ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rabeqbidv GIF version

Theorem rabeqbidv 2758
Description: Equality of restricted class abstractions. (Contributed by Jeff Madsen, 1-Dec-2009.)
Hypotheses
Ref Expression
rabeqbidv.1 (𝜑𝐴 = 𝐵)
rabeqbidv.2 (𝜑 → (𝜓𝜒))
Assertion
Ref Expression
rabeqbidv (𝜑 → {𝑥𝐴𝜓} = {𝑥𝐵𝜒})
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝜑,𝑥
Allowed substitution hints:   𝜓(𝑥)   𝜒(𝑥)

Proof of Theorem rabeqbidv
StepHypRef Expression
1 rabeqbidv.1 . . 3 (𝜑𝐴 = 𝐵)
2 rabeq 2755 . . 3 (𝐴 = 𝐵 → {𝑥𝐴𝜓} = {𝑥𝐵𝜓})
31, 2syl 14 . 2 (𝜑 → {𝑥𝐴𝜓} = {𝑥𝐵𝜓})
4 rabeqbidv.2 . . 3 (𝜑 → (𝜓𝜒))
54rabbidv 2752 . 2 (𝜑 → {𝑥𝐵𝜓} = {𝑥𝐵𝜒})
63, 5eqtrd 2229 1 (𝜑 → {𝑥𝐴𝜓} = {𝑥𝐵𝜒})
Colors of variables: wff set class
Syntax hints:  wi 4  wb 105   = wceq 1364  {crab 2479
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rab 2484
This theorem is referenced by:  elfvmptrab1  5659  elovmporab1w  6128  mpoxopoveq  6307  supeq123d  7066  phival  12406  dfphi2  12413  gsumress  13097  ismhm  13163  mhmex  13164  issubm  13174  issubg  13379  subgex  13382  isnsg  13408  dfrhm2  13786  isrim0  13793  issubrng  13831  issubrg  13853  rrgval  13894  lsssetm  13988  cldval  14419  neifval  14460  cnfval  14514  cnpfval  14515  cnprcl2k  14526  hmeofvalg  14623  ispsmet  14643  ismet  14664  isxmet  14665  blfvalps  14705  cncfval  14892
  Copyright terms: Public domain W3C validator