| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > rabeqbidv | GIF version | ||
| Description: Equality of restricted class abstractions. (Contributed by Jeff Madsen, 1-Dec-2009.) |
| Ref | Expression |
|---|---|
| rabeqbidv.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
| rabeqbidv.2 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
| Ref | Expression |
|---|---|
| rabeqbidv | ⊢ (𝜑 → {𝑥 ∈ 𝐴 ∣ 𝜓} = {𝑥 ∈ 𝐵 ∣ 𝜒}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rabeqbidv.1 | . . 3 ⊢ (𝜑 → 𝐴 = 𝐵) | |
| 2 | rabeq 2791 | . . 3 ⊢ (𝐴 = 𝐵 → {𝑥 ∈ 𝐴 ∣ 𝜓} = {𝑥 ∈ 𝐵 ∣ 𝜓}) | |
| 3 | 1, 2 | syl 14 | . 2 ⊢ (𝜑 → {𝑥 ∈ 𝐴 ∣ 𝜓} = {𝑥 ∈ 𝐵 ∣ 𝜓}) |
| 4 | rabeqbidv.2 | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
| 5 | 4 | rabbidv 2788 | . 2 ⊢ (𝜑 → {𝑥 ∈ 𝐵 ∣ 𝜓} = {𝑥 ∈ 𝐵 ∣ 𝜒}) |
| 6 | 3, 5 | eqtrd 2262 | 1 ⊢ (𝜑 → {𝑥 ∈ 𝐴 ∣ 𝜓} = {𝑥 ∈ 𝐵 ∣ 𝜒}) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 = wceq 1395 {crab 2512 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rab 2517 |
| This theorem is referenced by: elfvmptrab1 5729 elovmporab1w 6206 mpoxopoveq 6386 supeq123d 7158 phival 12735 dfphi2 12742 gsumress 13428 ismhm 13494 mhmex 13495 issubm 13505 issubg 13710 subgex 13713 isnsg 13739 dfrhm2 14118 isrim0 14125 issubrng 14163 issubrg 14185 rrgval 14226 lsssetm 14320 mplvalcoe 14654 cldval 14773 neifval 14814 cnfval 14868 cnpfval 14869 cnprcl2k 14880 hmeofvalg 14977 ispsmet 14997 ismet 15018 isxmet 15019 blfvalps 15059 cncfval 15246 |
| Copyright terms: Public domain | W3C validator |