ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sqxpexg GIF version

Theorem sqxpexg 4796
Description: The Cartesian square of a set is a set. (Contributed by AV, 13-Jan-2020.)
Assertion
Ref Expression
sqxpexg (𝐴𝑉 → (𝐴 × 𝐴) ∈ V)

Proof of Theorem sqxpexg
StepHypRef Expression
1 xpexg 4794 . 2 ((𝐴𝑉𝐴𝑉) → (𝐴 × 𝐴) ∈ V)
21anidms 397 1 (𝐴𝑉 → (𝐴 × 𝐴) ∈ V)
Colors of variables: wff set class
Syntax hints:  wi 4  wcel 2177  Vcvv 2773   × cxp 4678
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-sep 4167  ax-pow 4223  ax-pr 4258  ax-un 4485
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-rex 2491  df-v 2775  df-un 3172  df-in 3174  df-ss 3181  df-pw 3620  df-sn 3641  df-pr 3642  df-op 3644  df-uni 3854  df-opab 4111  df-xp 4686
This theorem is referenced by:  ispsmet  14845  ismet  14866  isxmet  14867  xmetunirn  14880
  Copyright terms: Public domain W3C validator