ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ss2abi GIF version

Theorem ss2abi 3266
Description: Inference of abstraction subclass from implication. (Contributed by NM, 31-Mar-1995.)
Hypothesis
Ref Expression
ss2abi.1 (𝜑𝜓)
Assertion
Ref Expression
ss2abi {𝑥𝜑} ⊆ {𝑥𝜓}

Proof of Theorem ss2abi
StepHypRef Expression
1 ss2ab 3262 . 2 ({𝑥𝜑} ⊆ {𝑥𝜓} ↔ ∀𝑥(𝜑𝜓))
2 ss2abi.1 . 2 (𝜑𝜓)
31, 2mpgbir 1477 1 {𝑥𝜑} ⊆ {𝑥𝜓}
Colors of variables: wff set class
Syntax hints:  wi 4  {cab 2192  wss 3167
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2188
This theorem depends on definitions:  df-bi 117  df-nf 1485  df-sb 1787  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-in 3173  df-ss 3180
This theorem is referenced by:  abssi  3269  rabssab  3282  pwsnss  3846  iinuniss  4012  pwpwssunieq  4018  abssexg  4230  imassrn  5038  imadiflem  5358  imainlem  5360  fabexg  5470  f1oabexg  5541  tfrcllemssrecs  6445  mapex  6748  tgval  13138  tgvalex  13139  fngsum  13264  igsumvalx  13265  isghm  13623
  Copyright terms: Public domain W3C validator