ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ss2abi GIF version

Theorem ss2abi 3255
Description: Inference of abstraction subclass from implication. (Contributed by NM, 31-Mar-1995.)
Hypothesis
Ref Expression
ss2abi.1 (𝜑𝜓)
Assertion
Ref Expression
ss2abi {𝑥𝜑} ⊆ {𝑥𝜓}

Proof of Theorem ss2abi
StepHypRef Expression
1 ss2ab 3251 . 2 ({𝑥𝜑} ⊆ {𝑥𝜓} ↔ ∀𝑥(𝜑𝜓))
2 ss2abi.1 . 2 (𝜑𝜓)
31, 2mpgbir 1467 1 {𝑥𝜑} ⊆ {𝑥𝜓}
Colors of variables: wff set class
Syntax hints:  wi 4  {cab 2182  wss 3157
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-in 3163  df-ss 3170
This theorem is referenced by:  abssi  3258  rabssab  3271  pwsnss  3833  iinuniss  3999  pwpwssunieq  4005  abssexg  4215  imassrn  5020  imadiflem  5337  imainlem  5339  fabexg  5445  f1oabexg  5516  tfrcllemssrecs  6410  mapex  6713  tgval  12933  tgvalex  12934  fngsum  13031  igsumvalx  13032  isghm  13373
  Copyright terms: Public domain W3C validator