![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > elrealeu | GIF version |
Description: The real number mapping in elreal 7840 is unique. (Contributed by Jim Kingdon, 11-Jul-2021.) |
Ref | Expression |
---|---|
elrealeu | ⊢ (𝐴 ∈ ℝ ↔ ∃!𝑥 ∈ R ⟨𝑥, 0R⟩ = 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elreal 7840 | . . . 4 ⊢ (𝐴 ∈ ℝ ↔ ∃𝑥 ∈ R ⟨𝑥, 0R⟩ = 𝐴) | |
2 | 1 | biimpi 120 | . . 3 ⊢ (𝐴 ∈ ℝ → ∃𝑥 ∈ R ⟨𝑥, 0R⟩ = 𝐴) |
3 | eqtr3 2207 | . . . . . . . 8 ⊢ ((⟨𝑥, 0R⟩ = 𝐴 ∧ ⟨𝑦, 0R⟩ = 𝐴) → ⟨𝑥, 0R⟩ = ⟨𝑦, 0R⟩) | |
4 | 0r 7762 | . . . . . . . . . 10 ⊢ 0R ∈ R | |
5 | opthg 4250 | . . . . . . . . . 10 ⊢ ((𝑥 ∈ R ∧ 0R ∈ R) → (⟨𝑥, 0R⟩ = ⟨𝑦, 0R⟩ ↔ (𝑥 = 𝑦 ∧ 0R = 0R))) | |
6 | 4, 5 | mpan2 425 | . . . . . . . . 9 ⊢ (𝑥 ∈ R → (⟨𝑥, 0R⟩ = ⟨𝑦, 0R⟩ ↔ (𝑥 = 𝑦 ∧ 0R = 0R))) |
7 | 6 | ad2antlr 489 | . . . . . . . 8 ⊢ (((𝐴 ∈ ℝ ∧ 𝑥 ∈ R) ∧ 𝑦 ∈ R) → (⟨𝑥, 0R⟩ = ⟨𝑦, 0R⟩ ↔ (𝑥 = 𝑦 ∧ 0R = 0R))) |
8 | 3, 7 | imbitrid 154 | . . . . . . 7 ⊢ (((𝐴 ∈ ℝ ∧ 𝑥 ∈ R) ∧ 𝑦 ∈ R) → ((⟨𝑥, 0R⟩ = 𝐴 ∧ ⟨𝑦, 0R⟩ = 𝐴) → (𝑥 = 𝑦 ∧ 0R = 0R))) |
9 | simpl 109 | . . . . . . 7 ⊢ ((𝑥 = 𝑦 ∧ 0R = 0R) → 𝑥 = 𝑦) | |
10 | 8, 9 | syl6 33 | . . . . . 6 ⊢ (((𝐴 ∈ ℝ ∧ 𝑥 ∈ R) ∧ 𝑦 ∈ R) → ((⟨𝑥, 0R⟩ = 𝐴 ∧ ⟨𝑦, 0R⟩ = 𝐴) → 𝑥 = 𝑦)) |
11 | 10 | ralrimiva 2560 | . . . . 5 ⊢ ((𝐴 ∈ ℝ ∧ 𝑥 ∈ R) → ∀𝑦 ∈ R ((⟨𝑥, 0R⟩ = 𝐴 ∧ ⟨𝑦, 0R⟩ = 𝐴) → 𝑥 = 𝑦)) |
12 | 11 | ralrimiva 2560 | . . . 4 ⊢ (𝐴 ∈ ℝ → ∀𝑥 ∈ R ∀𝑦 ∈ R ((⟨𝑥, 0R⟩ = 𝐴 ∧ ⟨𝑦, 0R⟩ = 𝐴) → 𝑥 = 𝑦)) |
13 | opeq1 3790 | . . . . . 6 ⊢ (𝑥 = 𝑦 → ⟨𝑥, 0R⟩ = ⟨𝑦, 0R⟩) | |
14 | 13 | eqeq1d 2196 | . . . . 5 ⊢ (𝑥 = 𝑦 → (⟨𝑥, 0R⟩ = 𝐴 ↔ ⟨𝑦, 0R⟩ = 𝐴)) |
15 | 14 | rmo4 2942 | . . . 4 ⊢ (∃*𝑥 ∈ R ⟨𝑥, 0R⟩ = 𝐴 ↔ ∀𝑥 ∈ R ∀𝑦 ∈ R ((⟨𝑥, 0R⟩ = 𝐴 ∧ ⟨𝑦, 0R⟩ = 𝐴) → 𝑥 = 𝑦)) |
16 | 12, 15 | sylibr 134 | . . 3 ⊢ (𝐴 ∈ ℝ → ∃*𝑥 ∈ R ⟨𝑥, 0R⟩ = 𝐴) |
17 | reu5 2700 | . . 3 ⊢ (∃!𝑥 ∈ R ⟨𝑥, 0R⟩ = 𝐴 ↔ (∃𝑥 ∈ R ⟨𝑥, 0R⟩ = 𝐴 ∧ ∃*𝑥 ∈ R ⟨𝑥, 0R⟩ = 𝐴)) | |
18 | 2, 16, 17 | sylanbrc 417 | . 2 ⊢ (𝐴 ∈ ℝ → ∃!𝑥 ∈ R ⟨𝑥, 0R⟩ = 𝐴) |
19 | reurex 2701 | . . 3 ⊢ (∃!𝑥 ∈ R ⟨𝑥, 0R⟩ = 𝐴 → ∃𝑥 ∈ R ⟨𝑥, 0R⟩ = 𝐴) | |
