ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  toponsspwpwg GIF version

Theorem toponsspwpwg 14569
Description: The set of topologies on a set is included in the double power set of that set. (Contributed by BJ, 29-Apr-2021.) (Revised by Jim Kingdon, 16-Jan-2023.)
Assertion
Ref Expression
toponsspwpwg (𝐴𝑉 → (TopOn‘𝐴) ⊆ 𝒫 𝒫 𝐴)

Proof of Theorem toponsspwpwg
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elex 2785 . . 3 (𝐴𝑉𝐴 ∈ V)
2 rabssab 3285 . . . . . 6 {𝑦 ∈ Top ∣ 𝐴 = 𝑦} ⊆ {𝑦𝐴 = 𝑦}
3 eqcom 2208 . . . . . . 7 (𝐴 = 𝑦 𝑦 = 𝐴)
43abbii 2322 . . . . . 6 {𝑦𝐴 = 𝑦} = {𝑦 𝑦 = 𝐴}
52, 4sseqtri 3231 . . . . 5 {𝑦 ∈ Top ∣ 𝐴 = 𝑦} ⊆ {𝑦 𝑦 = 𝐴}
6 pwpwssunieq 4022 . . . . 5 {𝑦 𝑦 = 𝐴} ⊆ 𝒫 𝒫 𝐴
75, 6sstri 3206 . . . 4 {𝑦 ∈ Top ∣ 𝐴 = 𝑦} ⊆ 𝒫 𝒫 𝐴
8 pwexg 4232 . . . . 5 (𝐴𝑉 → 𝒫 𝐴 ∈ V)
98pwexd 4233 . . . 4 (𝐴𝑉 → 𝒫 𝒫 𝐴 ∈ V)
10 ssexg 4191 . . . 4 (({𝑦 ∈ Top ∣ 𝐴 = 𝑦} ⊆ 𝒫 𝒫 𝐴 ∧ 𝒫 𝒫 𝐴 ∈ V) → {𝑦 ∈ Top ∣ 𝐴 = 𝑦} ∈ V)
117, 9, 10sylancr 414 . . 3 (𝐴𝑉 → {𝑦 ∈ Top ∣ 𝐴 = 𝑦} ∈ V)
12 eqeq1 2213 . . . . 5 (𝑥 = 𝐴 → (𝑥 = 𝑦𝐴 = 𝑦))
1312rabbidv 2762 . . . 4 (𝑥 = 𝐴 → {𝑦 ∈ Top ∣ 𝑥 = 𝑦} = {𝑦 ∈ Top ∣ 𝐴 = 𝑦})
14 df-topon 14558 . . . 4 TopOn = (𝑥 ∈ V ↦ {𝑦 ∈ Top ∣ 𝑥 = 𝑦})
1513, 14fvmptg 5668 . . 3 ((𝐴 ∈ V ∧ {𝑦 ∈ Top ∣ 𝐴 = 𝑦} ∈ V) → (TopOn‘𝐴) = {𝑦 ∈ Top ∣ 𝐴 = 𝑦})
161, 11, 15syl2anc 411 . 2 (𝐴𝑉 → (TopOn‘𝐴) = {𝑦 ∈ Top ∣ 𝐴 = 𝑦})
1716, 7eqsstrdi 3249 1 (𝐴𝑉 → (TopOn‘𝐴) ⊆ 𝒫 𝒫 𝐴)
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1373  wcel 2177  {cab 2192  {crab 2489  Vcvv 2773  wss 3170  𝒫 cpw 3621   cuni 3856  cfv 5280  Topctop 14544  TopOnctopon 14557
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-14 2180  ax-ext 2188  ax-sep 4170  ax-pow 4226  ax-pr 4261
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ral 2490  df-rex 2491  df-rab 2494  df-v 2775  df-sbc 3003  df-un 3174  df-in 3176  df-ss 3183  df-pw 3623  df-sn 3644  df-pr 3645  df-op 3647  df-uni 3857  df-br 4052  df-opab 4114  df-mpt 4115  df-id 4348  df-xp 4689  df-rel 4690  df-cnv 4691  df-co 4692  df-dm 4693  df-iota 5241  df-fun 5282  df-fv 5288  df-topon 14558
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator