df-f1 5259 df-fo 5260 df-f1o 5261 df-fv 5262 df-inn 8983 df-ndx 12621 df-slot 12622 df-base 12624 df-lsp 13883 |
This theorem is referenced by: lspf 13885 lspval 13886 lspex 13891 lsppropd 13928 |
Copyright terms: Public domain | W3C validator |