Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > elrealeu | GIF version |
Description: The real number mapping in elreal 7769 is unique. (Contributed by Jim Kingdon, 11-Jul-2021.) |
Ref | Expression |
---|---|
elrealeu | ⊢ (𝐴 ∈ ℝ ↔ ∃!𝑥 ∈ R 〈𝑥, 0R〉 = 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elreal 7769 | . . . 4 ⊢ (𝐴 ∈ ℝ ↔ ∃𝑥 ∈ R 〈𝑥, 0R〉 = 𝐴) | |
2 | 1 | biimpi 119 | . . 3 ⊢ (𝐴 ∈ ℝ → ∃𝑥 ∈ R 〈𝑥, 0R〉 = 𝐴) |
3 | eqtr3 2185 | . . . . . . . 8 ⊢ ((〈𝑥, 0R〉 = 𝐴 ∧ 〈𝑦, 0R〉 = 𝐴) → 〈𝑥, 0R〉 = 〈𝑦, 0R〉) | |
4 | 0r 7691 | . . . . . . . . . 10 ⊢ 0R ∈ R | |
5 | opthg 4216 | . . . . . . . . . 10 ⊢ ((𝑥 ∈ R ∧ 0R ∈ R) → (〈𝑥, 0R〉 = 〈𝑦, 0R〉 ↔ (𝑥 = 𝑦 ∧ 0R = 0R))) | |
6 | 4, 5 | mpan2 422 | . . . . . . . . 9 ⊢ (𝑥 ∈ R → (〈𝑥, 0R〉 = 〈𝑦, 0R〉 ↔ (𝑥 = 𝑦 ∧ 0R = 0R))) |
7 | 6 | ad2antlr 481 | . . . . . . . 8 ⊢ (((𝐴 ∈ ℝ ∧ 𝑥 ∈ R) ∧ 𝑦 ∈ R) → (〈𝑥, 0R〉 = 〈𝑦, 0R〉 ↔ (𝑥 = 𝑦 ∧ 0R = 0R))) |
8 | 3, 7 | syl5ib 153 | . . . . . . 7 ⊢ (((𝐴 ∈ ℝ ∧ 𝑥 ∈ R) ∧ 𝑦 ∈ R) → ((〈𝑥, 0R〉 = 𝐴 ∧ 〈𝑦, 0R〉 = 𝐴) → (𝑥 = 𝑦 ∧ 0R = 0R))) |
9 | simpl 108 | . . . . . . 7 ⊢ ((𝑥 = 𝑦 ∧ 0R = 0R) → 𝑥 = 𝑦) | |
10 | 8, 9 | syl6 33 | . . . . . 6 ⊢ (((𝐴 ∈ ℝ ∧ 𝑥 ∈ R) ∧ 𝑦 ∈ R) → ((〈𝑥, 0R〉 = 𝐴 ∧ 〈𝑦, 0R〉 = 𝐴) → 𝑥 = 𝑦)) |
11 | 10 | ralrimiva 2539 | . . . . 5 ⊢ ((𝐴 ∈ ℝ ∧ 𝑥 ∈ R) → ∀𝑦 ∈ R ((〈𝑥, 0R〉 = 𝐴 ∧ 〈𝑦, 0R〉 = 𝐴) → 𝑥 = 𝑦)) |
12 | 11 | ralrimiva 2539 | . . . 4 ⊢ (𝐴 ∈ ℝ → ∀𝑥 ∈ R ∀𝑦 ∈ R ((〈𝑥, 0R〉 = 𝐴 ∧ 〈𝑦, 0R〉 = 𝐴) → 𝑥 = 𝑦)) |
13 | opeq1 3758 | . . . . . 6 ⊢ (𝑥 = 𝑦 → 〈𝑥, 0R〉 = 〈𝑦, 0R〉) | |
14 | 13 | eqeq1d 2174 | . . . . 5 ⊢ (𝑥 = 𝑦 → (〈𝑥, 0R〉 = 𝐴 ↔ 〈𝑦, 0R〉 = 𝐴)) |
15 | 14 | rmo4 2919 | . . . 4 ⊢ (∃*𝑥 ∈ R 〈𝑥, 0R〉 = 𝐴 ↔ ∀𝑥 ∈ R ∀𝑦 ∈ R ((〈𝑥, 0R〉 = 𝐴 ∧ 〈𝑦, 0R〉 = 𝐴) → 𝑥 = 𝑦)) |
16 | 12, 15 | sylibr 133 | . . 3 ⊢ (𝐴 ∈ ℝ → ∃*𝑥 ∈ R 〈𝑥, 0R〉 = 𝐴) |
17 | reu5 2678 | . . 3 ⊢ (∃!𝑥 ∈ R 〈𝑥, 0R〉 = 𝐴 ↔ (∃𝑥 ∈ R 〈𝑥, 0R〉 = 𝐴 ∧ ∃*𝑥 ∈ R 〈𝑥, 0R〉 = 𝐴)) | |
