| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > rextpg | GIF version | ||
| Description: Convert a quantification over a triple to a disjunction. (Contributed by Mario Carneiro, 23-Apr-2015.) |
| Ref | Expression |
|---|---|
| ralprg.1 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) |
| ralprg.2 | ⊢ (𝑥 = 𝐵 → (𝜑 ↔ 𝜒)) |
| raltpg.3 | ⊢ (𝑥 = 𝐶 → (𝜑 ↔ 𝜃)) |
| Ref | Expression |
|---|---|
| rextpg | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋) → (∃𝑥 ∈ {𝐴, 𝐵, 𝐶}𝜑 ↔ (𝜓 ∨ 𝜒 ∨ 𝜃))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ralprg.1 | . . . . . 6 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) | |
| 2 | ralprg.2 | . . . . . 6 ⊢ (𝑥 = 𝐵 → (𝜑 ↔ 𝜒)) | |
| 3 | 1, 2 | rexprg 3674 | . . . . 5 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (∃𝑥 ∈ {𝐴, 𝐵}𝜑 ↔ (𝜓 ∨ 𝜒))) |
| 4 | 3 | orbi1d 792 | . . . 4 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → ((∃𝑥 ∈ {𝐴, 𝐵}𝜑 ∨ ∃𝑥 ∈ {𝐶}𝜑) ↔ ((𝜓 ∨ 𝜒) ∨ ∃𝑥 ∈ {𝐶}𝜑))) |
| 5 | raltpg.3 | . . . . . 6 ⊢ (𝑥 = 𝐶 → (𝜑 ↔ 𝜃)) | |
| 6 | 5 | rexsng 3663 | . . . . 5 ⊢ (𝐶 ∈ 𝑋 → (∃𝑥 ∈ {𝐶}𝜑 ↔ 𝜃)) |
| 7 | 6 | orbi2d 791 | . . . 4 ⊢ (𝐶 ∈ 𝑋 → (((𝜓 ∨ 𝜒) ∨ ∃𝑥 ∈ {𝐶}𝜑) ↔ ((𝜓 ∨ 𝜒) ∨ 𝜃))) |
| 8 | 4, 7 | sylan9bb 462 | . . 3 ⊢ (((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) ∧ 𝐶 ∈ 𝑋) → ((∃𝑥 ∈ {𝐴, 𝐵}𝜑 ∨ ∃𝑥 ∈ {𝐶}𝜑) ↔ ((𝜓 ∨ 𝜒) ∨ 𝜃))) |
| 9 | 8 | 3impa 1196 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋) → ((∃𝑥 ∈ {𝐴, 𝐵}𝜑 ∨ ∃𝑥 ∈ {𝐶}𝜑) ↔ ((𝜓 ∨ 𝜒) ∨ 𝜃))) |
| 10 | df-tp 3630 | . . . 4 ⊢ {𝐴, 𝐵, 𝐶} = ({𝐴, 𝐵} ∪ {𝐶}) | |
| 11 | 10 | rexeqi 2698 | . . 3 ⊢ (∃𝑥 ∈ {𝐴, 𝐵, 𝐶}𝜑 ↔ ∃𝑥 ∈ ({𝐴, 𝐵} ∪ {𝐶})𝜑) |
| 12 | rexun 3343 | . . 3 ⊢ (∃𝑥 ∈ ({𝐴, 𝐵} ∪ {𝐶})𝜑 ↔ (∃𝑥 ∈ {𝐴, 𝐵}𝜑 ∨ ∃𝑥 ∈ {𝐶}𝜑)) | |
| 13 | 11, 12 | bitri 184 | . 2 ⊢ (∃𝑥 ∈ {𝐴, 𝐵, 𝐶}𝜑 ↔ (∃𝑥 ∈ {𝐴, 𝐵}𝜑 ∨ ∃𝑥 ∈ {𝐶}𝜑)) |
| 14 | df-3or 981 | . 2 ⊢ ((𝜓 ∨ 𝜒 ∨ 𝜃) ↔ ((𝜓 ∨ 𝜒) ∨ 𝜃)) | |
| 15 | 9, 13, 14 | 3bitr4g 223 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋) → (∃𝑥 ∈ {𝐴, 𝐵, 𝐶}𝜑 ↔ (𝜓 ∨ 𝜒 ∨ 𝜃))) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 ∨ wo 709 ∨ w3o 979 ∧ w3a 980 = wceq 1364 ∈ wcel 2167 ∃wrex 2476 ∪ cun 3155 {csn 3622 {cpr 3623 {ctp 3624 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-3or 981 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-rex 2481 df-v 2765 df-sbc 2990 df-un 3161 df-sn 3628 df-pr 3629 df-tp 3630 |
| This theorem is referenced by: rextp 3680 |
| Copyright terms: Public domain | W3C validator |