| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > elrealeu | GIF version | ||
| Description: The real number mapping in elreal 8015 is unique. (Contributed by Jim Kingdon, 11-Jul-2021.) |
| Ref | Expression |
|---|---|
| elrealeu | ⊢ (𝐴 ∈ ℝ ↔ ∃!𝑥 ∈ R 〈𝑥, 0R〉 = 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elreal 8015 | . . . 4 ⊢ (𝐴 ∈ ℝ ↔ ∃𝑥 ∈ R 〈𝑥, 0R〉 = 𝐴) | |
| 2 | 1 | biimpi 120 | . . 3 ⊢ (𝐴 ∈ ℝ → ∃𝑥 ∈ R 〈𝑥, 0R〉 = 𝐴) |
| 3 | eqtr3 2249 | . . . . . . . 8 ⊢ ((〈𝑥, 0R〉 = 𝐴 ∧ 〈𝑦, 0R〉 = 𝐴) → 〈𝑥, 0R〉 = 〈𝑦, 0R〉) | |
| 4 | 0r 7937 | . . . . . . . . . 10 ⊢ 0R ∈ R | |
| 5 | opthg 4324 | . . . . . . . . . 10 ⊢ ((𝑥 ∈ R ∧ 0R ∈ R) → (〈𝑥, 0R〉 = 〈𝑦, 0R〉 ↔ (𝑥 = 𝑦 ∧ 0R = 0R))) | |
| 6 | 4, 5 | mpan2 425 | . . . . . . . . 9 ⊢ (𝑥 ∈ R → (〈𝑥, 0R〉 = 〈𝑦, 0R〉 ↔ (𝑥 = 𝑦 ∧ 0R = 0R))) |
| 7 | 6 | ad2antlr 489 | . . . . . . . 8 ⊢ (((𝐴 ∈ ℝ ∧ 𝑥 ∈ R) ∧ 𝑦 ∈ R) → (〈𝑥, 0R〉 = 〈𝑦, 0R〉 ↔ (𝑥 = 𝑦 ∧ 0R = 0R))) |
| 8 | 3, 7 | imbitrid 154 | . . . . . . 7 ⊢ (((𝐴 ∈ ℝ ∧ 𝑥 ∈ R) ∧ 𝑦 ∈ R) → ((〈𝑥, 0R〉 = 𝐴 ∧ 〈𝑦, 0R〉 = 𝐴) → (𝑥 = 𝑦 ∧ 0R = 0R))) |
| 9 | simpl 109 | . . . . . . 7 ⊢ ((𝑥 = 𝑦 ∧ 0R = 0R) → 𝑥 = 𝑦) | |
| 10 | 8, 9 | syl6 33 | . . . . . 6 ⊢ (((𝐴 ∈ ℝ ∧ 𝑥 ∈ R) ∧ 𝑦 ∈ R) → ((〈𝑥, 0R〉 = 𝐴 ∧ 〈𝑦, 0R〉 = 𝐴) → 𝑥 = 𝑦)) |
| 11 | 10 | ralrimiva 2603 | . . . . 5 ⊢ ((𝐴 ∈ ℝ ∧ 𝑥 ∈ R) → ∀𝑦 ∈ R ((〈𝑥, 0R〉 = 𝐴 ∧ 〈𝑦, 0R〉 = 𝐴) → 𝑥 = 𝑦)) |
| 12 | 11 | ralrimiva 2603 | . . . 4 ⊢ (𝐴 ∈ ℝ → ∀𝑥 ∈ R ∀𝑦 ∈ R ((〈𝑥, 0R〉 = 𝐴 ∧ 〈𝑦, 0R〉 = 𝐴) → 𝑥 = 𝑦)) |
| 13 | opeq1 3857 | . . . . . 6 ⊢ (𝑥 = 𝑦 → 〈𝑥, 0R〉 = 〈𝑦, 0R〉) | |
| 14 | 13 | eqeq1d 2238 | . . . . 5 ⊢ (𝑥 = 𝑦 → (〈𝑥, 0R〉 = 𝐴 ↔ 〈𝑦, 0R〉 = 𝐴)) |
| 15 | 14 | rmo4 2996 | . . . 4 ⊢ (∃*𝑥 ∈ R 〈𝑥, 0R〉 = 𝐴 ↔ ∀𝑥 ∈ R ∀𝑦 ∈ R ((〈𝑥, 0R〉 = 𝐴 ∧ 〈𝑦, 0R〉 = 𝐴) → 𝑥 = 𝑦)) |
| 16 | 12, 15 | sylibr 134 | . . 3 ⊢ (𝐴 ∈ ℝ → ∃*𝑥 ∈ R 〈𝑥, 0R〉 = 𝐴) |