18 | 2, 16, 17 | sylanbrc 414 | . 2 ⊢ (𝐴 ∈ ℝ → ∃!𝑥 ∈ R 〈𝑥, 0R〉 = 𝐴) |
19 | reurex 2679 | . . 3 ⊢ (∃!𝑥 ∈ R 〈𝑥, 0R〉 = 𝐴 → ∃𝑥 ∈ R 〈𝑥, 0R〉 = 𝐴) | |
20 | 19, 1 | sylibr 133 | . 2 ⊢ (∃!𝑥 ∈ R 〈𝑥, 0R〉 = 𝐴 → 𝐴 ∈ ℝ) |
21 | 18, 20 | impbii 125 | 1 ⊢ (𝐴 ∈ ℝ ↔ ∃!𝑥 ∈ R 〈𝑥, 0R〉 = 𝐴) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ↔ wb 104 = wceq 1343 ∈ wcel 2136 ∀wral 2444 ∃wrex 2445 ∃!wreu 2446 ∃*wrmo 2447 〈cop 3579 Rcnr 7238 0Rc0r 7239 ℝcr 7752 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-coll 4097 ax-sep 4100 ax-nul 4108 ax-pow 4153 ax-pr 4187 ax-un 4411 ax-setind 4514 ax-iinf 4565 |
This theorem depends on definitions: df-bi 116 df-dc 825 df-3or 969 df-3an 970 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ne 2337 df-ral 2449 df-rex 2450 df-reu 2451 df-rmo 2452 df-rab 2453 df-v 2728 df-sbc 2952 df-csb 3046 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-nul 3410 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-int 3825 df-iun 3868 df-br 3983 df-opab 4044 df-mpt 4045 df-tr 4081 df-eprel 4267 df-id 4271 df-po 4274 df-iso 4275 df-iord 4344 df-on 4346 df-suc 4349 df-iom 4568 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-rn 4615 df-res 4616 df-ima 4617 df-iota 5153 df-fun 5190 df-fn 5191 df-f 5192 df-f1 5193 df-fo 5194 df-f1o 5195 df-fv 5196 df-ov 5845 df-oprab 5846 df-mpo 5847 df-1st 6108 df-2nd 6109 df-recs 6273 df-irdg 6338 df-1o 6384 df-oadd 6388 df-omul 6389 df-er 6501 df-ec 6503 df-qs 6507 df-ni 7245 df-pli 7246 df-mi 7247 df-lti 7248 df-plpq 7285 df-mpq 7286 df-enq 7288 df-nqqs 7289 df-plqqs 7290 df-mqqs 7291 df-1nqqs 7292 df-rq 7293 df-ltnqqs 7294 df-inp 7407 df-i1p 7408 df-enr 7667 df-nr 7668 df-0r 7672 df-r 7763 |
This theorem is referenced by: axcaucvglemcl 7836 axcaucvglemval 7838 |
Copyright terms: Public domain | W3C validator |