ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  toponsspwpwg GIF version

Theorem toponsspwpwg 11888
Description: The set of topologies on a set is included in the double power set of that set. (Contributed by BJ, 29-Apr-2021.) (Revised by Jim Kingdon, 16-Jan-2023.)
Assertion
Ref Expression
toponsspwpwg (𝐴𝑉 → (TopOn‘𝐴) ⊆ 𝒫 𝒫 𝐴)

Proof of Theorem toponsspwpwg
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elex 2644 . . 3 (𝐴𝑉𝐴 ∈ V)
2 rabssab 3123 . . . . . 6 {𝑦 ∈ Top ∣ 𝐴 = 𝑦} ⊆ {𝑦𝐴 = 𝑦}
3 eqcom 2097 . . . . . . 7 (𝐴 = 𝑦 𝑦 = 𝐴)
43abbii 2210 . . . . . 6 {𝑦𝐴 = 𝑦} = {𝑦 𝑦 = 𝐴}
52, 4sseqtri 3073 . . . . 5 {𝑦 ∈ Top ∣ 𝐴 = 𝑦} ⊆ {𝑦 𝑦 = 𝐴}
6 pwpwssunieq 3839 . . . . 5 {𝑦 𝑦 = 𝐴} ⊆ 𝒫 𝒫 𝐴
75, 6sstri 3048 . . . 4 {𝑦 ∈ Top ∣ 𝐴 = 𝑦} ⊆ 𝒫 𝒫 𝐴
8 pwexg 4036 . . . . 5 (𝐴𝑉 → 𝒫 𝐴 ∈ V)
98pwexd 4037 . . . 4 (𝐴𝑉 → 𝒫 𝒫 𝐴 ∈ V)
10 ssexg 3999 . . . 4 (({𝑦 ∈ Top ∣ 𝐴 = 𝑦} ⊆ 𝒫 𝒫 𝐴 ∧ 𝒫 𝒫 𝐴 ∈ V) → {𝑦 ∈ Top ∣ 𝐴 = 𝑦} ∈ V)
117, 9, 10sylancr 406 . . 3 (𝐴𝑉 → {𝑦 ∈ Top ∣ 𝐴 = 𝑦} ∈ V)
12 eqeq1 2101 . . . . 5 (𝑥 = 𝐴 → (𝑥 = 𝑦𝐴 = 𝑦))
1312rabbidv 2622 . . . 4 (𝑥 = 𝐴 → {𝑦 ∈ Top ∣ 𝑥 = 𝑦} = {𝑦 ∈ Top ∣ 𝐴 = 𝑦})
14 df-topon 11878 . . . 4 TopOn = (𝑥 ∈ V ↦ {𝑦 ∈ Top ∣ 𝑥 = 𝑦})
1513, 14fvmptg 5415 . . 3 ((𝐴 ∈ V ∧ {𝑦 ∈ Top ∣ 𝐴 = 𝑦} ∈ V) → (TopOn‘𝐴) = {𝑦 ∈ Top ∣ 𝐴 = 𝑦})
161, 11, 15syl2anc 404 . 2 (𝐴𝑉 → (TopOn‘𝐴) = {𝑦 ∈ Top ∣ 𝐴 = 𝑦})
1716, 7syl6eqss 3091 1 (𝐴𝑉 → (TopOn‘𝐴) ⊆ 𝒫 𝒫 𝐴)
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1296  wcel 1445  {cab 2081  {crab 2374  Vcvv 2633  wss 3013  𝒫 cpw 3449   cuni 3675  cfv 5049  Topctop 11864  TopOnctopon 11877
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 668  ax-5 1388  ax-7 1389  ax-gen 1390  ax-ie1 1434  ax-ie2 1435  ax-8 1447  ax-10 1448  ax-11 1449  ax-i12 1450  ax-bndl 1451  ax-4 1452  ax-14 1457  ax-17 1471  ax-i9 1475  ax-ial 1479  ax-i5r 1480  ax-ext 2077  ax-sep 3978  ax-pow 4030  ax-pr 4060
This theorem depends on definitions:  df-bi 116  df-3an 929  df-tru 1299  df-nf 1402  df-sb 1700  df-eu 1958  df-mo 1959  df-clab 2082  df-cleq 2088  df-clel 2091  df-nfc 2224  df-ral 2375  df-rex 2376  df-rab 2379  df-v 2635  df-sbc 2855  df-un 3017  df-in 3019  df-ss 3026  df-pw 3451  df-sn 3472  df-pr 3473  df-op 3475  df-uni 3676  df-br 3868  df-opab 3922  df-mpt 3923  df-id 4144  df-xp 4473  df-rel 4474  df-cnv 4475  df-co 4476  df-dm 4477  df-iota 5014  df-fun 5051  df-fv 5057  df-topon 11878
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator