Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > toponsspwpwg | GIF version |
Description: The set of topologies on a set is included in the double power set of that set. (Contributed by BJ, 29-Apr-2021.) (Revised by Jim Kingdon, 16-Jan-2023.) |
Ref | Expression |
---|---|
toponsspwpwg | ⊢ (𝐴 ∈ 𝑉 → (TopOn‘𝐴) ⊆ 𝒫 𝒫 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elex 2737 | . . 3 ⊢ (𝐴 ∈ 𝑉 → 𝐴 ∈ V) | |
2 | rabssab 3230 | . . . . . 6 ⊢ {𝑦 ∈ Top ∣ 𝐴 = ∪ 𝑦} ⊆ {𝑦 ∣ 𝐴 = ∪ 𝑦} | |
3 | eqcom 2167 | . . . . . . 7 ⊢ (𝐴 = ∪ 𝑦 ↔ ∪ 𝑦 = 𝐴) | |
4 | 3 | abbii 2282 | . . . . . 6 ⊢ {𝑦 ∣ 𝐴 = ∪ 𝑦} = {𝑦 ∣ ∪ 𝑦 = 𝐴} |
5 | 2, 4 | sseqtri 3176 | . . . . 5 ⊢ {𝑦 ∈ Top ∣ 𝐴 = ∪ 𝑦} ⊆ {𝑦 ∣ ∪ 𝑦 = 𝐴} |
6 | pwpwssunieq 3954 | . . . . 5 ⊢ {𝑦 ∣ ∪ 𝑦 = 𝐴} ⊆ 𝒫 𝒫 𝐴 | |
7 | 5, 6 | sstri 3151 | . . . 4 ⊢ {𝑦 ∈ Top ∣ 𝐴 = ∪ 𝑦} ⊆ 𝒫 𝒫 𝐴 |
8 | pwexg 4159 | . . . . 5 ⊢ (𝐴 ∈ 𝑉 → 𝒫 𝐴 ∈ V) | |
9 | 8 | pwexd 4160 | . . . 4 ⊢ (𝐴 ∈ 𝑉 → 𝒫 𝒫 𝐴 ∈ V) |
10 | ssexg 4121 | . . . 4 ⊢ (({𝑦 ∈ Top ∣ 𝐴 = ∪ 𝑦} ⊆ 𝒫 𝒫 𝐴 ∧ 𝒫 𝒫 𝐴 ∈ V) → {𝑦 ∈ Top ∣ 𝐴 = ∪ 𝑦} ∈ V) | |
11 | 7, 9, 10 | sylancr 411 | . . 3 ⊢ (𝐴 ∈ 𝑉 → {𝑦 ∈ Top ∣ 𝐴 = ∪ 𝑦} ∈ V) |
12 | eqeq1 2172 | . . . . 5 ⊢ (𝑥 = 𝐴 → (𝑥 = ∪ 𝑦 ↔ 𝐴 = ∪ 𝑦)) | |
13 | 12 | rabbidv 2715 | . . . 4 ⊢ (𝑥 = 𝐴 → {𝑦 ∈ Top ∣ 𝑥 = ∪ 𝑦} = {𝑦 ∈ Top ∣ 𝐴 = ∪ 𝑦}) |
14 | df-topon 12649 | . . . 4 ⊢ TopOn = (𝑥 ∈ V ↦ {𝑦 ∈ Top ∣ 𝑥 = ∪ 𝑦}) | |
15 | 13, 14 | fvmptg 5562 | . . 3 ⊢ ((𝐴 ∈ V ∧ {𝑦 ∈ Top ∣ 𝐴 = ∪ 𝑦} ∈ V) → (TopOn‘𝐴) = {𝑦 ∈ Top ∣ 𝐴 = ∪ 𝑦}) |
16 | 1, 11, 15 | syl2anc 409 | . 2 ⊢ (𝐴 ∈ 𝑉 → (TopOn‘𝐴) = {𝑦 ∈ Top ∣ 𝐴 = ∪ 𝑦}) |
17 | 16, 7 | eqsstrdi 3194 | 1 ⊢ (𝐴 ∈ 𝑉 → (TopOn‘𝐴) ⊆ 𝒫 𝒫 𝐴) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1343 ∈ wcel 2136 {cab 2151 {crab 2448 Vcvv 2726 ⊆ wss 3116 𝒫 cpw 3559 ∪ cuni 3789 ‘cfv 5188 Topctop 12635 TopOnctopon 12648 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-pow 4153 ax-pr 4187 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-rex 2450 df-rab 2453 df-v 2728 df-sbc 2952 df-un 3120 df-in 3122 df-ss 3129 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-br 3983 df-opab 4044 df-mpt 4045 df-id 4271 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-iota 5153 df-fun 5190 df-fv 5196 df-topon 12649 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |