ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  setsslid GIF version

Theorem setsslid 11709
Description: Value of the structure replacement function at a replaced index. (Contributed by Mario Carneiro, 1-Dec-2014.) (Revised by Jim Kingdon, 24-Jan-2023.)
Hypothesis
Ref Expression
setsslid.e (𝐸 = Slot (𝐸‘ndx) ∧ (𝐸‘ndx) ∈ ℕ)
Assertion
Ref Expression
setsslid ((𝑊𝐴𝐶𝑉) → 𝐶 = (𝐸‘(𝑊 sSet ⟨(𝐸‘ndx), 𝐶⟩)))

Proof of Theorem setsslid
StepHypRef Expression
1 setsslid.e . . . . 5 (𝐸 = Slot (𝐸‘ndx) ∧ (𝐸‘ndx) ∈ ℕ)
21simpri 112 . . . 4 (𝐸‘ndx) ∈ ℕ
3 setsvala 11690 . . . 4 ((𝑊𝐴 ∧ (𝐸‘ndx) ∈ ℕ ∧ 𝐶𝑉) → (𝑊 sSet ⟨(𝐸‘ndx), 𝐶⟩) = ((𝑊 ↾ (V ∖ {(𝐸‘ndx)})) ∪ {⟨(𝐸‘ndx), 𝐶⟩}))
42, 3mp3an2 1268 . . 3 ((𝑊𝐴𝐶𝑉) → (𝑊 sSet ⟨(𝐸‘ndx), 𝐶⟩) = ((𝑊 ↾ (V ∖ {(𝐸‘ndx)})) ∪ {⟨(𝐸‘ndx), 𝐶⟩}))
54fveq2d 5344 . 2 ((𝑊𝐴𝐶𝑉) → (𝐸‘(𝑊 sSet ⟨(𝐸‘ndx), 𝐶⟩)) = (𝐸‘((𝑊 ↾ (V ∖ {(𝐸‘ndx)})) ∪ {⟨(𝐸‘ndx), 𝐶⟩})))
61simpli 110 . . 3 𝐸 = Slot (𝐸‘ndx)
7 resexg 4785 . . . 4 (𝑊𝐴 → (𝑊 ↾ (V ∖ {(𝐸‘ndx)})) ∈ V)
8 simpr 109 . . . . . 6 ((𝑊𝐴𝐶𝑉) → 𝐶𝑉)
9 opexg 4079 . . . . . 6 (((𝐸‘ndx) ∈ ℕ ∧ 𝐶𝑉) → ⟨(𝐸‘ndx), 𝐶⟩ ∈ V)
102, 8, 9sylancr 406 . . . . 5 ((𝑊𝐴𝐶𝑉) → ⟨(𝐸‘ndx), 𝐶⟩ ∈ V)
11 snexg 4040 . . . . 5 (⟨(𝐸‘ndx), 𝐶⟩ ∈ V → {⟨(𝐸‘ndx), 𝐶⟩} ∈ V)
1210, 11syl 14 . . . 4 ((𝑊𝐴𝐶𝑉) → {⟨(𝐸‘ndx), 𝐶⟩} ∈ V)
13 unexg 4293 . . . 4 (((𝑊 ↾ (V ∖ {(𝐸‘ndx)})) ∈ V ∧ {⟨(𝐸‘ndx), 𝐶⟩} ∈ V) → ((𝑊 ↾ (V ∖ {(𝐸‘ndx)})) ∪ {⟨(𝐸‘ndx), 𝐶⟩}) ∈ V)
147, 12, 13syl2an2r 563 . . 3 ((𝑊𝐴𝐶𝑉) → ((𝑊 ↾ (V ∖ {(𝐸‘ndx)})) ∪ {⟨(𝐸‘ndx), 𝐶⟩}) ∈ V)
152a1i 9 . . 3 ((𝑊𝐴𝐶𝑉) → (𝐸‘ndx) ∈ ℕ)
166, 14, 15strnfvnd 11679 . 2 ((𝑊𝐴𝐶𝑉) → (𝐸‘((𝑊 ↾ (V ∖ {(𝐸‘ndx)})) ∪ {⟨(𝐸‘ndx), 𝐶⟩})) = (((𝑊 ↾ (V ∖ {(𝐸‘ndx)})) ∪ {⟨(𝐸‘ndx), 𝐶⟩})‘(𝐸‘ndx)))
