![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > toponsspwpwg | GIF version |
Description: The set of topologies on a set is included in the double power set of that set. (Contributed by BJ, 29-Apr-2021.) (Revised by Jim Kingdon, 16-Jan-2023.) |
Ref | Expression |
---|---|
toponsspwpwg | ⊢ (𝐴 ∈ 𝑉 → (TopOn‘𝐴) ⊆ 𝒫 𝒫 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elex 2771 | . . 3 ⊢ (𝐴 ∈ 𝑉 → 𝐴 ∈ V) | |
2 | rabssab 3267 | . . . . . 6 ⊢ {𝑦 ∈ Top ∣ 𝐴 = ∪ 𝑦} ⊆ {𝑦 ∣ 𝐴 = ∪ 𝑦} | |
3 | eqcom 2195 | . . . . . . 7 ⊢ (𝐴 = ∪ 𝑦 ↔ ∪ 𝑦 = 𝐴) | |
4 | 3 | abbii 2309 | . . . . . 6 ⊢ {𝑦 ∣ 𝐴 = ∪ 𝑦} = {𝑦 ∣ ∪ 𝑦 = 𝐴} |
5 | 2, 4 | sseqtri 3213 | . . . . 5 ⊢ {𝑦 ∈ Top ∣ 𝐴 = ∪ 𝑦} ⊆ {𝑦 ∣ ∪ 𝑦 = 𝐴} |
6 | pwpwssunieq 4001 | . . . . 5 ⊢ {𝑦 ∣ ∪ 𝑦 = 𝐴} ⊆ 𝒫 𝒫 𝐴 | |
7 | 5, 6 | sstri 3188 | . . . 4 ⊢ {𝑦 ∈ Top ∣ 𝐴 = ∪ 𝑦} ⊆ 𝒫 𝒫 𝐴 |
8 | pwexg 4209 | . . . . 5 ⊢ (𝐴 ∈ 𝑉 → 𝒫 𝐴 ∈ V) | |
9 | 8 | pwexd 4210 | . . . 4 ⊢ (𝐴 ∈ 𝑉 → 𝒫 𝒫 𝐴 ∈ V) |
10 | ssexg 4168 | . . . 4 ⊢ (({𝑦 ∈ Top ∣ 𝐴 = ∪ 𝑦} ⊆ 𝒫 𝒫 𝐴 ∧ 𝒫 𝒫 𝐴 ∈ V) → {𝑦 ∈ Top ∣ 𝐴 = ∪ 𝑦} ∈ V) | |
11 | 7, 9, 10 | sylancr 414 | . . 3 ⊢ (𝐴 ∈ 𝑉 → {𝑦 ∈ Top ∣ 𝐴 = ∪ 𝑦} ∈ V) |
12 | eqeq1 2200 | . . . . 5 ⊢ (𝑥 = 𝐴 → (𝑥 = ∪ 𝑦 ↔ 𝐴 = ∪ 𝑦)) | |
13 | 12 | rabbidv 2749 | . . . 4 ⊢ (𝑥 = 𝐴 → {𝑦 ∈ Top ∣ 𝑥 = ∪ 𝑦} = {𝑦 ∈ Top ∣ 𝐴 = ∪ 𝑦}) |
14 | df-topon 14179 | . . . 4 ⊢ TopOn = (𝑥 ∈ V ↦ {𝑦 ∈ Top ∣ 𝑥 = ∪ 𝑦}) | |
15 | 13, 14 | fvmptg 5633 | . . 3 ⊢ ((𝐴 ∈ V ∧ {𝑦 ∈ Top ∣ 𝐴 = ∪ 𝑦} ∈ V) → (TopOn‘𝐴) = {𝑦 ∈ Top ∣ 𝐴 = ∪ 𝑦}) |
16 | 1, 11, 15 | syl2anc 411 | . 2 ⊢ (𝐴 ∈ 𝑉 → (TopOn‘𝐴) = {𝑦 ∈ Top ∣ 𝐴 = ∪ 𝑦}) |
17 | 16, 7 | eqsstrdi 3231 | 1 ⊢ (𝐴 ∈ 𝑉 → (TopOn‘𝐴) ⊆ 𝒫 𝒫 𝐴) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1364 ∈ wcel 2164 {cab 2179 {crab 2476 Vcvv 2760 ⊆ wss 3153 𝒫 cpw 3601 ∪ cuni 3835 ‘cfv 5254 Topctop 14165 TopOnctopon 14178 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-14 2167 ax-ext 2175 ax-sep 4147 ax-pow 4203 ax-pr 4238 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ral 2477 df-rex 2478 df-rab 2481 df-v 2762 df-sbc 2986 df-un 3157 df-in 3159 df-ss 3166 df-pw 3603 df-sn 3624 df-pr 3625 df-op 3627 df-uni 3836 df-br 4030 df-opab 4091 df-mpt 4092 df-id 4324 df-xp 4665 df-rel 4666 df-cnv 4667 df-co 4668 df-dm 4669 df-iota 5215 df-fun 5256 df-fv 5262 df-topon 14179 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |