Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  ss2abi GIF version

Theorem ss2abi 3137
 Description: Inference of abstraction subclass from implication. (Contributed by NM, 31-Mar-1995.)
Hypothesis
Ref Expression
ss2abi.1 (𝜑𝜓)
Assertion
Ref Expression
ss2abi {𝑥𝜑} ⊆ {𝑥𝜓}

Proof of Theorem ss2abi
StepHypRef Expression
1 ss2ab 3133 . 2 ({𝑥𝜑} ⊆ {𝑥𝜓} ↔ ∀𝑥(𝜑𝜓))
2 ss2abi.1 . 2 (𝜑𝜓)
31, 2mpgbir 1412 1 {𝑥𝜑} ⊆ {𝑥𝜓}
 Colors of variables: wff set class Syntax hints:   → wi 4  {cab 2101   ⊆ wss 3039 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 681  ax-5 1406  ax-7 1407  ax-gen 1408  ax-ie1 1452  ax-ie2 1453  ax-8 1465  ax-10 1466  ax-11 1467  ax-i12 1468  ax-bndl 1469  ax-4 1470  ax-17 1489  ax-i9 1493  ax-ial 1497  ax-i5r 1498  ax-ext 2097 This theorem depends on definitions:  df-bi 116  df-nf 1420  df-sb 1719  df-clab 2102  df-cleq 2108  df-clel 2111  df-nfc 2245  df-in 3045  df-ss 3052 This theorem is referenced by:  abssi  3140  rabssab  3152  pwsnss  3698  iinuniss  3863  pwpwssunieq  3869  abssexg  4074  imassrn  4860  imadiflem  5170  imainlem  5172  fabexg  5278  f1oabexg  5345  tfrcllemssrecs  6215  mapex  6514  tgval  12124  tgvalex  12125
 Copyright terms: Public domain W3C validator