ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  lspfval GIF version

Theorem lspfval 13480
Description: The span function for a left vector space (or a left module). (Contributed by NM, 8-Dec-2013.) (Revised by Mario Carneiro, 19-Jun-2014.)
Hypotheses
Ref Expression
lspval.v 𝑉 = (Baseβ€˜π‘Š)
lspval.s 𝑆 = (LSubSpβ€˜π‘Š)
lspval.n 𝑁 = (LSpanβ€˜π‘Š)
Assertion
Ref Expression
lspfval (π‘Š ∈ 𝑋 β†’ 𝑁 = (𝑠 ∈ 𝒫 𝑉 ↦ ∩ {𝑑 ∈ 𝑆 ∣ 𝑠 βŠ† 𝑑}))
Distinct variable groups:   𝑑,𝑠,𝑆   𝑉,𝑠,𝑑   π‘Š,𝑠
Allowed substitution hints:   𝑁(𝑑,𝑠)   π‘Š(𝑑)   𝑋(𝑑,𝑠)

Proof of Theorem lspfval
Dummy variable 𝑀 is distinct from all other variables.
StepHypRef Expression
1 lspval.n . 2 𝑁 = (LSpanβ€˜π‘Š)
2 df-lsp 13479 . . 3 LSpan = (𝑀 ∈ V ↦ (𝑠 ∈ 𝒫 (Baseβ€˜π‘€) ↦ ∩ {𝑑 ∈ (LSubSpβ€˜π‘€) ∣ 𝑠 βŠ† 𝑑}))
3 fveq2 5517 . . . . . 6 (𝑀 = π‘Š β†’ (Baseβ€˜π‘€) = (Baseβ€˜π‘Š))
4 lspval.v . . . . . 6 𝑉 = (Baseβ€˜π‘Š)
53, 4eqtr4di 2228 . . . . 5 (𝑀 = π‘Š β†’ (Baseβ€˜π‘€) = 𝑉)
65pweqd 3582 . . . 4 (𝑀 = π‘Š β†’ 𝒫 (Baseβ€˜π‘€) = 𝒫 𝑉)
7 fveq2 5517 . . . . . . 7 (𝑀 = π‘Š β†’ (LSubSpβ€˜π‘€) = (LSubSpβ€˜π‘Š))
8 lspval.s . . . . . . 7 𝑆 = (LSubSpβ€˜π‘Š)
97, 8eqtr4di 2228 . . . . . 6 (𝑀 = π‘Š β†’ (LSubSpβ€˜π‘€) = 𝑆)
109rabeqdv 2733 . . . . 5 (𝑀 = π‘Š β†’ {𝑑 ∈ (LSubSpβ€˜π‘€) ∣ 𝑠 βŠ† 𝑑} = {𝑑 ∈ 𝑆 ∣ 𝑠 βŠ† 𝑑})
1110inteqd 3851 . . . 4 (𝑀 = π‘Š β†’ ∩ {𝑑 ∈ (LSubSpβ€˜π‘€) ∣ 𝑠 βŠ† 𝑑} = ∩ {𝑑 ∈ 𝑆 ∣ 𝑠 βŠ† 𝑑})
126, 11mpteq12dv 4087 . . 3 (𝑀 = π‘Š β†’ (𝑠 ∈ 𝒫 (Baseβ€˜π‘€) ↦ ∩ {𝑑 ∈ (LSubSpβ€˜π‘€) ∣ 𝑠 βŠ† 𝑑}) = (𝑠 ∈ 𝒫 𝑉 ↦ ∩ {𝑑 ∈ 𝑆 ∣ 𝑠 βŠ† 𝑑}))
13 elex 2750 . . 3 (π‘Š ∈ 𝑋 β†’ π‘Š ∈ V)
14 basfn 12522 . . . . . . 7 Base Fn V
15 funfvex 5534 . . . . . . . 8 ((Fun Base ∧ π‘Š ∈ dom Base) β†’ (Baseβ€˜π‘Š) ∈ V)
1615funfni 5318 . . . . . . 7 ((Base Fn V ∧ π‘Š ∈ V) β†’ (Baseβ€˜π‘Š) ∈ V)
1714, 13, 16sylancr 414 . . . . . 6 (π‘Š ∈ 𝑋 β†’ (Baseβ€˜π‘Š) ∈ V)
184, 17eqeltrid 2264 . . . . 5 (π‘Š ∈ 𝑋 β†’ 𝑉 ∈ V)
1918pwexd 4183 . . . 4 (π‘Š ∈ 𝑋 β†’ 𝒫 𝑉 ∈ V)
2019mptexd 5745 . . 3 (π‘Š ∈ 𝑋 β†’ (𝑠 ∈ 𝒫 𝑉 ↦ ∩ {𝑑 ∈ 𝑆 ∣ 𝑠 βŠ† 𝑑}) ∈ V)
212, 12, 13, 20fvmptd3 5611 . 2 (π‘Š ∈ 𝑋 β†’ (LSpanβ€˜π‘Š) = (𝑠 ∈ 𝒫 𝑉 ↦ ∩ {𝑑 ∈ 𝑆 ∣ 𝑠 βŠ† 𝑑}))
221, 21eqtrid 2222 1 (π‘Š ∈ 𝑋 β†’ 𝑁 = (𝑠 ∈ 𝒫 𝑉 ↦ ∩ {𝑑 ∈ 𝑆 ∣ 𝑠 βŠ† 𝑑}))
Colors of variables: wff set class
Syntax hints:   β†’ wi 4   = wceq 1353   ∈ wcel 2148  {crab 2459  Vcvv 2739   βŠ† wss 3131  π’« cpw 3577  βˆ© cint 3846   ↦ cmpt 4066   Fn wfn 5213  β€˜cfv 5218  Basecbs 12464  LSubSpclss 13447  LSpanclspn 13478
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4120  ax-sep 4123  ax-pow 4176  ax-pr 4211  ax-un 4435  ax-cnex 7904  ax-resscn 7905  ax-1re 7907  ax-addrcl 7910
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460  df-rex 2461  df-reu 2462  df-rab 2464  df-v 2741  df-sbc 2965  df-csb 3060  df-un 3135  df-in 3137  df-ss 3144  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-int 3847  df-iun 3890  df-br 4006  df-opab 4067  df-mpt 4068  df-id 4295  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-rn 4639  df-res 4640  df-ima 4641  df-iota 5180  df-fun 5220  df-fn 5221  df-f 5222  df-f1 5223  df-fo 5224  df-f1o 5225  df-fv 5226  df-inn 8922  df-ndx 12467  df-slot 12468  df-base 12470  df-lsp 13479
This theorem is referenced by:  lspf  13481  lspval  13482  lsppropd  13523
  Copyright terms: Public domain W3C validator