![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > lsppropd | GIF version |
Description: If two structures have the same components (properties), they have the same span function. (Contributed by Mario Carneiro, 9-Feb-2015.) (Revised by Mario Carneiro, 14-Jun-2015.) (Revised by AV, 24-Apr-2024.) |
Ref | Expression |
---|---|
lsspropd.b1 | β’ (π β π΅ = (BaseβπΎ)) |
lsspropd.b2 | β’ (π β π΅ = (BaseβπΏ)) |
lsspropd.w | β’ (π β π΅ β π) |
lsspropd.p | β’ ((π β§ (π₯ β π β§ π¦ β π)) β (π₯(+gβπΎ)π¦) = (π₯(+gβπΏ)π¦)) |
lsspropd.s1 | β’ ((π β§ (π₯ β π β§ π¦ β π΅)) β (π₯( Β·π βπΎ)π¦) β π) |
lsspropd.s2 | β’ ((π β§ (π₯ β π β§ π¦ β π΅)) β (π₯( Β·π βπΎ)π¦) = (π₯( Β·π βπΏ)π¦)) |
lsspropd.p1 | β’ (π β π = (Baseβ(ScalarβπΎ))) |
lsspropd.p2 | β’ (π β π = (Baseβ(ScalarβπΏ))) |
lsppropd.v1 | β’ (π β πΎ β π) |
lsppropd.v2 | β’ (π β πΏ β π) |
Ref | Expression |
---|---|
lsppropd | β’ (π β (LSpanβπΎ) = (LSpanβπΏ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lsspropd.b1 | . . . . 5 β’ (π β π΅ = (BaseβπΎ)) | |
2 | lsspropd.b2 | . . . . 5 β’ (π β π΅ = (BaseβπΏ)) | |
3 | 1, 2 | eqtr3d 2212 | . . . 4 β’ (π β (BaseβπΎ) = (BaseβπΏ)) |
4 | 3 | pweqd 3582 | . . 3 β’ (π β π« (BaseβπΎ) = π« (BaseβπΏ)) |
5 | lsspropd.w | . . . . . 6 β’ (π β π΅ β π) | |
6 | lsspropd.p | . . . . . 6 β’ ((π β§ (π₯ β π β§ π¦ β π)) β (π₯(+gβπΎ)π¦) = (π₯(+gβπΏ)π¦)) | |
7 | lsspropd.s1 | . . . . . 6 β’ ((π β§ (π₯ β π β§ π¦ β π΅)) β (π₯( Β·π βπΎ)π¦) β π) | |
8 | lsspropd.s2 | . . . . . 6 β’ ((π β§ (π₯ β π β§ π¦ β π΅)) β (π₯( Β·π βπΎ)π¦) = (π₯( Β·π βπΏ)π¦)) | |
9 | lsspropd.p1 | . . . . . 6 β’ (π β π = (Baseβ(ScalarβπΎ))) | |
10 | lsspropd.p2 | . . . . . 6 β’ (π β π = (Baseβ(ScalarβπΏ))) | |
11 | lsppropd.v1 | . . . . . 6 β’ (π β πΎ β π) | |
12 | lsppropd.v2 | . . . . . 6 β’ (π β πΏ β π) | |
13 | 1, 2, 5, 6, 7, 8, 9, 10, 11, 12 | lsspropdg 13523 | . . . . 5 β’ (π β (LSubSpβπΎ) = (LSubSpβπΏ)) |
14 | 13 | rabeqdv 2733 | . . . 4 β’ (π β {π‘ β (LSubSpβπΎ) β£ π β π‘} = {π‘ β (LSubSpβπΏ) β£ π β π‘}) |
15 | 14 | inteqd 3851 | . . 3 β’ (π β β© {π‘ β (LSubSpβπΎ) β£ π β π‘} = β© {π‘ β (LSubSpβπΏ) β£ π β π‘}) |
16 | 4, 15 | mpteq12dv 4087 | . 2 β’ (π β (π β π« (BaseβπΎ) β¦ β© {π‘ β (LSubSpβπΎ) β£ π β π‘}) = (π β π« (BaseβπΏ) β¦ β© {π‘ β (LSubSpβπΏ) β£ π β π‘})) |
17 | eqid 2177 | . . . 4 β’ (BaseβπΎ) = (BaseβπΎ) | |
18 | eqid 2177 | . . . 4 β’ (LSubSpβπΎ) = (LSubSpβπΎ) | |
19 | eqid 2177 | . . . 4 β’ (LSpanβπΎ) = (LSpanβπΎ) | |
20 | 17, 18, 19 | lspfval 13481 | . . 3 β’ (πΎ β π β (LSpanβπΎ) = (π β π« (BaseβπΎ) β¦ β© {π‘ β (LSubSpβπΎ) β£ π β π‘})) |
21 | 11, 20 | syl 14 | . 2 β’ (π β (LSpanβπΎ) = (π β π« (BaseβπΎ) β¦ β© {π‘ β (LSubSpβπΎ) β£ π β π‘})) |
22 | eqid 2177 | . . . 4 β’ (BaseβπΏ) = (BaseβπΏ) | |
23 | eqid 2177 | . . . 4 β’ (LSubSpβπΏ) = (LSubSpβπΏ) | |
24 | eqid 2177 | . . . 4 β’ (LSpanβπΏ) = (LSpanβπΏ) | |
25 | 22, 23, 24 | lspfval 13481 | . . 3 β’ (πΏ β π β (LSpanβπΏ) = (π β π« (BaseβπΏ) β¦ β© {π‘ β (LSubSpβπΏ) β£ π β π‘})) |
26 | 12, 25 | syl 14 | . 2 β’ (π β (LSpanβπΏ) = (π β π« (BaseβπΏ) β¦ β© {π‘ β (LSubSpβπΏ) β£ π β π‘})) |
27 | 16, 21, 26 | 3eqtr4d 2220 | 1 β’ (π β (LSpanβπΎ) = (LSpanβπΏ)) |
Colors of variables: wff set class |
Syntax hints: β wi 4 β§ wa 104 = wceq 1353 β wcel 2148 {crab 2459 β wss 3131 π« cpw 3577 β© cint 3846 β¦ cmpt 4066 βcfv 5218 (class class class)co 5878 Basecbs 12465 +gcplusg 12539 Scalarcsca 12542 Β·π cvsca 12543 LSubSpclss 13448 LSpanclspn 13479 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-13 2150 ax-14 2151 ax-ext 2159 ax-coll 4120 ax-sep 4123 ax-pow 4176 ax-pr 4211 ax-un 4435 ax-cnex 7905 ax-resscn 7906 ax-1re 7908 ax-addrcl 7911 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-nf 1461 df-sb 1763 df-eu 2029 df-mo 2030 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ral 2460 df-rex 2461 df-reu 2462 df-rab 2464 df-v 2741 df-sbc 2965 df-csb 3060 df-un 3135 df-in 3137 df-ss 3144 df-pw 3579 df-sn 3600 df-pr 3601 df-op 3603 df-uni 3812 df-int 3847 df-iun 3890 df-br 4006 df-opab 4067 df-mpt 4068 df-id 4295 df-xp 4634 df-rel 4635 df-cnv 4636 df-co 4637 df-dm 4638 df-rn 4639 df-res 4640 df-ima 4641 df-iota 5180 df-fun 5220 df-fn 5221 df-f 5222 df-f1 5223 df-fo 5224 df-f1o 5225 df-fv 5226 df-ov 5881 df-inn 8923 df-ndx 12468 df-slot 12469 df-base 12471 df-lssm 13449 df-lsp 13480 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |