ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  toponsspwpwg GIF version

Theorem toponsspwpwg 14190
Description: The set of topologies on a set is included in the double power set of that set. (Contributed by BJ, 29-Apr-2021.) (Revised by Jim Kingdon, 16-Jan-2023.)
Assertion
Ref Expression
toponsspwpwg (𝐴𝑉 → (TopOn‘𝐴) ⊆ 𝒫 𝒫 𝐴)

Proof of Theorem toponsspwpwg
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elex 2771 . . 3 (𝐴𝑉𝐴 ∈ V)
2 rabssab 3267 . . . . . 6 {𝑦 ∈ Top ∣ 𝐴 = 𝑦} ⊆ {𝑦𝐴 = 𝑦}
3 eqcom 2195 . . . . . . 7 (𝐴 = 𝑦 𝑦 = 𝐴)
43abbii 2309 . . . . . 6 {𝑦𝐴 = 𝑦} = {𝑦 𝑦 = 𝐴}
52, 4sseqtri 3213 . . . . 5 {𝑦 ∈ Top ∣ 𝐴 = 𝑦} ⊆ {𝑦 𝑦 = 𝐴}
6 pwpwssunieq 4001 . . . . 5 {𝑦 𝑦 = 𝐴} ⊆ 𝒫 𝒫 𝐴
75, 6sstri 3188 . . . 4 {𝑦 ∈ Top ∣ 𝐴 = 𝑦} ⊆ 𝒫 𝒫 𝐴
8 pwexg 4209 . . . . 5 (𝐴𝑉 → 𝒫 𝐴 ∈ V)
98pwexd 4210 . . . 4 (𝐴𝑉 → 𝒫 𝒫 𝐴 ∈ V)
10 ssexg 4168 . . . 4 (({𝑦 ∈ Top ∣ 𝐴 = 𝑦} ⊆ 𝒫 𝒫 𝐴 ∧ 𝒫 𝒫 𝐴 ∈ V) → {𝑦 ∈ Top ∣ 𝐴 = 𝑦} ∈ V)
117, 9, 10sylancr 414 . . 3 (𝐴𝑉 → {𝑦 ∈ Top ∣ 𝐴 = 𝑦} ∈ V)
12 eqeq1 2200 . . . . 5 (𝑥 = 𝐴 → (𝑥 = 𝑦𝐴 = 𝑦))
1312rabbidv 2749 . . . 4 (𝑥 = 𝐴 → {𝑦 ∈ Top ∣ 𝑥 = 𝑦} = {𝑦 ∈ Top ∣ 𝐴 = 𝑦})
14 df-topon 14179 . . . 4 TopOn = (𝑥 ∈ V ↦ {𝑦 ∈ Top ∣ 𝑥 = 𝑦})
1513, 14fvmptg 5633 . . 3 ((𝐴 ∈ V ∧ {𝑦 ∈ Top ∣ 𝐴 = 𝑦} ∈ V) → (TopOn‘𝐴) = {𝑦 ∈ Top ∣ 𝐴 = 𝑦})
161, 11, 15syl2anc 411 . 2 (𝐴𝑉 → (TopOn‘𝐴) = {𝑦 ∈ Top ∣ 𝐴 = 𝑦})
1716, 7eqsstrdi 3231 1 (𝐴𝑉 → (TopOn‘𝐴) ⊆ 𝒫 𝒫 𝐴)
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1364  wcel 2164  {cab 2179  {crab 2476  Vcvv 2760  wss 3153  𝒫 cpw 3601   cuni 3835  cfv 5254  Topctop 14165  TopOnctopon 14178
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-pow 4203  ax-pr 4238
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-rab 2481  df-v 2762  df-sbc 2986  df-un 3157  df-in 3159  df-ss 3166  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-br 4030  df-opab 4091  df-mpt 4092  df-id 4324  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-iota 5215  df-fun 5256  df-fv 5262  df-topon 14179
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator