ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  snssg GIF version

Theorem snssg 3716
Description: The singleton of an element of a class is a subset of the class. Theorem 7.4 of [Quine] p. 49. (Contributed by NM, 22-Jul-2001.)
Assertion
Ref Expression
snssg (𝐴𝑉 → (𝐴𝐵 ↔ {𝐴} ⊆ 𝐵))

Proof of Theorem snssg
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 eleq1 2233 . 2 (𝑥 = 𝐴 → (𝑥𝐵𝐴𝐵))
2 sneq 3594 . . 3 (𝑥 = 𝐴 → {𝑥} = {𝐴})
32sseq1d 3176 . 2 (𝑥 = 𝐴 → ({𝑥} ⊆ 𝐵 ↔ {𝐴} ⊆ 𝐵))
4 vex 2733 . . 3 𝑥 ∈ V
54snss 3709 . 2 (𝑥𝐵 ↔ {𝑥} ⊆ 𝐵)
61, 3, 5vtoclbg 2791 1 (𝐴𝑉 → (𝐴𝐵 ↔ {𝐴} ⊆ 𝐵))
Colors of variables: wff set class
Syntax hints:  wi 4  wb 104   = wceq 1348  wcel 2141  wss 3121  {csn 3583
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-ext 2152
This theorem depends on definitions:  df-bi 116  df-tru 1351  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-v 2732  df-in 3127  df-ss 3134  df-sn 3589
This theorem is referenced by:  snssi  3724  snssd  3725  prssg  3737  ordtri2orexmid  4507  ordtri2or2exmid  4555  ontri2orexmidim  4556  relsng  4714  fvimacnvi  5610  fvimacnv  5611  strslfv  12460  isneip  12940  elnei  12946  iscnp4  13012  cnpnei  13013
  Copyright terms: Public domain W3C validator