ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rabeqbidv GIF version

Theorem rabeqbidv 2755
Description: Equality of restricted class abstractions. (Contributed by Jeff Madsen, 1-Dec-2009.)
Hypotheses
Ref Expression
rabeqbidv.1 (𝜑𝐴 = 𝐵)
rabeqbidv.2 (𝜑 → (𝜓𝜒))
Assertion
Ref Expression
rabeqbidv (𝜑 → {𝑥𝐴𝜓} = {𝑥𝐵𝜒})
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝜑,𝑥
Allowed substitution hints:   𝜓(𝑥)   𝜒(𝑥)

Proof of Theorem rabeqbidv
StepHypRef Expression
1 rabeqbidv.1 . . 3 (𝜑𝐴 = 𝐵)
2 rabeq 2752 . . 3 (𝐴 = 𝐵 → {𝑥𝐴𝜓} = {𝑥𝐵𝜓})
31, 2syl 14 . 2 (𝜑 → {𝑥𝐴𝜓} = {𝑥𝐵𝜓})
4 rabeqbidv.2 . . 3 (𝜑 → (𝜓𝜒))
54rabbidv 2749 . 2 (𝜑 → {𝑥𝐵𝜓} = {𝑥𝐵𝜒})
63, 5eqtrd 2226 1 (𝜑 → {𝑥𝐴𝜓} = {𝑥𝐵𝜒})
Colors of variables: wff set class
Syntax hints:  wi 4  wb 105   = wceq 1364  {crab 2476
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2175
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rab 2481
This theorem is referenced by:  elfvmptrab1  5652  elovmporab1w  6119  mpoxopoveq  6293  supeq123d  7050  phival  12351  dfphi2  12358  gsumress  12978  ismhm  13033  mhmex  13034  issubm  13044  issubg  13243  subgex  13246  isnsg  13272  dfrhm2  13650  isrim0  13657  issubrng  13695  issubrg  13717  rrgval  13758  lsssetm  13852  cldval  14267  neifval  14308  cnfval  14362  cnpfval  14363  cnprcl2k  14374  hmeofvalg  14471  ispsmet  14491  ismet  14512  isxmet  14513  blfvalps  14553  cncfval  14727
  Copyright terms: Public domain W3C validator