| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > rextpg | GIF version | ||
| Description: Convert a quantification over a triple to a disjunction. (Contributed by Mario Carneiro, 23-Apr-2015.) |
| Ref | Expression |
|---|---|
| ralprg.1 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) |
| ralprg.2 | ⊢ (𝑥 = 𝐵 → (𝜑 ↔ 𝜒)) |
| raltpg.3 | ⊢ (𝑥 = 𝐶 → (𝜑 ↔ 𝜃)) |
| Ref | Expression |
|---|---|
| rextpg | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋) → (∃𝑥 ∈ {𝐴, 𝐵, 𝐶}𝜑 ↔ (𝜓 ∨ 𝜒 ∨ 𝜃))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ralprg.1 | . . . . . 6 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) | |
| 2 | ralprg.2 | . . . . . 6 ⊢ (𝑥 = 𝐵 → (𝜑 ↔ 𝜒)) | |
| 3 | 1, 2 | rexprg 3686 | . . . . 5 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (∃𝑥 ∈ {𝐴, 𝐵}𝜑 ↔ (𝜓 ∨ 𝜒))) |
| 4 | 3 | orbi1d 793 | . . . 4 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → ((∃𝑥 ∈ {𝐴, 𝐵}𝜑 ∨ ∃𝑥 ∈ {𝐶}𝜑) ↔ ((𝜓 ∨ 𝜒) ∨ ∃𝑥 ∈ {𝐶}𝜑))) |
| 5 | raltpg.3 | . . . . . 6 ⊢ (𝑥 = 𝐶 → (𝜑 ↔ 𝜃)) | |
| 6 | 5 | rexsng 3675 | . . . . 5 ⊢ (𝐶 ∈ 𝑋 → (∃𝑥 ∈ {𝐶}𝜑 ↔ 𝜃)) |
| 7 | 6 | orbi2d 792 | . . . 4 ⊢ (𝐶 ∈ 𝑋 → (((𝜓 ∨ 𝜒) ∨ ∃𝑥 ∈ {𝐶}𝜑) ↔ ((𝜓 ∨ 𝜒) ∨ 𝜃))) |
| 8 | 4, 7 | sylan9bb 462 | . . 3 ⊢ (((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) ∧ 𝐶 ∈ 𝑋) → ((∃𝑥 ∈ {𝐴, 𝐵}𝜑 ∨ ∃𝑥 ∈ {𝐶}𝜑) ↔ ((𝜓 ∨ 𝜒) ∨ 𝜃))) |
| 9 | 8 | 3impa 1197 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋) → ((∃𝑥 ∈ {𝐴, 𝐵}𝜑 ∨ ∃𝑥 ∈ {𝐶}𝜑) ↔ ((𝜓 ∨ 𝜒) ∨ 𝜃))) |
| 10 | df-tp 3642 | . . . 4 ⊢ {𝐴, 𝐵, 𝐶} = ({𝐴, 𝐵} ∪ {𝐶}) | |
| 11 | 10 | rexeqi 2708 | . . 3 ⊢ (∃𝑥 ∈ {𝐴, 𝐵, 𝐶}𝜑 ↔ ∃𝑥 ∈ ({𝐴, 𝐵} ∪ {𝐶})𝜑) |
| 12 | rexun 3354 | . . 3 ⊢ (∃𝑥 ∈ ({𝐴, 𝐵} ∪ {𝐶})𝜑 ↔ (∃𝑥 ∈ {𝐴, 𝐵}𝜑 ∨ ∃𝑥 ∈ {𝐶}𝜑)) | |
| 13 | 11, 12 | bitri 184 | . 2 ⊢ (∃𝑥 ∈ {𝐴, 𝐵, 𝐶}𝜑 ↔ (∃𝑥 ∈ {𝐴, 𝐵}𝜑 ∨ ∃𝑥 ∈ {𝐶}𝜑)) |
| 14 | df-3or 982 | . 2 ⊢ ((𝜓 ∨ 𝜒 ∨ 𝜃) ↔ ((𝜓 ∨ 𝜒) ∨ 𝜃)) | |
| 15 | 9, 13, 14 | 3bitr4g 223 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋) → (∃𝑥 ∈ {𝐴, 𝐵, 𝐶}𝜑 ↔ (𝜓 ∨ 𝜒 ∨ 𝜃))) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 ∨ wo 710 ∨ w3o 980 ∧ w3a 981 = wceq 1373 ∈ wcel 2177 ∃wrex 2486 ∪ cun 3165 {csn 3634 {cpr 3635 {ctp 3636 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2188 |
| This theorem depends on definitions: df-bi 117 df-3or 982 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-rex 2491 df-v 2775 df-sbc 3000 df-un 3171 df-sn 3640 df-pr 3641 df-tp 3642 |
| This theorem is referenced by: rextp 3692 |
| Copyright terms: Public domain | W3C validator |