![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > ss2abi | GIF version |
Description: Inference of abstraction subclass from implication. (Contributed by NM, 31-Mar-1995.) |
Ref | Expression |
---|---|
ss2abi.1 | ⊢ (𝜑 → 𝜓) |
Ref | Expression |
---|---|
ss2abi | ⊢ {𝑥 ∣ 𝜑} ⊆ {𝑥 ∣ 𝜓} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ss2ab 3225 | . 2 ⊢ ({𝑥 ∣ 𝜑} ⊆ {𝑥 ∣ 𝜓} ↔ ∀𝑥(𝜑 → 𝜓)) | |
2 | ss2abi.1 | . 2 ⊢ (𝜑 → 𝜓) | |
3 | 1, 2 | mpgbir 1453 | 1 ⊢ {𝑥 ∣ 𝜑} ⊆ {𝑥 ∣ 𝜓} |
Colors of variables: wff set class |
Syntax hints: → wi 4 {cab 2163 ⊆ wss 3131 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-ext 2159 |
This theorem depends on definitions: df-bi 117 df-nf 1461 df-sb 1763 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-in 3137 df-ss 3144 |
This theorem is referenced by: abssi 3232 rabssab 3245 pwsnss 3805 iinuniss 3971 pwpwssunieq 3977 abssexg 4184 imassrn 4983 imadiflem 5297 imainlem 5299 fabexg 5405 f1oabexg 5475 tfrcllemssrecs 6355 mapex 6656 tgval 12716 tgvalex 12717 |
Copyright terms: Public domain | W3C validator |