17 snidg 3493 . . . . 5 ((𝐸‘ndx) ∈ ℕ → (𝐸‘ndx) ∈ {(𝐸‘ndx)})
18 fvres 5364 . . . . 5 ((𝐸‘ndx) ∈ {(𝐸‘ndx)} → ((((𝑊 ↾ (V ∖ {(𝐸‘ndx)})) ∪ {⟨(𝐸‘ndx), 𝐶⟩}) ↾ {(𝐸‘ndx)})‘(𝐸‘ndx)) = (((𝑊 ↾ (V ∖ {(𝐸‘ndx)})) ∪ {⟨(𝐸‘ndx), 𝐶⟩})‘(𝐸‘ndx)))
192, 17, 18mp2b 8 . . . 4 ((((𝑊 ↾ (V ∖ {(𝐸‘ndx)})) ∪ {⟨(𝐸‘ndx), 𝐶⟩}) ↾ {(𝐸‘ndx)})‘(𝐸‘ndx)) = (((𝑊 ↾ (V ∖ {(𝐸‘ndx)})) ∪ {⟨(𝐸‘ndx), 𝐶⟩})‘(𝐸‘ndx))
20 resres 4757 . . . . . . . . 9 ((𝑊 ↾ (V ∖ {(𝐸‘ndx)})) ↾ {(𝐸‘ndx)}) = (𝑊 ↾ ((V ∖ {(𝐸‘ndx)}) ∩ {(𝐸‘ndx)}))
21 incom 3207 . . . . . . . . . . . 12 ((V ∖ {(𝐸‘ndx)}) ∩ {(𝐸‘ndx)}) = ({(𝐸‘ndx)} ∩ (V ∖ {(𝐸‘ndx)}))
22 disjdif 3374 . . . . . . . . . . . 12 ({(𝐸‘ndx)} ∩ (V ∖ {(𝐸‘ndx)})) = ∅
2321, 22eqtri 2115 . . . . . . . . . . 11 ((V ∖ {(𝐸‘ndx)}) ∩ {(𝐸‘ndx)}) = ∅
2423reseq2i 4742 . . . . . . . . . 10 (𝑊 ↾ ((V ∖ {(𝐸‘ndx)}) ∩ {(𝐸‘ndx)})) = (𝑊 ↾ ∅)
25 res0 4749 . . . . . . . . . 10 (𝑊 ↾ ∅) = ∅
2624, 25eqtri 2115 . . . . . . . . 9 (𝑊 ↾ ((V ∖ {(𝐸‘ndx)}) ∩ {(𝐸‘ndx)})) = ∅
2720, 26eqtri 2115 . . . . . . . 8 ((𝑊 ↾ (V ∖ {(𝐸‘ndx)})) ↾ {(𝐸‘ndx)}) = ∅
2827a1i 9 . . . . . . 7 ((𝑊𝐴𝐶𝑉) → ((𝑊 ↾ (V ∖ {(𝐸‘ndx)})) ↾ {(𝐸‘ndx)}) = ∅)
292elexi 2645 . . . . . . . . . 10 (𝐸‘ndx) ∈ V
308elexd 2646 . . . . . . . . . 10 ((𝑊𝐴𝐶𝑉) → 𝐶 ∈ V)
31 opelxpi 4499 . . . . . . . . . 10 (((𝐸‘ndx) ∈ V ∧ 𝐶 ∈ V) → ⟨(𝐸‘ndx), 𝐶⟩ ∈ (V × V))
3229, 30, 31sylancr 406 . . . . . . . . 9 ((𝑊𝐴𝐶𝑉) → ⟨(𝐸‘ndx), 𝐶⟩ ∈ (V × V))
33 relsng 4570 . . . . . . . . . 10 (⟨(𝐸‘ndx), 𝐶⟩ ∈ V → (Rel {⟨(𝐸‘ndx), 𝐶⟩} ↔ ⟨(𝐸‘ndx), 𝐶⟩ ∈ (V × V)))
3410, 33syl 14 . . . . . . . . 9 ((𝑊𝐴𝐶𝑉) → (Rel {⟨(𝐸‘ndx), 𝐶⟩} ↔ ⟨(𝐸‘ndx), 𝐶⟩ ∈ (V × V)))
