ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sqxpexg GIF version

Theorem sqxpexg 4832
Description: The Cartesian square of a set is a set. (Contributed by AV, 13-Jan-2020.)
Assertion
Ref Expression
sqxpexg (𝐴𝑉 → (𝐴 × 𝐴) ∈ V)

Proof of Theorem sqxpexg
StepHypRef Expression
1 xpexg 4830 . 2 ((𝐴𝑉𝐴𝑉) → (𝐴 × 𝐴) ∈ V)
21anidms 397 1 (𝐴𝑉 → (𝐴 × 𝐴) ∈ V)
Colors of variables: wff set class
Syntax hints:  wi 4  wcel 2200  Vcvv 2799   × cxp 4714
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4201  ax-pow 4257  ax-pr 4292  ax-un 4521
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-rex 2514  df-v 2801  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-opab 4145  df-xp 4722
This theorem is referenced by:  ispsmet  14982  ismet  15003  isxmet  15004  xmetunirn  15017
  Copyright terms: Public domain W3C validator