ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sqxpexg GIF version

Theorem sqxpexg 4655
Description: The Cartesian square of a set is a set. (Contributed by AV, 13-Jan-2020.)
Assertion
Ref Expression
sqxpexg (𝐴𝑉 → (𝐴 × 𝐴) ∈ V)

Proof of Theorem sqxpexg
StepHypRef Expression
1 xpexg 4653 . 2 ((𝐴𝑉𝐴𝑉) → (𝐴 × 𝐴) ∈ V)
21anidms 394 1 (𝐴𝑉 → (𝐴 × 𝐴) ∈ V)
Colors of variables: wff set class
Syntax hints:  wi 4  wcel 1480  Vcvv 2686   × cxp 4537
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-sep 4046  ax-pow 4098  ax-pr 4131  ax-un 4355
This theorem depends on definitions:  df-bi 116  df-3an 964  df-tru 1334  df-nf 1437  df-sb 1736  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-rex 2422  df-v 2688  df-un 3075  df-in 3077  df-ss 3084  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-opab 3990  df-xp 4545
This theorem is referenced by:  ispsmet  12506  ismet  12527  isxmet  12528  xmetunirn  12541
  Copyright terms: Public domain W3C validator