Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > snssg | GIF version |
Description: The singleton of an element of a class is a subset of the class. Theorem 7.4 of [Quine] p. 49. (Contributed by NM, 22-Jul-2001.) |
Ref | Expression |
---|---|
snssg | ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ 𝐵 ↔ {𝐴} ⊆ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eleq1 2229 | . 2 ⊢ (𝑥 = 𝐴 → (𝑥 ∈ 𝐵 ↔ 𝐴 ∈ 𝐵)) | |
2 | sneq 3587 | . . 3 ⊢ (𝑥 = 𝐴 → {𝑥} = {𝐴}) | |
3 | 2 | sseq1d 3171 | . 2 ⊢ (𝑥 = 𝐴 → ({𝑥} ⊆ 𝐵 ↔ {𝐴} ⊆ 𝐵)) |
4 | vex 2729 | . . 3 ⊢ 𝑥 ∈ V | |
5 | 4 | snss 3702 | . 2 ⊢ (𝑥 ∈ 𝐵 ↔ {𝑥} ⊆ 𝐵) |
6 | 1, 3, 5 | vtoclbg 2787 | 1 ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ 𝐵 ↔ {𝐴} ⊆ 𝐵)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 104 = wceq 1343 ∈ wcel 2136 ⊆ wss 3116 {csn 3576 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-v 2728 df-in 3122 df-ss 3129 df-sn 3582 |
This theorem is referenced by: snssi 3717 snssd 3718 prssg 3730 ordtri2orexmid 4500 ordtri2or2exmid 4548 ontri2orexmidim 4549 relsng 4707 fvimacnvi 5599 fvimacnv 5600 strslfv 12438 isneip 12786 elnei 12792 iscnp4 12858 cnpnei 12859 |
Copyright terms: Public domain | W3C validator |