Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > rabeqbidv | GIF version |
Description: Equality of restricted class abstractions. (Contributed by Jeff Madsen, 1-Dec-2009.) |
Ref | Expression |
---|---|
rabeqbidv.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
rabeqbidv.2 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
Ref | Expression |
---|---|
rabeqbidv | ⊢ (𝜑 → {𝑥 ∈ 𝐴 ∣ 𝜓} = {𝑥 ∈ 𝐵 ∣ 𝜒}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rabeqbidv.1 | . . 3 ⊢ (𝜑 → 𝐴 = 𝐵) | |
2 | rabeq 2701 | . . 3 ⊢ (𝐴 = 𝐵 → {𝑥 ∈ 𝐴 ∣ 𝜓} = {𝑥 ∈ 𝐵 ∣ 𝜓}) | |
3 | 1, 2 | syl 14 | . 2 ⊢ (𝜑 → {𝑥 ∈ 𝐴 ∣ 𝜓} = {𝑥 ∈ 𝐵 ∣ 𝜓}) |
4 | rabeqbidv.2 | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
5 | 4 | rabbidv 2698 | . 2 ⊢ (𝜑 → {𝑥 ∈ 𝐵 ∣ 𝜓} = {𝑥 ∈ 𝐵 ∣ 𝜒}) |
6 | 3, 5 | eqtrd 2187 | 1 ⊢ (𝜑 → {𝑥 ∈ 𝐴 ∣ 𝜓} = {𝑥 ∈ 𝐵 ∣ 𝜒}) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 104 = wceq 1332 {crab 2436 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1424 ax-7 1425 ax-gen 1426 ax-ie1 1470 ax-ie2 1471 ax-8 1481 ax-10 1482 ax-11 1483 ax-i12 1484 ax-bndl 1486 ax-4 1487 ax-17 1503 ax-i9 1507 ax-ial 1511 ax-i5r 1512 ax-ext 2136 |
This theorem depends on definitions: df-bi 116 df-tru 1335 df-nf 1438 df-sb 1740 df-clab 2141 df-cleq 2147 df-clel 2150 df-nfc 2285 df-ral 2437 df-rab 2441 |
This theorem is referenced by: elfvmptrab1 5555 mpoxopoveq 6177 supeq123d 6923 phival 12056 dfphi2 12063 cldval 12438 neifval 12479 cnfval 12533 cnpfval 12534 cnprcl2k 12545 hmeofvalg 12642 ispsmet 12662 ismet 12683 isxmet 12684 blfvalps 12724 cncfval 12898 |
Copyright terms: Public domain | W3C validator |