ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  toponsspwpwg GIF version

Theorem toponsspwpwg 12178
Description: The set of topologies on a set is included in the double power set of that set. (Contributed by BJ, 29-Apr-2021.) (Revised by Jim Kingdon, 16-Jan-2023.)
Assertion
Ref Expression
toponsspwpwg (𝐴𝑉 → (TopOn‘𝐴) ⊆ 𝒫 𝒫 𝐴)

Proof of Theorem toponsspwpwg
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elex 2692 . . 3 (𝐴𝑉𝐴 ∈ V)
2 rabssab 3179 . . . . . 6 {𝑦 ∈ Top ∣ 𝐴 = 𝑦} ⊆ {𝑦𝐴 = 𝑦}
3 eqcom 2139 . . . . . . 7 (𝐴 = 𝑦 𝑦 = 𝐴)
43abbii 2253 . . . . . 6 {𝑦𝐴 = 𝑦} = {𝑦 𝑦 = 𝐴}
52, 4sseqtri 3126 . . . . 5 {𝑦 ∈ Top ∣ 𝐴 = 𝑦} ⊆ {𝑦 𝑦 = 𝐴}
6 pwpwssunieq 3896 . . . . 5 {𝑦 𝑦 = 𝐴} ⊆ 𝒫 𝒫 𝐴
75, 6sstri 3101 . . . 4 {𝑦 ∈ Top ∣ 𝐴 = 𝑦} ⊆ 𝒫 𝒫 𝐴
8 pwexg 4099 . . . . 5 (𝐴𝑉 → 𝒫 𝐴 ∈ V)
98pwexd 4100 . . . 4 (𝐴𝑉 → 𝒫 𝒫 𝐴 ∈ V)
10 ssexg 4062 . . . 4 (({𝑦 ∈ Top ∣ 𝐴 = 𝑦} ⊆ 𝒫 𝒫 𝐴 ∧ 𝒫 𝒫 𝐴 ∈ V) → {𝑦 ∈ Top ∣ 𝐴 = 𝑦} ∈ V)
117, 9, 10sylancr 410 . . 3 (𝐴𝑉 → {𝑦 ∈ Top ∣ 𝐴 = 𝑦} ∈ V)
12 eqeq1 2144 . . . . 5 (𝑥 = 𝐴 → (𝑥 = 𝑦𝐴 = 𝑦))
1312rabbidv 2670 . . . 4 (𝑥 = 𝐴 → {𝑦 ∈ Top ∣ 𝑥 = 𝑦} = {𝑦 ∈ Top ∣ 𝐴 = 𝑦})
14 df-topon 12167 . . . 4 TopOn = (𝑥 ∈ V ↦ {𝑦 ∈ Top ∣ 𝑥 = 𝑦})
1513, 14fvmptg 5490 . . 3 ((𝐴 ∈ V ∧ {𝑦 ∈ Top ∣ 𝐴 = 𝑦} ∈ V) → (TopOn‘𝐴) = {𝑦 ∈ Top ∣ 𝐴 = 𝑦})
161, 11, 15syl2anc 408 . 2 (𝐴𝑉 → (TopOn‘𝐴) = {𝑦 ∈ Top ∣ 𝐴 = 𝑦})
1716, 7eqsstrdi 3144 1 (𝐴𝑉 → (TopOn‘𝐴) ⊆ 𝒫 𝒫 𝐴)
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1331  wcel 1480  {cab 2123  {crab 2418  Vcvv 2681  wss 3066  𝒫 cpw 3505   cuni 3731  cfv 5118  Topctop 12153  TopOnctopon 12166
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2119  ax-sep 4041  ax-pow 4093  ax-pr 4126
This theorem depends on definitions:  df-bi 116  df-3an 964  df-tru 1334  df-nf 1437  df-sb 1736  df-eu 2000  df-mo 2001  df-clab 2124  df-cleq 2130  df-clel 2133  df-nfc 2268  df-ral 2419  df-rex 2420  df-rab 2423  df-v 2683  df-sbc 2905  df-un 3070  df-in 3072  df-ss 3079  df-pw 3507  df-sn 3528  df-pr 3529  df-op 3531  df-uni 3732  df-br 3925  df-opab 3985  df-mpt 3986  df-id 4210  df-xp 4540  df-rel 4541  df-cnv 4542  df-co 4543  df-dm 4544  df-iota 5083  df-fun 5120  df-fv 5126  df-topon 12167
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator