| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ss2abi | GIF version | ||
| Description: Inference of abstraction subclass from implication. (Contributed by NM, 31-Mar-1995.) |
| Ref | Expression |
|---|---|
| ss2abi.1 | ⊢ (𝜑 → 𝜓) |
| Ref | Expression |
|---|---|
| ss2abi | ⊢ {𝑥 ∣ 𝜑} ⊆ {𝑥 ∣ 𝜓} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ss2ab 3292 | . 2 ⊢ ({𝑥 ∣ 𝜑} ⊆ {𝑥 ∣ 𝜓} ↔ ∀𝑥(𝜑 → 𝜓)) | |
| 2 | ss2abi.1 | . 2 ⊢ (𝜑 → 𝜓) | |
| 3 | 1, 2 | mpgbir 1499 | 1 ⊢ {𝑥 ∣ 𝜑} ⊆ {𝑥 ∣ 𝜓} |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 {cab 2215 ⊆ wss 3197 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-in 3203 df-ss 3210 |
| This theorem is referenced by: abssi 3299 rabssab 3312 pwsnss 3882 iinuniss 4048 pwpwssunieq 4054 abssexg 4266 imassrn 5079 imadiflem 5400 imainlem 5402 fabexg 5515 f1oabexg 5586 tfrcllemssrecs 6504 mapex 6809 tgval 13303 tgvalex 13304 fngsum 13429 igsumvalx 13430 isghm 13788 wksfval 16043 |
| Copyright terms: Public domain | W3C validator |