ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  setsslid GIF version

Theorem setsslid 12672
Description: Value of the structure replacement function at a replaced index. (Contributed by Mario Carneiro, 1-Dec-2014.) (Revised by Jim Kingdon, 24-Jan-2023.)
Hypothesis
Ref Expression
setsslid.e (𝐸 = Slot (𝐸‘ndx) ∧ (𝐸‘ndx) ∈ ℕ)
Assertion
Ref Expression
setsslid ((𝑊𝐴𝐶𝑉) → 𝐶 = (𝐸‘(𝑊 sSet ⟨(𝐸‘ndx), 𝐶⟩)))

Proof of Theorem setsslid
StepHypRef Expression
1 setsslid.e . . . . 5 (𝐸 = Slot (𝐸‘ndx) ∧ (𝐸‘ndx) ∈ ℕ)
21simpri 113 . . . 4 (𝐸‘ndx) ∈ ℕ
3 setsvala 12652 . . . 4 ((𝑊𝐴 ∧ (𝐸‘ndx) ∈ ℕ ∧ 𝐶𝑉) → (𝑊 sSet ⟨(𝐸‘ndx), 𝐶⟩) = ((𝑊 ↾ (V ∖ {(𝐸‘ndx)})) ∪ {⟨(𝐸‘ndx), 𝐶⟩}))
42, 3mp3an2 1336 . . 3 ((𝑊𝐴𝐶𝑉) → (𝑊 sSet ⟨(𝐸‘ndx), 𝐶⟩) = ((𝑊 ↾ (V ∖ {(𝐸‘ndx)})) ∪ {⟨(𝐸‘ndx), 𝐶⟩}))
54fveq2d 5559 . 2 ((𝑊𝐴𝐶𝑉) → (𝐸‘(𝑊 sSet ⟨(𝐸‘ndx), 𝐶⟩)) = (𝐸‘((𝑊 ↾ (V ∖ {(𝐸‘ndx)})) ∪ {⟨(𝐸‘ndx), 𝐶⟩})))
61simpli 111 . . 3 𝐸 = Slot (𝐸‘ndx)
7 resexg 4983 . . . 4 (𝑊𝐴 → (𝑊 ↾ (V ∖ {(𝐸‘ndx)})) ∈ V)
8 simpr 110 . . . . . 6 ((𝑊𝐴𝐶𝑉) → 𝐶𝑉)
9 opexg 4258 . . . . . 6 (((𝐸‘ndx) ∈ ℕ ∧ 𝐶𝑉) → ⟨(𝐸‘ndx), 𝐶⟩ ∈ V)
102, 8, 9sylancr 414 . . . . 5 ((𝑊𝐴𝐶𝑉) → ⟨(𝐸‘ndx), 𝐶⟩ ∈ V)
11 snexg 4214 . . . . 5 (⟨(𝐸‘ndx), 𝐶⟩ ∈ V → {⟨(𝐸‘ndx), 𝐶⟩} ∈ V)
1210, 11syl 14 . . . 4 ((𝑊𝐴𝐶𝑉) → {⟨(𝐸‘ndx), 𝐶⟩} ∈ V)
13 unexg 4475 . . . 4 (((𝑊 ↾ (V ∖ {(𝐸‘ndx)})) ∈ V ∧ {⟨(𝐸‘ndx), 𝐶⟩} ∈ V) → ((𝑊 ↾ (V ∖ {(𝐸‘ndx)})) ∪ {⟨(𝐸‘ndx), 𝐶⟩}) ∈ V)
147, 12, 13syl2an2r 595 . . 3 ((𝑊𝐴𝐶𝑉) → ((𝑊 ↾ (V ∖ {(𝐸‘ndx)})) ∪ {⟨(𝐸‘ndx), 𝐶⟩}) ∈ V)
152a1i 9 . . 3 ((𝑊𝐴𝐶𝑉) → (𝐸‘ndx) ∈ ℕ)
166, 14, 15strnfvnd 12641 . 2 ((𝑊𝐴𝐶𝑉) → (𝐸‘((𝑊 ↾ (V ∖ {(𝐸‘ndx)})) ∪ {⟨(𝐸‘ndx), 𝐶⟩})) = (((𝑊 ↾ (V ∖ {(𝐸‘ndx)})) ∪ {⟨(𝐸‘ndx), 𝐶⟩})‘(𝐸‘ndx)))
17 snidg 3648 . . . . 5 ((𝐸‘ndx) ∈ ℕ → (𝐸‘ndx) ∈ {(𝐸‘ndx)})
18 fvres 5579 . . . . 5 ((𝐸‘ndx) ∈ {(𝐸‘ndx)} → ((((𝑊 ↾ (V ∖ {(𝐸‘ndx)})) ∪ {⟨(𝐸‘ndx), 𝐶⟩}) ↾ {(𝐸‘ndx)})‘(𝐸‘ndx)) = (((𝑊 ↾ (V ∖ {(𝐸‘ndx)})) ∪ {⟨(𝐸‘ndx), 𝐶⟩})‘(𝐸‘ndx)))
192, 17, 18mp2b 8 . . . 4 ((((𝑊 ↾ (V ∖ {(𝐸‘ndx)})) ∪ {⟨(𝐸‘ndx), 𝐶⟩}) ↾ {(𝐸‘ndx)})‘(𝐸‘ndx)) = (((𝑊 ↾ (V ∖ {(𝐸‘ndx)})) ∪ {⟨(𝐸‘ndx), 𝐶⟩})‘(𝐸‘ndx))
