Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > ss2abi | GIF version |
Description: Inference of abstraction subclass from implication. (Contributed by NM, 31-Mar-1995.) |
Ref | Expression |
---|---|
ss2abi.1 | ⊢ (𝜑 → 𝜓) |
Ref | Expression |
---|---|
ss2abi | ⊢ {𝑥 ∣ 𝜑} ⊆ {𝑥 ∣ 𝜓} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ss2ab 3210 | . 2 ⊢ ({𝑥 ∣ 𝜑} ⊆ {𝑥 ∣ 𝜓} ↔ ∀𝑥(𝜑 → 𝜓)) | |
2 | ss2abi.1 | . 2 ⊢ (𝜑 → 𝜓) | |
3 | 1, 2 | mpgbir 1441 | 1 ⊢ {𝑥 ∣ 𝜑} ⊆ {𝑥 ∣ 𝜓} |
Colors of variables: wff set class |
Syntax hints: → wi 4 {cab 2151 ⊆ wss 3116 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-in 3122 df-ss 3129 |
This theorem is referenced by: abssi 3217 rabssab 3230 pwsnss 3783 iinuniss 3948 pwpwssunieq 3954 abssexg 4161 imassrn 4957 imadiflem 5267 imainlem 5269 fabexg 5375 f1oabexg 5444 tfrcllemssrecs 6320 mapex 6620 tgval 12689 tgvalex 12690 |
Copyright terms: Public domain | W3C validator |