ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elrealeu GIF version

Theorem elrealeu 7891
Description: The real number mapping in elreal 7890 is unique. (Contributed by Jim Kingdon, 11-Jul-2021.)
Assertion
Ref Expression
elrealeu (𝐴 ∈ ℝ ↔ ∃!𝑥R𝑥, 0R⟩ = 𝐴)
Distinct variable group:   𝑥,𝐴

Proof of Theorem elrealeu
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 elreal 7890 . . . 4 (𝐴 ∈ ℝ ↔ ∃𝑥R𝑥, 0R⟩ = 𝐴)
21biimpi 120 . . 3 (𝐴 ∈ ℝ → ∃𝑥R𝑥, 0R⟩ = 𝐴)
3 eqtr3 2213 . . . . . . . 8 ((⟨𝑥, 0R⟩ = 𝐴 ∧ ⟨𝑦, 0R⟩ = 𝐴) → ⟨𝑥, 0R⟩ = ⟨𝑦, 0R⟩)
4 0r 7812 . . . . . . . . . 10 0RR
5 opthg 4268 . . . . . . . . . 10 ((𝑥R ∧ 0RR) → (⟨𝑥, 0R⟩ = ⟨𝑦, 0R⟩ ↔ (𝑥 = 𝑦 ∧ 0R = 0R)))
64, 5mpan2 425 . . . . . . . . 9 (𝑥R → (⟨𝑥, 0R⟩ = ⟨𝑦, 0R⟩ ↔ (𝑥 = 𝑦 ∧ 0R = 0R)))
76ad2antlr 489 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 𝑥R) ∧ 𝑦R) → (⟨𝑥, 0R⟩ = ⟨𝑦, 0R⟩ ↔ (𝑥 = 𝑦 ∧ 0R = 0R)))
83, 7imbitrid 154 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝑥R) ∧ 𝑦R) → ((⟨𝑥, 0R⟩ = 𝐴 ∧ ⟨𝑦, 0R⟩ = 𝐴) → (𝑥 = 𝑦 ∧ 0R = 0R)))
9 simpl 109 . . . . . . 7 ((𝑥 = 𝑦 ∧ 0R = 0R) → 𝑥 = 𝑦)
108, 9syl6 33 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝑥R) ∧ 𝑦R) → ((⟨𝑥, 0R⟩ = 𝐴 ∧ ⟨𝑦, 0R⟩ = 𝐴) → 𝑥 = 𝑦))
1110ralrimiva 2567 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝑥R) → ∀𝑦R ((⟨𝑥, 0R⟩ = 𝐴 ∧ ⟨𝑦, 0R⟩ = 𝐴) → 𝑥 = 𝑦))
1211ralrimiva 2567 . . . 4 (𝐴 ∈ ℝ → ∀𝑥R𝑦R ((⟨𝑥, 0R⟩ = 𝐴 ∧ ⟨𝑦, 0R⟩ = 𝐴) → 𝑥 = 𝑦))
13 opeq1 3805 . . . . . 6 (𝑥 = 𝑦 → ⟨𝑥, 0R⟩ = ⟨𝑦, 0R⟩)
1413eqeq1d 2202 . . . . 5 (𝑥 = 𝑦 → (⟨𝑥, 0R⟩ = 𝐴 ↔ ⟨𝑦, 0R⟩ = 𝐴))
1514rmo4 2954 . . . 4 (∃*𝑥R𝑥, 0R⟩ = 𝐴 ↔ ∀𝑥R𝑦R ((⟨𝑥, 0R⟩ = 𝐴 ∧ ⟨𝑦, 0R⟩ = 𝐴) → 𝑥 = 𝑦))
1612, 15sylibr 134 . . 3 (𝐴 ∈ ℝ → ∃*𝑥R𝑥, 0R⟩ = 𝐴)
17 reu5 2711 . . 3 (∃!𝑥R𝑥, 0R⟩ = 𝐴 ↔ (∃𝑥R𝑥, 0R⟩ = 𝐴 ∧ ∃*𝑥R𝑥, 0R⟩ = 𝐴))
182, 16, 17sylanbrc 417 . 2 (𝐴 ∈ ℝ → ∃!𝑥R𝑥, 0R⟩ = 𝐴)
19 reurex 2712 . . 3 (∃!𝑥R𝑥, 0R⟩ = 𝐴 → ∃𝑥R𝑥, 0R⟩ = 𝐴)
2019, 1sylibr 134 . 2 (∃!𝑥R𝑥, 0R⟩ = 𝐴𝐴 ∈ ℝ)
2118, 20impbii 126 1 (𝐴 ∈ ℝ ↔ ∃!𝑥R𝑥, 0R⟩ = 𝐴)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1364  wcel 2164  wral 2472  wrex 2473  ∃!wreu 2474  ∃*wrmo 2475  cop 3622  Rcnr 7359  0Rc0r 7360  cr 7873
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4145  ax-sep 4148  ax-nul 4156  ax-pow 4204  ax-pr 4239  ax-un 4465  ax-setind 4570  ax-iinf 4621
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-ral 2477  df-rex 2478  df-reu 2479  df-rmo 2480  df-rab 2481  df-v 2762  df-sbc 2987  df-csb 3082  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-nul 3448  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-int 3872  df-iun 3915  df-br 4031  df-opab 4092  df-mpt 4093  df-tr 4129  df-eprel 4321  df-id 4325  df-po 4328  df-iso 4329  df-iord 4398  df-on 4400  df-suc 4403  df-iom 4624  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-rn 4671  df-res 4672  df-ima 4673  df-iota 5216  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-ov 5922  df-oprab 5923  df-mpo 5924  df-1st 6195  df-2nd 6196  df-recs 6360  df-irdg 6425  df-1o 6471  df-oadd 6475  df-omul 6476  df-er 6589  df-ec 6591  df-qs 6595  df-ni 7366  df-pli 7367  df-mi 7368  df-lti 7369  df-plpq 7406  df-mpq 7407  df-enq 7409  df-nqqs 7410  df-plqqs 7411  df-mqqs 7412  df-1nqqs 7413  df-rq 7414  df-ltnqqs 7415  df-inp 7528  df-i1p 7529  df-enr 7788  df-nr 7789  df-0r 7793  df-r 7884
This theorem is referenced by:  axcaucvglemcl  7957  axcaucvglemval  7959
  Copyright terms: Public domain W3C validator