![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > ss2abi | GIF version |
Description: Inference of abstraction subclass from implication. (Contributed by NM, 31-Mar-1995.) |
Ref | Expression |
---|---|
ss2abi.1 | ⊢ (𝜑 → 𝜓) |
Ref | Expression |
---|---|
ss2abi | ⊢ {𝑥 ∣ 𝜑} ⊆ {𝑥 ∣ 𝜓} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ss2ab 3247 | . 2 ⊢ ({𝑥 ∣ 𝜑} ⊆ {𝑥 ∣ 𝜓} ↔ ∀𝑥(𝜑 → 𝜓)) | |
2 | ss2abi.1 | . 2 ⊢ (𝜑 → 𝜓) | |
3 | 1, 2 | mpgbir 1464 | 1 ⊢ {𝑥 ∣ 𝜑} ⊆ {𝑥 ∣ 𝜓} |
Colors of variables: wff set class |
Syntax hints: → wi 4 {cab 2179 ⊆ wss 3153 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2175 |
This theorem depends on definitions: df-bi 117 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-in 3159 df-ss 3166 |
This theorem is referenced by: abssi 3254 rabssab 3267 pwsnss 3829 iinuniss 3995 pwpwssunieq 4001 abssexg 4211 imassrn 5016 imadiflem 5333 imainlem 5335 fabexg 5441 f1oabexg 5512 tfrcllemssrecs 6405 mapex 6708 tgval 12873 tgvalex 12874 fngsum 12971 igsumvalx 12972 isghm 13313 |
Copyright terms: Public domain | W3C validator |