![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > lsppropd | GIF version |
Description: If two structures have the same components (properties), they have the same span function. (Contributed by Mario Carneiro, 9-Feb-2015.) (Revised by Mario Carneiro, 14-Jun-2015.) (Revised by AV, 24-Apr-2024.) |
Ref | Expression |
---|---|
lsspropd.b1 | ⊢ (𝜑 → 𝐵 = (Base‘𝐾)) |
lsspropd.b2 | ⊢ (𝜑 → 𝐵 = (Base‘𝐿)) |
lsspropd.w | ⊢ (𝜑 → 𝐵 ⊆ 𝑊) |
lsspropd.p | ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑊 ∧ 𝑦 ∈ 𝑊)) → (𝑥(+g‘𝐾)𝑦) = (𝑥(+g‘𝐿)𝑦)) |
lsspropd.s1 | ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑃 ∧ 𝑦 ∈ 𝐵)) → (𝑥( ·𝑠 ‘𝐾)𝑦) ∈ 𝑊) |
lsspropd.s2 | ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑃 ∧ 𝑦 ∈ 𝐵)) → (𝑥( ·𝑠 ‘𝐾)𝑦) = (𝑥( ·𝑠 ‘𝐿)𝑦)) |
lsspropd.p1 | ⊢ (𝜑 → 𝑃 = (Base‘(Scalar‘𝐾))) |
lsspropd.p2 | ⊢ (𝜑 → 𝑃 = (Base‘(Scalar‘𝐿))) |
lsppropd.v1 | ⊢ (𝜑 → 𝐾 ∈ 𝑋) |
lsppropd.v2 | ⊢ (𝜑 → 𝐿 ∈ 𝑌) |
Ref | Expression |
---|---|
lsppropd | ⊢ (𝜑 → (LSpan‘𝐾) = (LSpan‘𝐿)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lsspropd.b1 | . . . . 5 ⊢ (𝜑 → 𝐵 = (Base‘𝐾)) | |
2 | lsspropd.b2 | . . . . 5 ⊢ (𝜑 → 𝐵 = (Base‘𝐿)) | |
3 | 1, 2 | eqtr3d 2222 | . . . 4 ⊢ (𝜑 → (Base‘𝐾) = (Base‘𝐿)) |
4 | 3 | pweqd 3592 | . . 3 ⊢ (𝜑 → 𝒫 (Base‘𝐾) = 𝒫 (Base‘𝐿)) |
5 | lsspropd.w | . . . . . 6 ⊢ (𝜑 → 𝐵 ⊆ 𝑊) | |
6 | lsspropd.p | . . . . . 6 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑊 ∧ 𝑦 ∈ 𝑊)) → (𝑥(+g‘𝐾)𝑦) = (𝑥(+g‘𝐿)𝑦)) | |
7 | lsspropd.s1 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑃 ∧ 𝑦 ∈ 𝐵)) → (𝑥( ·𝑠 ‘𝐾)𝑦) ∈ 𝑊) | |
8 | lsspropd.s2 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑃 ∧ 𝑦 ∈ 𝐵)) → (𝑥( ·𝑠 ‘𝐾)𝑦) = (𝑥( ·𝑠 ‘𝐿)𝑦)) | |
9 | lsspropd.p1 | . . . . . 6 ⊢ (𝜑 → 𝑃 = (Base‘(Scalar‘𝐾))) | |
10 | lsspropd.p2 | . . . . . 6 ⊢ (𝜑 → 𝑃 = (Base‘(Scalar‘𝐿))) | |
11 | lsppropd.v1 | . . . . . 6 ⊢ (𝜑 → 𝐾 ∈ 𝑋) | |
12 | lsppropd.v2 | . . . . . 6 ⊢ (𝜑 → 𝐿 ∈ 𝑌) | |
13 | 1, 2, 5, 6, 7, 8, 9, 10, 11, 12 | lsspropdg 13677 | . . . . 5 ⊢ (𝜑 → (LSubSp‘𝐾) = (LSubSp‘𝐿)) |
14 | 13 | rabeqdv 2743 | . . . 4 ⊢ (𝜑 → {𝑡 ∈ (LSubSp‘𝐾) ∣ 𝑠 ⊆ 𝑡} = {𝑡 ∈ (LSubSp‘𝐿) ∣ 𝑠 ⊆ 𝑡}) |
15 | 14 | inteqd 3861 | . . 3 ⊢ (𝜑 → ∩ {𝑡 ∈ (LSubSp‘𝐾) ∣ 𝑠 ⊆ 𝑡} = ∩ {𝑡 ∈ (LSubSp‘𝐿) ∣ 𝑠 ⊆ 𝑡}) |
16 | 4, 15 | mpteq12dv 4097 | . 2 ⊢ (𝜑 → (𝑠 ∈ 𝒫 (Base‘𝐾) ↦ ∩ {𝑡 ∈ (LSubSp‘𝐾) ∣ 𝑠 ⊆ 𝑡}) = (𝑠 ∈ 𝒫 (Base‘𝐿) ↦ ∩ {𝑡 ∈ (LSubSp‘𝐿) ∣ 𝑠 ⊆ 𝑡})) |
