ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rabeqbidv GIF version

Theorem rabeqbidv 2771
Description: Equality of restricted class abstractions. (Contributed by Jeff Madsen, 1-Dec-2009.)
Hypotheses
Ref Expression
rabeqbidv.1 (𝜑𝐴 = 𝐵)
rabeqbidv.2 (𝜑 → (𝜓𝜒))
Assertion
Ref Expression
rabeqbidv (𝜑 → {𝑥𝐴𝜓} = {𝑥𝐵𝜒})
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝜑,𝑥
Allowed substitution hints:   𝜓(𝑥)   𝜒(𝑥)

Proof of Theorem rabeqbidv
StepHypRef Expression
1 rabeqbidv.1 . . 3 (𝜑𝐴 = 𝐵)
2 rabeq 2768 . . 3 (𝐴 = 𝐵 → {𝑥𝐴𝜓} = {𝑥𝐵𝜓})
31, 2syl 14 . 2 (𝜑 → {𝑥𝐴𝜓} = {𝑥𝐵𝜓})
4 rabeqbidv.2 . . 3 (𝜑 → (𝜓𝜒))
54rabbidv 2765 . 2 (𝜑 → {𝑥𝐵𝜓} = {𝑥𝐵𝜒})
63, 5eqtrd 2240 1 (𝜑 → {𝑥𝐴𝜓} = {𝑥𝐵𝜒})
Colors of variables: wff set class
Syntax hints:  wi 4  wb 105   = wceq 1373  {crab 2490
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2189
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ral 2491  df-rab 2495
This theorem is referenced by:  elfvmptrab1  5697  elovmporab1w  6170  mpoxopoveq  6349  supeq123d  7119  phival  12650  dfphi2  12657  gsumress  13342  ismhm  13408  mhmex  13409  issubm  13419  issubg  13624  subgex  13627  isnsg  13653  dfrhm2  14031  isrim0  14038  issubrng  14076  issubrg  14098  rrgval  14139  lsssetm  14233  mplvalcoe  14567  cldval  14686  neifval  14727  cnfval  14781  cnpfval  14782  cnprcl2k  14793  hmeofvalg  14890  ispsmet  14910  ismet  14931  isxmet  14932  blfvalps  14972  cncfval  15159
  Copyright terms: Public domain W3C validator