| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > elrealeu | GIF version | ||
| Description: The real number mapping in elreal 7941 is unique. (Contributed by Jim Kingdon, 11-Jul-2021.) |
| Ref | Expression |
|---|---|
| elrealeu | ⊢ (𝐴 ∈ ℝ ↔ ∃!𝑥 ∈ R 〈𝑥, 0R〉 = 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elreal 7941 | . . . 4 ⊢ (𝐴 ∈ ℝ ↔ ∃𝑥 ∈ R 〈𝑥, 0R〉 = 𝐴) | |
| 2 | 1 | biimpi 120 | . . 3 ⊢ (𝐴 ∈ ℝ → ∃𝑥 ∈ R 〈𝑥, 0R〉 = 𝐴) |
| 3 | eqtr3 2225 | . . . . . . . 8 ⊢ ((〈𝑥, 0R〉 = 𝐴 ∧ 〈𝑦, 0R〉 = 𝐴) → 〈𝑥, 0R〉 = 〈𝑦, 0R〉) | |
| 4 | 0r 7863 | . . . . . . . . . 10 ⊢ 0R ∈ R | |
| 5 | opthg 4282 | . . . . . . . . . 10 ⊢ ((𝑥 ∈ R ∧ 0R ∈ R) → (〈𝑥, 0R〉 = 〈𝑦, 0R〉 ↔ (𝑥 = 𝑦 ∧ 0R = 0R))) | |
| 6 | 4, 5 | mpan2 425 | . . . . . . . . 9 ⊢ (𝑥 ∈ R → (〈𝑥, 0R〉 = 〈𝑦, 0R〉 ↔ (𝑥 = 𝑦 ∧ 0R = 0R))) |
| 7 | 6 | ad2antlr 489 | . . . . . . . 8 ⊢ (((𝐴 ∈ ℝ ∧ 𝑥 ∈ R) ∧ 𝑦 ∈ R) → (〈𝑥, 0R〉 = 〈𝑦, 0R〉 ↔ (𝑥 = 𝑦 ∧ 0R = 0R))) |
| 8 | 3, 7 | imbitrid 154 | . . . . . . 7 ⊢ (((𝐴 ∈ ℝ ∧ 𝑥 ∈ R) ∧ 𝑦 ∈ R) → ((〈𝑥, 0R〉 = 𝐴 ∧ 〈𝑦, 0R〉 = 𝐴) → (𝑥 = 𝑦 ∧ 0R = 0R))) |
| 9 | simpl 109 | . . . . . . 7 ⊢ ((𝑥 = 𝑦 ∧ 0R = 0R) → 𝑥 = 𝑦) | |
| 10 | 8, 9 | syl6 33 | . . . . . 6 ⊢ (((𝐴 ∈ ℝ ∧ 𝑥 ∈ R) ∧ 𝑦 ∈ R) → ((〈𝑥, 0R〉 = 𝐴 ∧ 〈𝑦, 0R〉 = 𝐴) → 𝑥 = 𝑦)) |
| 11 | 10 | ralrimiva 2579 | . . . . 5 ⊢ ((𝐴 ∈ ℝ ∧ 𝑥 ∈ R) → ∀𝑦 ∈ R ((〈𝑥, 0R〉 = 𝐴 ∧ 〈𝑦, 0R〉 = 𝐴) → 𝑥 = 𝑦)) |
| 12 | 11 | ralrimiva 2579 | . . . 4 ⊢ (𝐴 ∈ ℝ → ∀𝑥 ∈ R ∀𝑦 ∈ R ((〈𝑥, 0R〉 = 𝐴 ∧ 〈𝑦, 0R〉 = 𝐴) → 𝑥 = 𝑦)) |
| 13 | opeq1 3819 | . . . . . 6 ⊢ (𝑥 = 𝑦 → 〈𝑥, 0R〉 = 〈𝑦, 0R〉) | |
| 14 | 13 | eqeq1d 2214 | . . . . 5 ⊢ (𝑥 = 𝑦 → (〈𝑥, 0R〉 = 𝐴 ↔ 〈𝑦, 0R〉 = 𝐴)) |
| 15 | 14 | rmo4 2966 | . . . 4 ⊢ (∃*𝑥 ∈ R 〈𝑥, 0R〉 = 𝐴 ↔ ∀𝑥 ∈ R ∀𝑦 ∈ R ((〈𝑥, 0R〉 = 𝐴 ∧ 〈𝑦, 0R〉 = 𝐴) → 𝑥 = 𝑦)) |
| 16 | 12, 15 | sylibr 134 | . . 3 ⊢ (𝐴 ∈ ℝ → ∃*𝑥 ∈ R 〈𝑥, 0R〉 = 𝐴) |
| 17 | reu5 2723 | . . 3 ⊢ (∃!𝑥 ∈ R 〈𝑥, 0R〉 = 𝐴 ↔ (∃𝑥 ∈ R 〈𝑥, 0R〉 = 𝐴 ∧ ∃*𝑥 ∈ R 〈𝑥, 0R〉 = 𝐴)) | |