| 17 | reu5 2749 | . . 3 ⊢ (∃!𝑥 ∈ R 〈𝑥, 0R〉 = 𝐴 ↔ (∃𝑥 ∈ R 〈𝑥, 0R〉 = 𝐴 ∧ ∃*𝑥 ∈ R 〈𝑥, 0R〉 = 𝐴)) | |
| 18 | 2, 16, 17 | sylanbrc 417 | . 2 ⊢ (𝐴 ∈ ℝ → ∃!𝑥 ∈ R 〈𝑥, 0R〉 = 𝐴) |
| 19 | reurex 2750 | . . 3 ⊢ (∃!𝑥 ∈ R 〈𝑥, 0R〉 = 𝐴 → ∃𝑥 ∈ R 〈𝑥, 0R〉 = 𝐴) | |
| 20 | 19, 1 | sylibr 134 | . 2 ⊢ (∃!𝑥 ∈ R 〈𝑥, 0R〉 = 𝐴 → 𝐴 ∈ ℝ) |
| 21 | 18, 20 | impbii 126 | 1 ⊢ (𝐴 ∈ ℝ ↔ ∃!𝑥 ∈ R 〈𝑥, 0R〉 = 𝐴) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 = wceq 1395 ∈ wcel 2200 ∀wral 2508 ∃wrex 2509 ∃!wreu 2510 ∃*wrmo 2511 〈cop 3669 Rcnr 7484 0Rc0r 7485 ℝcr 7998 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-coll 4199 ax-sep 4202 ax-nul 4210 ax-pow 4258 ax-pr 4293 ax-un 4524 ax-setind 4629 ax-iinf 4680 |
| This theorem depends on definitions: df-bi 117 df-dc 840 df-3or 1003 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-ral 2513 df-rex 2514 df-reu 2515 df-rmo 2516 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-int 3924 df-iun 3967 df-br 4084 df-opab 4146 df-mpt 4147 df-tr 4183 df-eprel 4380 df-id 4384 df-po 4387 df-iso 4388 df-iord 4457 df-on 4459 df-suc 4462 df-iom 4683 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-rn 4730 df-res 4731 df-ima 4732 df-iota 5278 df-fun 5320 df-fn 5321 df-f 5322 df-f1 5323 df-fo 5324 df-f1o 5325 df-fv 5326 df-ov 6004 df-oprab 6005 df-mpo 6006 df-1st 6286 df-2nd 6287 df-recs 6451 df-irdg 6516 df-1o 6562 df-oadd 6566 df-omul 6567 df-er 6680 df-ec 6682 df-qs 6686 df-ni 7491 df-pli 7492 df-mi 7493 df-lti 7494 df-plpq 7531 df-mpq 7532 df-enq 7534 df-nqqs 7535 df-plqqs 7536 df-mqqs 7537 df-1nqqs 7538 df-rq 7539 df-ltnqqs 7540 df-inp 7653 df-i1p 7654 df-enr 7913 df-nr 7914 df-0r 7918 df-r 8009 |
| This theorem is referenced by: axcaucvglemcl 8082 axcaucvglemval 8084 |
| Copyright terms: Public domain | W3C validator |