Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > rextpg | GIF version |
Description: Convert a quantification over a triple to a disjunction. (Contributed by Mario Carneiro, 23-Apr-2015.) |
Ref | Expression |
---|---|
ralprg.1 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) |
ralprg.2 | ⊢ (𝑥 = 𝐵 → (𝜑 ↔ 𝜒)) |
raltpg.3 | ⊢ (𝑥 = 𝐶 → (𝜑 ↔ 𝜃)) |
Ref | Expression |
---|---|
rextpg | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋) → (∃𝑥 ∈ {𝐴, 𝐵, 𝐶}𝜑 ↔ (𝜓 ∨ 𝜒 ∨ 𝜃))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ralprg.1 | . . . . . 6 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) | |
2 | ralprg.2 | . . . . . 6 ⊢ (𝑥 = 𝐵 → (𝜑 ↔ 𝜒)) | |
3 | 1, 2 | rexprg 3628 | . . . . 5 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (∃𝑥 ∈ {𝐴, 𝐵}𝜑 ↔ (𝜓 ∨ 𝜒))) |
4 | 3 | orbi1d 781 | . . . 4 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → ((∃𝑥 ∈ {𝐴, 𝐵}𝜑 ∨ ∃𝑥 ∈ {𝐶}𝜑) ↔ ((𝜓 ∨ 𝜒) ∨ ∃𝑥 ∈ {𝐶}𝜑))) |
5 | raltpg.3 | . . . . . 6 ⊢ (𝑥 = 𝐶 → (𝜑 ↔ 𝜃)) | |
6 | 5 | rexsng 3617 | . . . . 5 ⊢ (𝐶 ∈ 𝑋 → (∃𝑥 ∈ {𝐶}𝜑 ↔ 𝜃)) |
7 | 6 | orbi2d 780 | . . . 4 ⊢ (𝐶 ∈ 𝑋 → (((𝜓 ∨ 𝜒) ∨ ∃𝑥 ∈ {𝐶}𝜑) ↔ ((𝜓 ∨ 𝜒) ∨ 𝜃))) |
8 | 4, 7 | sylan9bb 458 | . . 3 ⊢ (((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) ∧ 𝐶 ∈ 𝑋) → ((∃𝑥 ∈ {𝐴, 𝐵}𝜑 ∨ ∃𝑥 ∈ {𝐶}𝜑) ↔ ((𝜓 ∨ 𝜒) ∨ 𝜃))) |
9 | 8 | 3impa 1184 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋) → ((∃𝑥 ∈ {𝐴, 𝐵}𝜑 ∨ ∃𝑥 ∈ {𝐶}𝜑) ↔ ((𝜓 ∨ 𝜒) ∨ 𝜃))) |
10 | df-tp 3584 | . . . 4 ⊢ {𝐴, 𝐵, 𝐶} = ({𝐴, 𝐵} ∪ {𝐶}) | |
11 | 10 | rexeqi 2666 | . . 3 ⊢ (∃𝑥 ∈ {𝐴, 𝐵, 𝐶}𝜑 ↔ ∃𝑥 ∈ ({𝐴, 𝐵} ∪ {𝐶})𝜑) |
12 | rexun 3302 | . . 3 ⊢ (∃𝑥 ∈ ({𝐴, 𝐵} ∪ {𝐶})𝜑 ↔ (∃𝑥 ∈ {𝐴, 𝐵}𝜑 ∨ ∃𝑥 ∈ {𝐶}𝜑)) | |
13 | 11, 12 | bitri 183 | . 2 ⊢ (∃𝑥 ∈ {𝐴, 𝐵, 𝐶}𝜑 ↔ (∃𝑥 ∈ {𝐴, 𝐵}𝜑 ∨ ∃𝑥 ∈ {𝐶}𝜑)) |
14 | df-3or 969 | . 2 ⊢ ((𝜓 ∨ 𝜒 ∨ 𝜃) ↔ ((𝜓 ∨ 𝜒) ∨ 𝜃)) | |
15 | 9, 13, 14 | 3bitr4g 222 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋) → (∃𝑥 ∈ {𝐴, 𝐵, 𝐶}𝜑 ↔ (𝜓 ∨ 𝜒 ∨ 𝜃))) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ↔ wb 104 ∨ wo 698 ∨ w3o 967 ∧ w3a 968 = wceq 1343 ∈ wcel 2136 ∃wrex 2445 ∪ cun 3114 {csn 3576 {cpr 3577 {ctp 3578 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-3or 969 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-rex 2450 df-v 2728 df-sbc 2952 df-un 3120 df-sn 3582 df-pr 3583 df-tp 3584 |
This theorem is referenced by: rextp 3634 |
Copyright terms: Public domain | W3C validator |