20 resres 4955 . . . . . . . . 9 ((𝑊 ↾ (V ∖ {(𝐸‘ndx)})) ↾ {(𝐸‘ndx)}) = (𝑊 ↾ ((V ∖ {(𝐸‘ndx)}) ∩ {(𝐸‘ndx)}))
21 incom 3352 . . . . . . . . . . . 12 ((V ∖ {(𝐸‘ndx)}) ∩ {(𝐸‘ndx)}) = ({(𝐸‘ndx)} ∩ (V ∖ {(𝐸‘ndx)}))
22 disjdif 3520 . . . . . . . . . . . 12 ({(𝐸‘ndx)} ∩ (V ∖ {(𝐸‘ndx)})) = ∅
2321, 22eqtri 2214 . . . . . . . . . . 11 ((V ∖ {(𝐸‘ndx)}) ∩ {(𝐸‘ndx)}) = ∅
2423reseq2i 4940 . . . . . . . . . 10 (𝑊 ↾ ((V ∖ {(𝐸‘ndx)}) ∩ {(𝐸‘ndx)})) = (𝑊 ↾ ∅)
25 res0 4947 . . . . . . . . . 10 (𝑊 ↾ ∅) = ∅
2624, 25eqtri 2214 . . . . . . . . 9 (𝑊 ↾ ((V ∖ {(𝐸‘ndx)}) ∩ {(𝐸‘ndx)})) = ∅
2720, 26eqtri 2214 . . . . . . . 8 ((𝑊 ↾ (V ∖ {(𝐸‘ndx)})) ↾ {(𝐸‘ndx)}) = ∅
2827a1i 9 . . . . . . 7 ((𝑊𝐴𝐶𝑉) → ((𝑊 ↾ (V ∖ {(𝐸‘ndx)})) ↾ {(𝐸‘ndx)}) = ∅)
292elexi 2772 . . . . . . . . . 10 (𝐸‘ndx) ∈ V
308elexd 2773 . . . . . . . . . 10 ((𝑊𝐴𝐶𝑉) → 𝐶 ∈ V)
31 opelxpi 4692 . . . . . . . . . 10 (((𝐸‘ndx) ∈ V ∧ 𝐶 ∈ V) → ⟨(𝐸‘ndx), 𝐶⟩ ∈ (V × V))
3229, 30, 31sylancr 414 . . . . . . . . 9 ((𝑊𝐴𝐶𝑉) → ⟨(𝐸‘ndx), 𝐶⟩ ∈ (V × V))
33 relsng 4763 . . . . . . . . . 10 (⟨(𝐸‘ndx), 𝐶⟩ ∈ V → (Rel {⟨(𝐸‘ndx), 𝐶⟩} ↔ ⟨(𝐸‘ndx), 𝐶⟩ ∈ (V × V)))
3410, 33syl 14 . . . . . . . . 9 ((𝑊𝐴𝐶𝑉) → (Rel {⟨(𝐸‘ndx), 𝐶⟩} ↔ ⟨(𝐸‘ndx), 𝐶⟩ ∈ (V × V)))
3532, 34mpbird 167 . . . . . . . 8 ((𝑊𝐴𝐶𝑉) → Rel {⟨(𝐸‘ndx), 𝐶⟩})
36 dmsnopg 5138 . . . . . . . . . 10 (𝐶𝑉 → dom {⟨(𝐸‘ndx), 𝐶⟩} = {(𝐸‘ndx)})
3736adantl 277 . . . . . . . . 9 ((𝑊𝐴𝐶𝑉) → dom {⟨(𝐸‘ndx), 𝐶⟩} = {(𝐸‘ndx)})
38 eqimss 3234 . . . . . . . . 9 (dom {⟨(𝐸‘ndx), 𝐶⟩} = {(𝐸‘ndx)} → dom {⟨(𝐸‘ndx), 𝐶⟩} ⊆ {(𝐸‘ndx)})
3937, 38syl 14 . . . . . . . 8 ((𝑊𝐴𝐶𝑉) → dom {⟨(𝐸‘ndx), 𝐶⟩} ⊆ {(𝐸‘ndx)})
40 relssres 4981 . . . . . . . 8 ((Rel {⟨(𝐸‘ndx), 𝐶⟩} ∧ dom {⟨(𝐸‘ndx), 𝐶⟩} ⊆ {(𝐸‘ndx)}) → ({⟨(𝐸‘ndx), 𝐶⟩} ↾ {(𝐸‘ndx)}) = {⟨(𝐸‘ndx), 𝐶⟩})
4135, 39, 40syl2anc 411 . . . . . . 7 ((𝑊𝐴𝐶𝑉) → ({⟨(𝐸‘ndx), 𝐶⟩} ↾ {(𝐸‘ndx)}) = {⟨(𝐸‘ndx), 𝐶⟩})
4228, 41uneq12d 3315 . . . . . 6 ((𝑊𝐴𝐶𝑉) → (((𝑊 ↾ (V ∖ {(𝐸‘ndx)})) ↾ {(𝐸‘ndx)}) ∪ ({⟨(𝐸‘ndx), 𝐶⟩} ↾ {(𝐸‘ndx)})) = (∅ ∪ {⟨(𝐸‘ndx), 𝐶⟩}))
43 resundir 4957 . . . . . 6 (((𝑊 ↾ (V ∖ {(𝐸‘ndx)})) ∪ {⟨(𝐸‘ndx), 𝐶⟩}) ↾ {(𝐸‘ndx)}) = (((𝑊 ↾ (V ∖ {(𝐸‘ndx)})) ↾ {(𝐸‘ndx)}) ∪ ({⟨(𝐸‘ndx), 𝐶⟩} ↾ {(𝐸‘ndx)}))
44 un0 3481 . . . . . . 7 ({⟨(𝐸‘ndx), 𝐶⟩} ∪ ∅) = {⟨(𝐸‘ndx), 𝐶⟩}
45 uncom 3304 . . . . . . 7 ({⟨(𝐸‘ndx), 𝐶⟩} ∪ ∅) = (∅ ∪ {⟨(𝐸‘ndx), 𝐶⟩})
4644, 45eqtr3i 2216 . . . . . 6 {⟨(𝐸‘ndx), 𝐶⟩} = (∅ ∪ {⟨(𝐸‘ndx), 𝐶⟩})
4742, 43, 463eqtr4g 2251 . . . . 5 ((𝑊𝐴𝐶𝑉) → (((𝑊 ↾ (V ∖ {(𝐸‘ndx)})) ∪ {⟨(𝐸‘ndx), 𝐶⟩}) ↾ {(𝐸‘ndx)}) = {⟨(𝐸‘ndx), 𝐶⟩})
4847fveq1d 5557 . . . 4 ((𝑊𝐴𝐶𝑉) → ((((𝑊 ↾ (V ∖ {(𝐸‘ndx)})) ∪ {⟨(𝐸‘ndx), 𝐶⟩}) ↾ {(𝐸‘ndx)})‘(𝐸‘ndx)) = ({⟨(𝐸‘ndx), 𝐶⟩}‘(𝐸‘ndx)))
4919, 48eqtr3id 2240 . . 3 ((𝑊𝐴𝐶𝑉) → (((𝑊 ↾ (V ∖ {(𝐸‘ndx)})) ∪ {⟨(𝐸‘ndx), 𝐶⟩})‘(𝐸‘ndx)) = ({⟨(𝐸‘ndx), 𝐶⟩}‘(𝐸‘ndx)))
50 fvsng 5755 . . . 4 (((𝐸‘ndx) ∈ ℕ ∧ 𝐶𝑉) → ({⟨(𝐸‘ndx), 𝐶⟩}‘(𝐸‘ndx)) = 𝐶)
512, 8, 50sylancr 414 . . 3 ((𝑊𝐴𝐶𝑉) → ({⟨(𝐸‘ndx), 𝐶⟩}‘(𝐸‘ndx)) = 𝐶)
5249, 51eqtrd 2226 . 2 ((𝑊𝐴𝐶𝑉) → (((𝑊 ↾ (V ∖ {(𝐸‘ndx)})) ∪ {⟨(𝐸‘ndx), 𝐶⟩})‘(𝐸‘ndx)) = 𝐶)
535, 16, 523eqtrrd 2231 1 ((𝑊𝐴𝐶𝑉) → 𝐶 = (𝐸‘(𝑊 sSet ⟨(𝐸‘ndx), 𝐶⟩)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1364  wcel 2164  Vcvv 2760  cdif 3151  cun 3152  cin 3153  wss 3154  c0 3447  {csn 3619  cop 3622   × cxp 4658  dom cdm 4660  cres 4662  Rel wrel 4665  cfv 5255  (class class class)co 5919  cn 8984  ndxcnx 12618   sSet csts 12619  Slot cslot 12620
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4148  ax-pow 4204  ax-pr 4239  ax-un 4465  ax-setind 4570
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-ral 2477  df-rex 2478  df-rab 2481  df-v 2762  df-sbc 2987  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-nul 3448  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-br 4031  df-opab 4092  df-mpt 4093  df-id 4325  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-rn 4671  df-res 4672  df-iota 5216  df-fun 5257  df-fv 5263  df-ov 5922  df-oprab 5923  df-mpo 5924  df-slot 12625  df-sets 12628
This theorem is referenced by:  ressbasd  12688  mgpplusgg  13423  opprmulfvalg  13569  rmodislmod  13850  srascag  13941  sravscag  13942  sraipg  13943  zlmsca  14131  zlmvscag  14132  znle  14136  setsmstsetg  14660
  Copyright terms: Public domain W3C validator