3532, 34mpbird 166 . . . . . . . 8 ((𝑊𝐴𝐶𝑉) → Rel {⟨(𝐸‘ndx), 𝐶⟩})
36 dmsnopg 4936 . . . . . . . . . 10 (𝐶𝑉 → dom {⟨(𝐸‘ndx), 𝐶⟩} = {(𝐸‘ndx)})
3736adantl 272 . . . . . . . . 9 ((𝑊𝐴𝐶𝑉) → dom {⟨(𝐸‘ndx), 𝐶⟩} = {(𝐸‘ndx)})
38 eqimss 3093 . . . . . . . . 9 (dom {⟨(𝐸‘ndx), 𝐶⟩} = {(𝐸‘ndx)} → dom {⟨(𝐸‘ndx), 𝐶⟩} ⊆ {(𝐸‘ndx)})
3937, 38syl 14 . . . . . . . 8 ((𝑊𝐴𝐶𝑉) → dom {⟨(𝐸‘ndx), 𝐶⟩} ⊆ {(𝐸‘ndx)})
40 relssres 4783 . . . . . . . 8 ((Rel {⟨(𝐸‘ndx), 𝐶⟩} ∧ dom {⟨(𝐸‘ndx), 𝐶⟩} ⊆ {(𝐸‘ndx)}) → ({⟨(𝐸‘ndx), 𝐶⟩} ↾ {(𝐸‘ndx)}) = {⟨(𝐸‘ndx), 𝐶⟩})
4135, 39, 40syl2anc 404 . . . . . . 7 ((𝑊𝐴𝐶𝑉) → ({⟨(𝐸‘ndx), 𝐶⟩} ↾ {(𝐸‘ndx)}) = {⟨(𝐸‘ndx), 𝐶⟩})
4228, 41uneq12d 3170 . . . . . 6 ((𝑊𝐴𝐶𝑉) → (((𝑊 ↾ (V ∖ {(𝐸‘ndx)})) ↾ {(𝐸‘ndx)}) ∪ ({⟨(𝐸‘ndx), 𝐶⟩} ↾ {(𝐸‘ndx)})) = (∅ ∪ {⟨(𝐸‘ndx), 𝐶⟩}))
43 resundir 4759 . . . . . 6 (((𝑊 ↾ (V ∖ {(𝐸‘ndx)})) ∪ {⟨(𝐸‘ndx), 𝐶⟩}) ↾ {(𝐸‘ndx)}) = (((𝑊 ↾ (V ∖ {(𝐸‘ndx)})) ↾ {(𝐸‘ndx)}) ∪ ({⟨(𝐸‘ndx), 𝐶⟩} ↾ {(𝐸‘ndx)}))
44 un0 3335 . . . . . . 7 ({⟨(𝐸‘ndx), 𝐶⟩} ∪ ∅) = {⟨(𝐸‘ndx), 𝐶⟩}
45 uncom 3159 . . . . . . 7 ({⟨(𝐸‘ndx), 𝐶⟩} ∪ ∅) = (∅ ∪ {⟨(𝐸‘ndx), 𝐶⟩})
4644, 45eqtr3i 2117 . . . . . 6 {⟨(𝐸‘ndx), 𝐶⟩} = (∅ ∪ {⟨(𝐸‘ndx), 𝐶⟩})
4742, 43, 463eqtr4g 2152 . . . . 5 ((𝑊𝐴𝐶𝑉) → (((𝑊 ↾ (V ∖ {(𝐸‘ndx)})) ∪ {⟨(𝐸‘ndx), 𝐶⟩}) ↾ {(𝐸‘ndx)}) = {⟨(𝐸‘ndx), 𝐶⟩})
4847fveq1d 5342 . . . 4 ((𝑊𝐴𝐶𝑉) → ((((𝑊 ↾ (V ∖ {(𝐸‘ndx)})) ∪ {⟨(𝐸‘ndx), 𝐶⟩}) ↾ {(𝐸‘ndx)})‘(𝐸‘ndx)) = ({⟨(𝐸‘ndx), 𝐶⟩}‘(𝐸‘ndx)))
4919, 48syl5eqr 2141 . . 3 ((𝑊𝐴𝐶𝑉) → (((𝑊 ↾ (V ∖ {(𝐸‘ndx)})) ∪ {⟨(𝐸‘ndx), 𝐶⟩})‘(𝐸‘ndx)) = ({⟨(𝐸‘ndx), 𝐶⟩}‘(𝐸‘ndx)))
50 fvsng 5532 . . . 4 (((𝐸‘ndx) ∈ ℕ ∧ 𝐶𝑉) → ({⟨(𝐸‘ndx), 𝐶⟩}‘(𝐸‘ndx)) = 𝐶)
512, 8, 50sylancr 406 . . 3 ((𝑊𝐴𝐶𝑉) → ({⟨(𝐸‘ndx), 𝐶⟩}‘(𝐸‘ndx)) = 𝐶)