17 | eqid 2187 | . . . 4 ⊢ (Base‘𝐾) = (Base‘𝐾) | |
18 | eqid 2187 | . . . 4 ⊢ (LSubSp‘𝐾) = (LSubSp‘𝐾) | |
19 | eqid 2187 | . . . 4 ⊢ (LSpan‘𝐾) = (LSpan‘𝐾) | |
20 | 17, 18, 19 | lspfval 13634 | . . 3 ⊢ (𝐾 ∈ 𝑋 → (LSpan‘𝐾) = (𝑠 ∈ 𝒫 (Base‘𝐾) ↦ ∩ {𝑡 ∈ (LSubSp‘𝐾) ∣ 𝑠 ⊆ 𝑡})) |
21 | 11, 20 | syl 14 | . 2 ⊢ (𝜑 → (LSpan‘𝐾) = (𝑠 ∈ 𝒫 (Base‘𝐾) ↦ ∩ {𝑡 ∈ (LSubSp‘𝐾) ∣ 𝑠 ⊆ 𝑡})) |
22 | eqid 2187 | . . . 4 ⊢ (Base‘𝐿) = (Base‘𝐿) | |
23 | eqid 2187 | . . . 4 ⊢ (LSubSp‘𝐿) = (LSubSp‘𝐿) | |
24 | eqid 2187 | . . . 4 ⊢ (LSpan‘𝐿) = (LSpan‘𝐿) | |
25 | 22, 23, 24 | lspfval 13634 | . . 3 ⊢ (𝐿 ∈ 𝑌 → (LSpan‘𝐿) = (𝑠 ∈ 𝒫 (Base‘𝐿) ↦ ∩ {𝑡 ∈ (LSubSp‘𝐿) ∣ 𝑠 ⊆ 𝑡})) |
26 | 12, 25 | syl 14 | . 2 ⊢ (𝜑 → (LSpan‘𝐿) = (𝑠 ∈ 𝒫 (Base‘𝐿) ↦ ∩ {𝑡 ∈ (LSubSp‘𝐿) ∣ 𝑠 ⊆ 𝑡})) |
27 | 16, 21, 26 | 3eqtr4d 2230 | 1 ⊢ (𝜑 → (LSpan‘𝐾) = (LSpan‘𝐿)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 = wceq 1363 ∈ wcel 2158 {crab 2469 ⊆ wss 3141 𝒫 cpw 3587 ∩ cint 3856 ↦ cmpt 4076 ‘cfv 5228 (class class class)co 5888 Basecbs 12476 +gcplusg 12551 Scalarcsca 12554 ·𝑠 cvsca 12555 LSubSpclss 13598 LSpanclspn 13632 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1457 ax-7 1458 ax-gen 1459 ax-ie1 1503 ax-ie2 1504 ax-8 1514 ax-10 1515 ax-11 1516 ax-i12 1517 ax-bndl 1519 ax-4 1520 ax-17 1536 ax-i9 1540 ax-ial 1544 ax-i5r 1545 ax-13 2160 ax-14 2161 ax-ext 2169 ax-coll 4130 ax-sep 4133 ax-pow 4186 ax-pr 4221 ax-un 4445 ax-cnex 7916 ax-resscn 7917 ax-1re 7919 ax-addrcl 7922 |
This theorem depends on definitions: df-bi 117 df-3an 981 df-tru 1366 df-nf 1471 df-sb 1773 df-eu 2039 df-mo 2040 df-clab 2174 df-cleq 2180 df-clel 2183 df-nfc 2318 df-ral 2470 df-rex 2471 df-reu 2472 df-rab 2474 df-v 2751 df-sbc 2975 df-csb 3070 df-un 3145 df-in 3147 df-ss 3154 df-pw 3589 df-sn 3610 df-pr 3611 df-op 3613 df-uni 3822 df-int 3857 df-iun 3900 df-br 4016 df-opab 4077 df-mpt 4078 df-id 4305 df-xp 4644 df-rel 4645 df-cnv 4646 df-co 4647 df-dm 4648 df-rn 4649 df-res 4650 df-ima 4651 df-iota 5190 df-fun 5230 df-fn 5231 df-f 5232 df-f1 5233 df-fo 5234 df-f1o 5235 df-fv 5236 df-ov 5891 df-inn 8934 df-ndx 12479 df-slot 12480 df-base 12482 df-lssm 13599 df-lsp 13633 |
This theorem is referenced by: lidlrsppropdg 13741 |
Copyright terms: Public domain | W3C validator |