![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > toponsspwpwg | GIF version |
Description: The set of topologies on a set is included in the double power set of that set. (Contributed by BJ, 29-Apr-2021.) (Revised by Jim Kingdon, 16-Jan-2023.) |
Ref | Expression |
---|---|
toponsspwpwg | ⊢ (𝐴 ∈ 𝑉 → (TopOn‘𝐴) ⊆ 𝒫 𝒫 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elex 2644 | . . 3 ⊢ (𝐴 ∈ 𝑉 → 𝐴 ∈ V) | |
2 | rabssab 3123 | . . . . . 6 ⊢ {𝑦 ∈ Top ∣ 𝐴 = ∪ 𝑦} ⊆ {𝑦 ∣ 𝐴 = ∪ 𝑦} | |
3 | eqcom 2097 | . . . . . . 7 ⊢ (𝐴 = ∪ 𝑦 ↔ ∪ 𝑦 = 𝐴) | |
4 | 3 | abbii 2210 | . . . . . 6 ⊢ {𝑦 ∣ 𝐴 = ∪ 𝑦} = {𝑦 ∣ ∪ 𝑦 = 𝐴} |
5 | 2, 4 | sseqtri 3073 | . . . . 5 ⊢ {𝑦 ∈ Top ∣ 𝐴 = ∪ 𝑦} ⊆ {𝑦 ∣ ∪ 𝑦 = 𝐴} |
6 | pwpwssunieq 3839 | . . . . 5 ⊢ {𝑦 ∣ ∪ 𝑦 = 𝐴} ⊆ 𝒫 𝒫 𝐴 | |
7 | 5, 6 | sstri 3048 | . . . 4 ⊢ {𝑦 ∈ Top ∣ 𝐴 = ∪ 𝑦} ⊆ 𝒫 𝒫 𝐴 |
8 | pwexg 4036 | . . . . 5 ⊢ (𝐴 ∈ 𝑉 → 𝒫 𝐴 ∈ V) | |
9 | 8 | pwexd 4037 | . . . 4 ⊢ (𝐴 ∈ 𝑉 → 𝒫 𝒫 𝐴 ∈ V) |
10 | ssexg 3999 | . . . 4 ⊢ (({𝑦 ∈ Top ∣ 𝐴 = ∪ 𝑦} ⊆ 𝒫 𝒫 𝐴 ∧ 𝒫 𝒫 𝐴 ∈ V) → {𝑦 ∈ Top ∣ 𝐴 = ∪ 𝑦} ∈ V) | |
11 | 7, 9, 10 | sylancr 406 | . . 3 ⊢ (𝐴 ∈ 𝑉 → {𝑦 ∈ Top ∣ 𝐴 = ∪ 𝑦} ∈ V) |
12 | eqeq1 2101 | . . . . 5 ⊢ (𝑥 = 𝐴 → (𝑥 = ∪ 𝑦 ↔ 𝐴 = ∪ 𝑦)) | |
13 | 12 | rabbidv 2622 | . . . 4 ⊢ (𝑥 = 𝐴 → {𝑦 ∈ Top ∣ 𝑥 = ∪ 𝑦} = {𝑦 ∈ Top ∣ 𝐴 = ∪ 𝑦}) |
14 | df-topon 11878 | . . . 4 ⊢ TopOn = (𝑥 ∈ V ↦ {𝑦 ∈ Top ∣ 𝑥 = ∪ 𝑦}) | |
15 | 13, 14 | fvmptg 5415 | . . 3 ⊢ ((𝐴 ∈ V ∧ {𝑦 ∈ Top ∣ 𝐴 = ∪ 𝑦} ∈ V) → (TopOn‘𝐴) = {𝑦 ∈ Top ∣ 𝐴 = ∪ 𝑦}) |
16 | 1, 11, 15 | syl2anc 404 | . 2 ⊢ (𝐴 ∈ 𝑉 → (TopOn‘𝐴) = {𝑦 ∈ Top ∣ 𝐴 = ∪ 𝑦}) |
17 | 16, 7 | syl6eqss 3091 | 1 ⊢ (𝐴 ∈ 𝑉 → (TopOn‘𝐴) ⊆ 𝒫 𝒫 𝐴) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1296 ∈ wcel 1445 {cab 2081 {crab 2374 Vcvv 2633 ⊆ wss 3013 𝒫 cpw 3449 ∪ cuni 3675 ‘cfv 5049 Topctop 11864 TopOnctopon 11877 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 668 ax-5 1388 ax-7 1389 ax-gen 1390 ax-ie1 1434 ax-ie2 1435 ax-8 1447 ax-10 1448 ax-11 1449 ax-i12 1450 ax-bndl 1451 ax-4 1452 ax-14 1457 ax-17 1471 ax-i9 1475 ax-ial 1479 ax-i5r 1480 ax-ext 2077 ax-sep 3978 ax-pow 4030 ax-pr 4060 |
This theorem depends on definitions: df-bi 116 df-3an 929 df-tru 1299 df-nf 1402 df-sb 1700 df-eu 1958 df-mo 1959 df-clab 2082 df-cleq 2088 df-clel 2091 df-nfc 2224 df-ral 2375 df-rex 2376 df-rab 2379 df-v 2635 df-sbc 2855 df-un 3017 df-in 3019 df-ss 3026 df-pw 3451 df-sn 3472 df-pr 3473 df-op 3475 df-uni 3676 df-br 3868 df-opab 3922 df-mpt 3923 df-id 4144 df-xp 4473 df-rel 4474 df-cnv 4475 df-co 4476 df-dm 4477 df-iota 5014 df-fun 5051 df-fv 5057 df-topon 11878 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |