ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  lsppropd GIF version

Theorem lsppropd 13524
Description: If two structures have the same components (properties), they have the same span function. (Contributed by Mario Carneiro, 9-Feb-2015.) (Revised by Mario Carneiro, 14-Jun-2015.) (Revised by AV, 24-Apr-2024.)
Hypotheses
Ref Expression
lsspropd.b1 (πœ‘ β†’ 𝐡 = (Baseβ€˜πΎ))
lsspropd.b2 (πœ‘ β†’ 𝐡 = (Baseβ€˜πΏ))
lsspropd.w (πœ‘ β†’ 𝐡 βŠ† π‘Š)
lsspropd.p ((πœ‘ ∧ (π‘₯ ∈ π‘Š ∧ 𝑦 ∈ π‘Š)) β†’ (π‘₯(+gβ€˜πΎ)𝑦) = (π‘₯(+gβ€˜πΏ)𝑦))
lsspropd.s1 ((πœ‘ ∧ (π‘₯ ∈ 𝑃 ∧ 𝑦 ∈ 𝐡)) β†’ (π‘₯( ·𝑠 β€˜πΎ)𝑦) ∈ π‘Š)
lsspropd.s2 ((πœ‘ ∧ (π‘₯ ∈ 𝑃 ∧ 𝑦 ∈ 𝐡)) β†’ (π‘₯( ·𝑠 β€˜πΎ)𝑦) = (π‘₯( ·𝑠 β€˜πΏ)𝑦))
lsspropd.p1 (πœ‘ β†’ 𝑃 = (Baseβ€˜(Scalarβ€˜πΎ)))
lsspropd.p2 (πœ‘ β†’ 𝑃 = (Baseβ€˜(Scalarβ€˜πΏ)))
lsppropd.v1 (πœ‘ β†’ 𝐾 ∈ 𝑋)
lsppropd.v2 (πœ‘ β†’ 𝐿 ∈ π‘Œ)
Assertion
Ref Expression
lsppropd (πœ‘ β†’ (LSpanβ€˜πΎ) = (LSpanβ€˜πΏ))
Distinct variable groups:   π‘₯,𝑦,𝐡   π‘₯,𝐾,𝑦   πœ‘,π‘₯,𝑦   π‘₯,π‘Š,𝑦   π‘₯,𝐿,𝑦   π‘₯,𝑃,𝑦
Allowed substitution hints:   𝑋(π‘₯,𝑦)   π‘Œ(π‘₯,𝑦)

Proof of Theorem lsppropd
Dummy variables 𝑠 𝑑 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lsspropd.b1 . . . . 5 (πœ‘ β†’ 𝐡 = (Baseβ€˜πΎ))
2 lsspropd.b2 . . . . 5 (πœ‘ β†’ 𝐡 = (Baseβ€˜πΏ))
31, 2eqtr3d 2212 . . . 4 (πœ‘ β†’ (Baseβ€˜πΎ) = (Baseβ€˜πΏ))
43pweqd 3582 . . 3 (πœ‘ β†’ 𝒫 (Baseβ€˜πΎ) = 𝒫 (Baseβ€˜πΏ))
5 lsspropd.w . . . . . 6 (πœ‘ β†’ 𝐡 βŠ† π‘Š)
6 lsspropd.p . . . . . 6 ((πœ‘ ∧ (π‘₯ ∈ π‘Š ∧ 𝑦 ∈ π‘Š)) β†’ (π‘₯(+gβ€˜πΎ)𝑦) = (π‘₯(+gβ€˜πΏ)𝑦))
7 lsspropd.s1 . . . . . 6 ((πœ‘ ∧ (π‘₯ ∈ 𝑃 ∧ 𝑦 ∈ 𝐡)) β†’ (π‘₯( ·𝑠 β€˜πΎ)𝑦) ∈ π‘Š)
8 lsspropd.s2 . . . . . 6 ((πœ‘ ∧ (π‘₯ ∈ 𝑃 ∧ 𝑦 ∈ 𝐡)) β†’ (π‘₯( ·𝑠 β€˜πΎ)𝑦) = (π‘₯( ·𝑠 β€˜πΏ)𝑦))
9 lsspropd.p1 . . . . . 6 (πœ‘ β†’ 𝑃 = (Baseβ€˜(Scalarβ€˜πΎ)))
10 lsspropd.p2 . . . . . 6 (πœ‘ β†’ 𝑃 = (Baseβ€˜(Scalarβ€˜πΏ)))
11 lsppropd.v1 . . . . . 6 (πœ‘ β†’ 𝐾 ∈ 𝑋)
12 lsppropd.v2 . . . . . 6 (πœ‘ β†’ 𝐿 ∈ π‘Œ)
131, 2, 5, 6, 7, 8, 9, 10, 11, 12lsspropdg 13523 . . . . 5 (πœ‘ β†’ (LSubSpβ€˜πΎ) = (LSubSpβ€˜πΏ))
1413rabeqdv 2733 . . . 4 (πœ‘ β†’ {𝑑 ∈ (LSubSpβ€˜πΎ) ∣ 𝑠 βŠ† 𝑑} = {𝑑 ∈ (LSubSpβ€˜πΏ) ∣ 𝑠 βŠ† 𝑑})
1514inteqd 3851 . . 3 (πœ‘ β†’ ∩ {𝑑 ∈ (LSubSpβ€˜πΎ) ∣ 𝑠 βŠ† 𝑑} = ∩ {𝑑 ∈ (LSubSpβ€˜πΏ) ∣ 𝑠 βŠ† 𝑑})
164, 15mpteq12dv 4087 . 2 (πœ‘ β†’ (𝑠 ∈ 𝒫 (Baseβ€˜πΎ) ↦ ∩ {𝑑 ∈ (LSubSpβ€˜πΎ) ∣ 𝑠 βŠ† 𝑑}) = (𝑠 ∈ 𝒫 (Baseβ€˜πΏ) ↦ ∩ {𝑑 ∈ (LSubSpβ€˜πΏ) ∣ 𝑠 βŠ† 𝑑}))
17 eqid 2177 . . . 4 (Baseβ€˜πΎ) = (Baseβ€˜πΎ)
18 eqid 2177 . . . 4 (LSubSpβ€˜πΎ) = (LSubSpβ€˜πΎ)
19 eqid 2177 . . . 4 (LSpanβ€˜πΎ) = (LSpanβ€˜πΎ)
2017, 18, 19lspfval 13481 . . 3 (𝐾 ∈ 𝑋 β†’ (LSpanβ€˜πΎ) = (𝑠 ∈ 𝒫 (Baseβ€˜πΎ) ↦ ∩ {𝑑 ∈ (LSubSpβ€˜πΎ) ∣ 𝑠 βŠ† 𝑑}))
2111, 20syl 14 . 2 (πœ‘ β†’ (LSpanβ€˜πΎ) = (𝑠 ∈ 𝒫 (Baseβ€˜πΎ) ↦ ∩ {𝑑 ∈ (LSubSpβ€˜πΎ) ∣ 𝑠 βŠ† 𝑑}))
22 eqid 2177 . . . 4 (Baseβ€˜πΏ) = (Baseβ€˜πΏ)
23 eqid 2177 . . . 4 (LSubSpβ€˜πΏ) = (LSubSpβ€˜πΏ)
24 eqid 2177 . . . 4 (LSpanβ€˜πΏ) = (LSpanβ€˜πΏ)
2522, 23, 24lspfval 13481 . . 3 (𝐿 ∈ π‘Œ β†’ (LSpanβ€˜πΏ) = (𝑠 ∈ 𝒫 (Baseβ€˜πΏ) ↦ ∩ {𝑑 ∈ (LSubSpβ€˜πΏ) ∣ 𝑠 βŠ† 𝑑}))
2612, 25syl 14 . 2 (πœ‘ β†’ (LSpanβ€˜πΏ) = (𝑠 ∈ 𝒫 (Baseβ€˜πΏ) ↦ ∩ {𝑑 ∈ (LSubSpβ€˜πΏ) ∣ 𝑠 βŠ† 𝑑}))
2716, 21, 263eqtr4d 2220 1 (πœ‘ β†’ (LSpanβ€˜πΎ) = (LSpanβ€˜πΏ))
Colors of variables: wff set class
Syntax hints:   β†’ wi 4   ∧ wa 104   = wceq 1353   ∈ wcel 2148  {crab 2459   βŠ† wss 3131  π’« cpw 3577  βˆ© cint 3846   ↦ cmpt 4066  β€˜cfv 5218  (class class class)co 5878  Basecbs 12465  +gcplusg 12539  Scalarcsca 12542   ·𝑠 cvsca 12543  LSubSpclss 13448  LSpanclspn 13479
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4120  ax-sep 4123  ax-pow 4176  ax-pr 4211  ax-un 4435  ax-cnex 7905  ax-resscn 7906  ax-1re 7908  ax-addrcl 7911
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460  df-rex 2461  df-reu 2462  df-rab 2464  df-v 2741  df-sbc 2965  df-csb 3060  df-un 3135  df-in 3137  df-ss 3144  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-int 3847  df-iun 3890  df-br 4006  df-opab 4067  df-mpt 4068  df-id 4295  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-rn 4639  df-res 4640  df-ima 4641  df-iota 5180  df-fun 5220  df-fn 5221  df-f 5222  df-f1 5223  df-fo 5224  df-f1o 5225  df-fv 5226  df-ov 5881  df-inn 8923  df-ndx 12468  df-slot 12469  df-base 12471  df-lssm 13449  df-lsp 13480
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator