| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > rabeqbidv | GIF version | ||
| Description: Equality of restricted class abstractions. (Contributed by Jeff Madsen, 1-Dec-2009.) |
| Ref | Expression |
|---|---|
| rabeqbidv.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
| rabeqbidv.2 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
| Ref | Expression |
|---|---|
| rabeqbidv | ⊢ (𝜑 → {𝑥 ∈ 𝐴 ∣ 𝜓} = {𝑥 ∈ 𝐵 ∣ 𝜒}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rabeqbidv.1 | . . 3 ⊢ (𝜑 → 𝐴 = 𝐵) | |
| 2 | rabeq 2764 | . . 3 ⊢ (𝐴 = 𝐵 → {𝑥 ∈ 𝐴 ∣ 𝜓} = {𝑥 ∈ 𝐵 ∣ 𝜓}) | |
| 3 | 1, 2 | syl 14 | . 2 ⊢ (𝜑 → {𝑥 ∈ 𝐴 ∣ 𝜓} = {𝑥 ∈ 𝐵 ∣ 𝜓}) |
| 4 | rabeqbidv.2 | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
| 5 | 4 | rabbidv 2761 | . 2 ⊢ (𝜑 → {𝑥 ∈ 𝐵 ∣ 𝜓} = {𝑥 ∈ 𝐵 ∣ 𝜒}) |
| 6 | 3, 5 | eqtrd 2238 | 1 ⊢ (𝜑 → {𝑥 ∈ 𝐴 ∣ 𝜓} = {𝑥 ∈ 𝐵 ∣ 𝜒}) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 = wceq 1373 {crab 2488 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-ext 2187 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ral 2489 df-rab 2493 |
| This theorem is referenced by: elfvmptrab1 5676 elovmporab1w 6149 mpoxopoveq 6328 supeq123d 7095 phival 12568 dfphi2 12575 gsumress 13260 ismhm 13326 mhmex 13327 issubm 13337 issubg 13542 subgex 13545 isnsg 13571 dfrhm2 13949 isrim0 13956 issubrng 13994 issubrg 14016 rrgval 14057 lsssetm 14151 mplvalcoe 14485 cldval 14604 neifval 14645 cnfval 14699 cnpfval 14700 cnprcl2k 14711 hmeofvalg 14808 ispsmet 14828 ismet 14849 isxmet 14850 blfvalps 14890 cncfval 15077 |
| Copyright terms: Public domain | W3C validator |