20 | 19, 1 | sylibr 134 | . 2 ⊢ (∃!𝑥 ∈ R ⟨𝑥, 0R⟩ = 𝐴 → 𝐴 ∈ ℝ) |
21 | 18, 20 | impbii 126 | 1 ⊢ (𝐴 ∈ ℝ ↔ ∃!𝑥 ∈ R ⟨𝑥, 0R⟩ = 𝐴) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 = wceq 1363 ∈ wcel 2158 ∀wral 2465 ∃wrex 2466 ∃!wreu 2467 ∃*wrmo 2468 ⟨cop 3607 Rcnr 7309 0Rc0r 7310 ℝcr 7823 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1457 ax-7 1458 ax-gen 1459 ax-ie1 1503 ax-ie2 1504 ax-8 1514 ax-10 1515 ax-11 1516 ax-i12 1517 ax-bndl 1519 ax-4 1520 ax-17 1536 ax-i9 1540 ax-ial 1544 ax-i5r 1545 ax-13 2160 ax-14 2161 ax-ext 2169 ax-coll 4130 ax-sep 4133 ax-nul 4141 ax-pow 4186 ax-pr 4221 ax-un 4445 ax-setind 4548 ax-iinf 4599 |
This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 980 df-3an 981 df-tru 1366 df-fal 1369 df-nf 1471 df-sb 1773 df-eu 2039 df-mo 2040 df-clab 2174 df-cleq 2180 df-clel 2183 df-nfc 2318 df-ne 2358 df-ral 2470 df-rex 2471 df-reu 2472 df-rmo 2473 df-rab 2474 df-v 2751 df-sbc 2975 df-csb 3070 df-dif 3143 df-un 3145 df-in 3147 df-ss 3154 df-nul 3435 df-pw 3589 df-sn 3610 df-pr 3611 df-op 3613 df-uni 3822 df-int 3857 df-iun 3900 df-br 4016 df-opab 4077 df-mpt 4078 df-tr 4114 df-eprel 4301 df-id 4305 df-po 4308 df-iso 4309 df-iord 4378 df-on 4380 df-suc 4383 df-iom 4602 df-xp 4644 df-rel 4645 df-cnv 4646 df-co 4647 df-dm 4648 df-rn 4649 df-res 4650 df-ima 4651 df-iota 5190 df-fun 5230 df-fn 5231 df-f 5232 df-f1 5233 df-fo 5234 df-f1o 5235 df-fv 5236 df-ov 5891 df-oprab 5892 df-mpo 5893 df-1st 6154 df-2nd 6155 df-recs 6319 df-irdg 6384 df-1o 6430 df-oadd 6434 df-omul 6435 df-er 6548 df-ec 6550 df-qs 6554 df-ni 7316 df-pli 7317 df-mi 7318 df-lti 7319 df-plpq 7356 df-mpq 7357 df-enq 7359 df-nqqs 7360 df-plqqs 7361 df-mqqs 7362 df-1nqqs 7363 df-rq 7364 df-ltnqqs 7365 df-inp 7478 df-i1p 7479 df-enr 7738 df-nr 7739 df-0r 7743 df-r 7834 |
This theorem is referenced by: axcaucvglemcl 7907 axcaucvglemval 7909 |
Copyright terms: Public domain | W3C validator |