![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > elrealeu | GIF version |
Description: The real number mapping in elreal 7845 is unique. (Contributed by Jim Kingdon, 11-Jul-2021.) |
Ref | Expression |
---|---|
elrealeu | ⊢ (𝐴 ∈ ℝ ↔ ∃!𝑥 ∈ R ⟨𝑥, 0R⟩ = 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elreal 7845 | . . . 4 ⊢ (𝐴 ∈ ℝ ↔ ∃𝑥 ∈ R ⟨𝑥, 0R⟩ = 𝐴) | |
2 | 1 | biimpi 120 | . . 3 ⊢ (𝐴 ∈ ℝ → ∃𝑥 ∈ R ⟨𝑥, 0R⟩ = 𝐴) |
3 | eqtr3 2209 | . . . . . . . 8 ⊢ ((⟨𝑥, 0R⟩ = 𝐴 ∧ ⟨𝑦, 0R⟩ = 𝐴) → ⟨𝑥, 0R⟩ = ⟨𝑦, 0R⟩) | |
4 | 0r 7767 | . . . . . . . . . 10 ⊢ 0R ∈ R | |
5 | opthg 4253 | . . . . . . . . . 10 ⊢ ((𝑥 ∈ R ∧ 0R ∈ R) → (⟨𝑥, 0R⟩ = ⟨𝑦, 0R⟩ ↔ (𝑥 = 𝑦 ∧ 0R = 0R))) | |
6 | 4, 5 | mpan2 425 | . . . . . . . . 9 ⊢ (𝑥 ∈ R → (⟨𝑥, 0R⟩ = ⟨𝑦, 0R⟩ ↔ (𝑥 = 𝑦 ∧ 0R = 0R))) |
7 | 6 | ad2antlr 489 | . . . . . . . 8 ⊢ (((𝐴 ∈ ℝ ∧ 𝑥 ∈ R) ∧ 𝑦 ∈ R) → (⟨𝑥, 0R⟩ = ⟨𝑦, 0R⟩ ↔ (𝑥 = 𝑦 ∧ 0R = 0R))) |
8 | 3, 7 | imbitrid 154 | . . . . . . 7 ⊢ (((𝐴 ∈ ℝ ∧ 𝑥 ∈ R) ∧ 𝑦 ∈ R) → ((⟨𝑥, 0R⟩ = 𝐴 ∧ ⟨𝑦, 0R⟩ = 𝐴) → (𝑥 = 𝑦 ∧ 0R = 0R))) |
9 | simpl 109 | . . . . . . 7 ⊢ ((𝑥 = 𝑦 ∧ 0R = 0R) → 𝑥 = 𝑦) | |
10 | 8, 9 | syl6 33 | . . . . . 6 ⊢ (((𝐴 ∈ ℝ ∧ 𝑥 ∈ R) ∧ 𝑦 ∈ R) → ((⟨𝑥, 0R⟩ = 𝐴 ∧ ⟨𝑦, 0R⟩ = 𝐴) → 𝑥 = 𝑦)) |
11 | 10 | ralrimiva 2563 | . . . . 5 ⊢ ((𝐴 ∈ ℝ ∧ 𝑥 ∈ R) → ∀𝑦 ∈ R ((⟨𝑥, 0R⟩ = 𝐴 ∧ ⟨𝑦, 0R⟩ = 𝐴) → 𝑥 = 𝑦)) |
12 | 11 | ralrimiva 2563 | . . . 4 ⊢ (𝐴 ∈ ℝ → ∀𝑥 ∈ R ∀𝑦 ∈ R ((⟨𝑥, 0R⟩ = 𝐴 ∧ ⟨𝑦, 0R⟩ = 𝐴) → 𝑥 = 𝑦)) |
13 | opeq1 3793 | . . . . . 6 ⊢ (𝑥 = 𝑦 → ⟨𝑥, 0R⟩ = ⟨𝑦, 0R⟩) | |
14 | 13 | eqeq1d 2198 | . . . . 5 ⊢ (𝑥 = 𝑦 → (⟨𝑥, 0R⟩ = 𝐴 ↔ ⟨𝑦, 0R⟩ = 𝐴)) |
15 | 14 | rmo4 2945 | . . . 4 ⊢ (∃*𝑥 ∈ R ⟨𝑥, 0R⟩ = 𝐴 ↔ ∀𝑥 ∈ R ∀𝑦 ∈ R ((⟨𝑥, 0R⟩ = 𝐴 ∧ ⟨𝑦, 0R⟩ = 𝐴) → 𝑥 = 𝑦)) |
16 | 12, 15 | sylibr 134 | . . 3 ⊢ (𝐴 ∈ ℝ → ∃*𝑥 ∈ R ⟨𝑥, 0R⟩ = 𝐴) |
17 | reu5 2703 | . . 3 ⊢ (∃!𝑥 ∈ R ⟨𝑥, 0R⟩ = 𝐴 ↔ (∃𝑥 ∈ R ⟨𝑥, 0R⟩ = 𝐴 ∧ ∃*𝑥 ∈ R ⟨𝑥, 0R⟩ = 𝐴)) | |
