| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > lsppropd | GIF version | ||
| Description: If two structures have the same components (properties), they have the same span function. (Contributed by Mario Carneiro, 9-Feb-2015.) (Revised by Mario Carneiro, 14-Jun-2015.) (Revised by AV, 24-Apr-2024.) |
| Ref | Expression |
|---|---|
| lsspropd.b1 | ⊢ (𝜑 → 𝐵 = (Base‘𝐾)) |
| lsspropd.b2 | ⊢ (𝜑 → 𝐵 = (Base‘𝐿)) |
| lsspropd.w | ⊢ (𝜑 → 𝐵 ⊆ 𝑊) |
| lsspropd.p | ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑊 ∧ 𝑦 ∈ 𝑊)) → (𝑥(+g‘𝐾)𝑦) = (𝑥(+g‘𝐿)𝑦)) |
| lsspropd.s1 | ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑃 ∧ 𝑦 ∈ 𝐵)) → (𝑥( ·𝑠 ‘𝐾)𝑦) ∈ 𝑊) |
| lsspropd.s2 | ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑃 ∧ 𝑦 ∈ 𝐵)) → (𝑥( ·𝑠 ‘𝐾)𝑦) = (𝑥( ·𝑠 ‘𝐿)𝑦)) |
| lsspropd.p1 | ⊢ (𝜑 → 𝑃 = (Base‘(Scalar‘𝐾))) |
| lsspropd.p2 | ⊢ (𝜑 → 𝑃 = (Base‘(Scalar‘𝐿))) |
| lsppropd.v1 | ⊢ (𝜑 → 𝐾 ∈ 𝑋) |
| lsppropd.v2 | ⊢ (𝜑 → 𝐿 ∈ 𝑌) |
| Ref | Expression |
|---|---|
| lsppropd | ⊢ (𝜑 → (LSpan‘𝐾) = (LSpan‘𝐿)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lsspropd.b1 | . . . . 5 ⊢ (𝜑 → 𝐵 = (Base‘𝐾)) | |
| 2 | lsspropd.b2 | . . . . 5 ⊢ (𝜑 → 𝐵 = (Base‘𝐿)) | |
| 3 | 1, 2 | eqtr3d 2231 | . . . 4 ⊢ (𝜑 → (Base‘𝐾) = (Base‘𝐿)) |
| 4 | 3 | pweqd 3610 | . . 3 ⊢ (𝜑 → 𝒫 (Base‘𝐾) = 𝒫 (Base‘𝐿)) |
| 5 | lsspropd.w | . . . . . 6 ⊢ (𝜑 → 𝐵 ⊆ 𝑊) | |
| 6 | lsspropd.p | . . . . . 6 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑊 ∧ 𝑦 ∈ 𝑊)) → (𝑥(+g‘𝐾)𝑦) = (𝑥(+g‘𝐿)𝑦)) | |
| 7 | lsspropd.s1 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑃 ∧ 𝑦 ∈ 𝐵)) → (𝑥( ·𝑠 ‘𝐾)𝑦) ∈ 𝑊) | |
| 8 | lsspropd.s2 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑃 ∧ 𝑦 ∈ 𝐵)) → (𝑥( ·𝑠 ‘𝐾)𝑦) = (𝑥( ·𝑠 ‘𝐿)𝑦)) | |
| 9 | lsspropd.p1 | . . . . . 6 ⊢ (𝜑 → 𝑃 = (Base‘(Scalar‘𝐾))) | |
| 10 | lsspropd.p2 | . . . . . 6 ⊢ (𝜑 → 𝑃 = (Base‘(Scalar‘𝐿))) | |
| 11 | lsppropd.v1 | . . . . . 6 ⊢ (𝜑 → 𝐾 ∈ 𝑋) | |
| 12 | lsppropd.v2 | . . . . . 6 ⊢ (𝜑 → 𝐿 ∈ 𝑌) | |
| 13 | 1, 2, 5, 6, 7, 8, 9, 10, 11, 12 | lsspropdg 13987 | . . . . 5 ⊢ (𝜑 → (LSubSp‘𝐾) = (LSubSp‘𝐿)) |
| 14 | 13 | rabeqdv 2757 | . . . 4 ⊢ (𝜑 → {𝑡 ∈ (LSubSp‘𝐾) ∣ 𝑠 ⊆ 𝑡} = {𝑡 ∈ (LSubSp‘𝐿) ∣ 𝑠 ⊆ 𝑡}) |