| 18 | 2, 16, 17 | sylanbrc 417 | . 2 ⊢ (𝐴 ∈ ℝ → ∃!𝑥 ∈ R 〈𝑥, 0R〉 = 𝐴) |
| 19 | reurex 2724 | . . 3 ⊢ (∃!𝑥 ∈ R 〈𝑥, 0R〉 = 𝐴 → ∃𝑥 ∈ R 〈𝑥, 0R〉 = 𝐴) | |
| 20 | 19, 1 | sylibr 134 | . 2 ⊢ (∃!𝑥 ∈ R 〈𝑥, 0R〉 = 𝐴 → 𝐴 ∈ ℝ) |
| 21 | 18, 20 | impbii 126 | 1 ⊢ (𝐴 ∈ ℝ ↔ ∃!𝑥 ∈ R 〈𝑥, 0R〉 = 𝐴) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 = wceq 1373 ∈ wcel 2176 ∀wral 2484 ∃wrex 2485 ∃!wreu 2486 ∃*wrmo 2487 〈cop 3636 Rcnr 7410 0Rc0r 7411 ℝcr 7924 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-13 2178 ax-14 2179 ax-ext 2187 ax-coll 4159 ax-sep 4162 ax-nul 4170 ax-pow 4218 ax-pr 4253 ax-un 4480 ax-setind 4585 ax-iinf 4636 |
| This theorem depends on definitions: df-bi 117 df-dc 837 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ne 2377 df-ral 2489 df-rex 2490 df-reu 2491 df-rmo 2492 df-rab 2493 df-v 2774 df-sbc 2999 df-csb 3094 df-dif 3168 df-un 3170 df-in 3172 df-ss 3179 df-nul 3461 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-int 3886 df-iun 3929 df-br 4045 df-opab 4106 df-mpt 4107 df-tr 4143 df-eprel 4336 df-id 4340 df-po 4343 df-iso 4344 df-iord 4413 df-on 4415 df-suc 4418 df-iom 4639 df-xp 4681 df-rel 4682 df-cnv 4683 df-co 4684 df-dm 4685 df-rn 4686 df-res 4687 df-ima 4688 df-iota 5232 df-fun 5273 df-fn 5274 df-f 5275 df-f1 5276 df-fo 5277 df-f1o 5278 df-fv 5279 df-ov 5947 df-oprab 5948 df-mpo 5949 df-1st 6226 df-2nd 6227 df-recs 6391 df-irdg 6456 df-1o 6502 df-oadd 6506 df-omul 6507 df-er 6620 df-ec 6622 df-qs 6626 df-ni 7417 df-pli 7418 df-mi 7419 df-lti 7420 df-plpq 7457 df-mpq 7458 df-enq 7460 df-nqqs 7461 df-plqqs 7462 df-mqqs 7463 df-1nqqs 7464 df-rq 7465 df-ltnqqs 7466 df-inp 7579 df-i1p 7580 df-enr 7839 df-nr 7840 df-0r 7844 df-r 7935 |
| This theorem is referenced by: axcaucvglemcl 8008 axcaucvglemval 8010 |
| Copyright terms: Public domain | W3C validator |