5249, 51eqtrd 2127 . 2 ((𝑊𝐴𝐶𝑉) → (((𝑊 ↾ (V ∖ {(𝐸‘ndx)})) ∪ {⟨(𝐸‘ndx), 𝐶⟩})‘(𝐸‘ndx)) = 𝐶)
535, 16, 523eqtrrd 2132 1 ((𝑊𝐴𝐶𝑉) → 𝐶 = (𝐸‘(𝑊 sSet ⟨(𝐸‘ndx), 𝐶⟩)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104   = wceq 1296  wcel 1445  Vcvv 2633  cdif 3010  cun 3011  cin 3012  wss 3013  c0 3302  {csn 3466  cop 3469   × cxp 4465  dom cdm 4467  cres 4469  Rel wrel 4472  cfv 5049  (class class class)co 5690  cn 8520  ndxcnx 11656   sSet csts 11657  Slot cslot 11658
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 582  ax-in2 583  ax-io 668  ax-5 1388  ax-7 1389  ax-gen 1390  ax-ie1 1434  ax-ie2 1435  ax-8 1447  ax-10 1448  ax-11 1449  ax-i12 1450  ax-bndl 1451  ax-4 1452  ax-13 1456  ax-14 1457  ax-17 1471  ax-i9 1475  ax-ial 1479  ax-i5r 1480  ax-ext 2077  ax-sep 3978  ax-pow 4030  ax-pr 4060  ax-un 4284  ax-setind 4381
This theorem depends on definitions:  df-bi 116  df-3an 929  df-tru 1299  df-fal 1302  df-nf 1402  df-sb 1700  df-eu 1958  df-mo 1959  df-clab 2082  df-cleq 2088  df-clel 2091  df-nfc 2224  df-ne 2263  df-ral 2375  df-rex 2376  df-rab 2379  df-v 2635  df-sbc 2855  df-dif 3015  df-un 3017  df-in 3019  df-ss 3026  df-nul 3303  df-pw 3451  df-sn 3472  df-pr 3473  df-op 3475  df-uni 3676  df-br 3868  df-opab 3922  df-mpt 3923  df-id 4144  df-xp 4473  df-rel 4474  df-cnv 4475  df-co 4476  df-dm 4477  df-rn 4478  df-res 4479  df-iota 5014  df-fun 5051  df-fv 5057  df-ov 5693  df-oprab 5694  df-mpt2 5695  df-slot 11663  df-sets 11666
This theorem is referenced by:  setsmstsetg  12283
  Copyright terms: Public domain W3C validator