Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > elrel | GIF version |
Description: A member of a relation is an ordered pair. (Contributed by NM, 17-Sep-2006.) |
Ref | Expression |
---|---|
elrel | ⊢ ((Rel 𝑅 ∧ 𝐴 ∈ 𝑅) → ∃𝑥∃𝑦 𝐴 = 〈𝑥, 𝑦〉) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-rel 4586 | . . . 4 ⊢ (Rel 𝑅 ↔ 𝑅 ⊆ (V × V)) | |
2 | 1 | biimpi 119 | . . 3 ⊢ (Rel 𝑅 → 𝑅 ⊆ (V × V)) |
3 | 2 | sselda 3124 | . 2 ⊢ ((Rel 𝑅 ∧ 𝐴 ∈ 𝑅) → 𝐴 ∈ (V × V)) |
4 | elvv 4641 | . 2 ⊢ (𝐴 ∈ (V × V) ↔ ∃𝑥∃𝑦 𝐴 = 〈𝑥, 𝑦〉) | |
5 | 3, 4 | sylib 121 | 1 ⊢ ((Rel 𝑅 ∧ 𝐴 ∈ 𝑅) → ∃𝑥∃𝑦 𝐴 = 〈𝑥, 𝑦〉) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 = wceq 1332 ∃wex 1469 ∈ wcel 2125 Vcvv 2709 ⊆ wss 3098 〈cop 3559 × cxp 4577 Rel wrel 4584 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1424 ax-7 1425 ax-gen 1426 ax-ie1 1470 ax-ie2 1471 ax-8 1481 ax-10 1482 ax-11 1483 ax-i12 1484 ax-bndl 1486 ax-4 1487 ax-17 1503 ax-i9 1507 ax-ial 1511 ax-i5r 1512 ax-14 2128 ax-ext 2136 ax-sep 4078 ax-pow 4130 ax-pr 4164 |
This theorem depends on definitions: df-bi 116 df-3an 965 df-tru 1335 df-nf 1438 df-sb 1740 df-clab 2141 df-cleq 2147 df-clel 2150 df-nfc 2285 df-v 2711 df-un 3102 df-in 3104 df-ss 3111 df-pw 3541 df-sn 3562 df-pr 3563 df-op 3565 df-opab 4022 df-xp 4585 df-rel 4586 |
This theorem is referenced by: eliunxp 4718 elres 4895 unielrel 5106 rntpos 6194 |
Copyright terms: Public domain | W3C validator |