| 15 | 14 | inteqd 3879 | . . 3 ⊢ (𝜑 → ∩ {𝑡 ∈ (LSubSp‘𝐾) ∣ 𝑠 ⊆ 𝑡} = ∩ {𝑡 ∈ (LSubSp‘𝐿) ∣ 𝑠 ⊆ 𝑡}) |
| 16 | 4, 15 | mpteq12dv 4115 | . 2 ⊢ (𝜑 → (𝑠 ∈ 𝒫 (Base‘𝐾) ↦ ∩ {𝑡 ∈ (LSubSp‘𝐾) ∣ 𝑠 ⊆ 𝑡}) = (𝑠 ∈ 𝒫 (Base‘𝐿) ↦ ∩ {𝑡 ∈ (LSubSp‘𝐿) ∣ 𝑠 ⊆ 𝑡})) |
| 17 | eqid 2196 | . . . 4 ⊢ (Base‘𝐾) = (Base‘𝐾) | |
| 18 | eqid 2196 | . . . 4 ⊢ (LSubSp‘𝐾) = (LSubSp‘𝐾) | |
| 19 | eqid 2196 | . . . 4 ⊢ (LSpan‘𝐾) = (LSpan‘𝐾) | |
| 20 | 17, 18, 19 | lspfval 13944 | . . 3 ⊢ (𝐾 ∈ 𝑋 → (LSpan‘𝐾) = (𝑠 ∈ 𝒫 (Base‘𝐾) ↦ ∩ {𝑡 ∈ (LSubSp‘𝐾) ∣ 𝑠 ⊆ 𝑡})) |
| 21 | 11, 20 | syl 14 | . 2 ⊢ (𝜑 → (LSpan‘𝐾) = (𝑠 ∈ 𝒫 (Base‘𝐾) ↦ ∩ {𝑡 ∈ (LSubSp‘𝐾) ∣ 𝑠 ⊆ 𝑡})) |
| 22 | eqid 2196 | . . . 4 ⊢ (Base‘𝐿) = (Base‘𝐿) | |
| 23 | eqid 2196 | . . . 4 ⊢ (LSubSp‘𝐿) = (LSubSp‘𝐿) | |
| 24 | eqid 2196 | . . . 4 ⊢ (LSpan‘𝐿) = (LSpan‘𝐿) | |
| 25 | 22, 23, 24 | lspfval 13944 | . . 3 ⊢ (𝐿 ∈ 𝑌 → (LSpan‘𝐿) = (𝑠 ∈ 𝒫 (Base‘𝐿) ↦ ∩ {𝑡 ∈ (LSubSp‘𝐿) ∣ 𝑠 ⊆ 𝑡})) |
| 26 | 12, 25 | syl 14 | . 2 ⊢ (𝜑 → (LSpan‘𝐿) = (𝑠 ∈ 𝒫 (Base‘𝐿) ↦ ∩ {𝑡 ∈ (LSubSp‘𝐿) ∣ 𝑠 ⊆ 𝑡})) |
| 27 | 16, 21, 26 | 3eqtr4d 2239 | 1 ⊢ (𝜑 → (LSpan‘𝐾) = (LSpan‘𝐿)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1364 ∈ wcel 2167 {crab 2479 ⊆ wss 3157 𝒫 cpw 3605 ∩ cint 3874 ↦ cmpt 4094 ‘cfv 5258 (class class class)co 5922 Basecbs 12678 +gcplusg 12755 Scalarcsca 12758 ·𝑠 cvsca 12759 LSubSpclss 13908 LSpanclspn 13942 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-coll 4148 ax-sep 4151 ax-pow 4207 ax-pr 4242 ax-un 4468 ax-cnex 7970 ax-resscn 7971 ax-1re 7973 ax-addrcl 7976 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-reu 2482 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-un 3161 df-in 3163 df-ss 3170 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-int 3875 df-iun 3918 df-br 4034 df-opab 4095 df-mpt 4096 df-id 4328 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-rn 4674 df-res 4675 df-ima 4676 df-iota 5219 df-fun 5260 df-fn 5261 df-f 5262 df-f1 5263 df-fo 5264 df-f1o 5265 df-fv 5266 df-ov 5925 df-inn 8991 df-ndx 12681 df-slot 12682 df-base 12684 df-lssm 13909 df-lsp 13943 |
| This theorem is referenced by: lidlrsppropdg 14051 |
| Copyright terms: Public domain | W3C validator |