18 | 2, 16, 17 | sylanbrc 417 | . 2 ⊢ (𝐴 ∈ ℝ → ∃!𝑥 ∈ R ⟨𝑥, 0R⟩ = 𝐴) |
19 | reurex 2704 | . . 3 ⊢ (∃!𝑥 ∈ R ⟨𝑥, 0R⟩ = 𝐴 → ∃𝑥 ∈ R ⟨𝑥, 0R⟩ = 𝐴) | |
20 | 19, 1 | sylibr 134 | . 2 ⊢ (∃!𝑥 ∈ R ⟨𝑥, 0R⟩ = 𝐴 → 𝐴 ∈ ℝ) |
21 | 18, 20 | impbii 126 | 1 ⊢ (𝐴 ∈ ℝ ↔ ∃!𝑥 ∈ R ⟨𝑥, 0R⟩ = 𝐴) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 = wceq 1364 ∈ wcel 2160 ∀wral 2468 ∃wrex 2469 ∃!wreu 2470 ∃*wrmo 2471 ⟨cop 3610 Rcnr 7314 0Rc0r 7315 ℝcr 7828 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2162 ax-14 2163 ax-ext 2171 ax-coll 4133 ax-sep 4136 ax-nul 4144 ax-pow 4189 ax-pr 4224 ax-un 4448 ax-setind 4551 ax-iinf 4602 |
This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2041 df-mo 2042 df-clab 2176 df-cleq 2182 df-clel 2185 df-nfc 2321 df-ne 2361 df-ral 2473 df-rex 2474 df-reu 2475 df-rmo 2476 df-rab 2477 df-v 2754 df-sbc 2978 df-csb 3073 df-dif 3146 df-un 3148 df-in 3150 df-ss 3157 df-nul 3438 df-pw 3592 df-sn 3613 df-pr 3614 df-op 3616 df-uni 3825 df-int 3860 df-iun 3903 df-br 4019 df-opab 4080 df-mpt 4081 df-tr 4117 df-eprel 4304 df-id 4308 df-po 4311 df-iso 4312 df-iord 4381 df-on 4383 df-suc 4386 df-iom 4605 df-xp 4647 df-rel 4648 df-cnv 4649 df-co 4650 df-dm 4651 df-rn 4652 df-res 4653 df-ima 4654 df-iota 5193 df-fun 5233 df-fn 5234 df-f 5235 df-f1 5236 df-fo 5237 df-f1o 5238 df-fv 5239 df-ov 5894 df-oprab 5895 df-mpo 5896 df-1st 6159 df-2nd 6160 df-recs 6324 df-irdg 6389 df-1o 6435 df-oadd 6439 df-omul 6440 df-er 6553 df-ec 6555 df-qs 6559 df-ni 7321 df-pli 7322 df-mi 7323 df-lti 7324 df-plpq 7361 df-mpq 7362 df-enq 7364 df-nqqs 7365 df-plqqs 7366 df-mqqs 7367 df-1nqqs 7368 df-rq 7369 df-ltnqqs 7370 df-inp 7483 df-i1p 7484 df-enr 7743 df-nr 7744 df-0r 7748 df-r 7839 |
This theorem is referenced by: axcaucvglemcl 7912 axcaucvglemval 7914 |
Copyright terms: Public domain | W3C validator |