ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  toponsspwpwg GIF version

Theorem toponsspwpwg 14690
Description: The set of topologies on a set is included in the double power set of that set. (Contributed by BJ, 29-Apr-2021.) (Revised by Jim Kingdon, 16-Jan-2023.)
Assertion
Ref Expression
toponsspwpwg (𝐴𝑉 → (TopOn‘𝐴) ⊆ 𝒫 𝒫 𝐴)

Proof of Theorem toponsspwpwg
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elex 2811 . . 3 (𝐴𝑉𝐴 ∈ V)
2 rabssab 3312 . . . . . 6 {𝑦 ∈ Top ∣ 𝐴 = 𝑦} ⊆ {𝑦𝐴 = 𝑦}
3 eqcom 2231 . . . . . . 7 (𝐴 = 𝑦 𝑦 = 𝐴)
43abbii 2345 . . . . . 6 {𝑦𝐴 = 𝑦} = {𝑦 𝑦 = 𝐴}
52, 4sseqtri 3258 . . . . 5 {𝑦 ∈ Top ∣ 𝐴 = 𝑦} ⊆ {𝑦 𝑦 = 𝐴}
6 pwpwssunieq 4053 . . . . 5 {𝑦 𝑦 = 𝐴} ⊆ 𝒫 𝒫 𝐴
75, 6sstri 3233 . . . 4 {𝑦 ∈ Top ∣ 𝐴 = 𝑦} ⊆ 𝒫 𝒫 𝐴
8 pwexg 4263 . . . . 5 (𝐴𝑉 → 𝒫 𝐴 ∈ V)
98pwexd 4264 . . . 4 (𝐴𝑉 → 𝒫 𝒫 𝐴 ∈ V)
10 ssexg 4222 . . . 4 (({𝑦 ∈ Top ∣ 𝐴 = 𝑦} ⊆ 𝒫 𝒫 𝐴 ∧ 𝒫 𝒫 𝐴 ∈ V) → {𝑦 ∈ Top ∣ 𝐴 = 𝑦} ∈ V)
117, 9, 10sylancr 414 . . 3 (𝐴𝑉 → {𝑦 ∈ Top ∣ 𝐴 = 𝑦} ∈ V)
12 eqeq1 2236 . . . . 5 (𝑥 = 𝐴 → (𝑥 = 𝑦𝐴 = 𝑦))
1312rabbidv 2788 . . . 4 (𝑥 = 𝐴 → {𝑦 ∈ Top ∣ 𝑥 = 𝑦} = {𝑦 ∈ Top ∣ 𝐴 = 𝑦})
14 df-topon 14679 . . . 4 TopOn = (𝑥 ∈ V ↦ {𝑦 ∈ Top ∣ 𝑥 = 𝑦})
1513, 14fvmptg 5709 . . 3 ((𝐴 ∈ V ∧ {𝑦 ∈ Top ∣ 𝐴 = 𝑦} ∈ V) → (TopOn‘𝐴) = {𝑦 ∈ Top ∣ 𝐴 = 𝑦})
161, 11, 15syl2anc 411 . 2 (𝐴𝑉 → (TopOn‘𝐴) = {𝑦 ∈ Top ∣ 𝐴 = 𝑦})
1716, 7eqsstrdi 3276 1 (𝐴𝑉 → (TopOn‘𝐴) ⊆ 𝒫 𝒫 𝐴)
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1395  wcel 2200  {cab 2215  {crab 2512  Vcvv 2799  wss 3197  𝒫 cpw 3649   cuni 3887  cfv 5317  Topctop 14665  TopOnctopon 14678
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-14 2203  ax-ext 2211  ax-sep 4201  ax-pow 4257  ax-pr 4292
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-rab 2517  df-v 2801  df-sbc 3029  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-br 4083  df-opab 4145  df-mpt 4146  df-id 4383  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-iota 5277  df-fun 5319  df-fv 5325  df-topon 14679
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator