ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elrealeu GIF version

Theorem elrealeu 7896
Description: The real number mapping in elreal 7895 is unique. (Contributed by Jim Kingdon, 11-Jul-2021.)
Assertion
Ref Expression
elrealeu (𝐴 ∈ ℝ ↔ ∃!𝑥R𝑥, 0R⟩ = 𝐴)
Distinct variable group:   𝑥,𝐴

Proof of Theorem elrealeu
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 elreal 7895 . . . 4 (𝐴 ∈ ℝ ↔ ∃𝑥R𝑥, 0R⟩ = 𝐴)
21biimpi 120 . . 3 (𝐴 ∈ ℝ → ∃𝑥R𝑥, 0R⟩ = 𝐴)
3 eqtr3 2216 . . . . . . . 8 ((⟨𝑥, 0R⟩ = 𝐴 ∧ ⟨𝑦, 0R⟩ = 𝐴) → ⟨𝑥, 0R⟩ = ⟨𝑦, 0R⟩)
4 0r 7817 . . . . . . . . . 10 0RR
5 opthg 4271 . . . . . . . . . 10 ((𝑥R ∧ 0RR) → (⟨𝑥, 0R⟩ = ⟨𝑦, 0R⟩ ↔ (𝑥 = 𝑦 ∧ 0R = 0R)))
64, 5mpan2 425 . . . . . . . . 9 (𝑥R → (⟨𝑥, 0R⟩ = ⟨𝑦, 0R⟩ ↔ (𝑥 = 𝑦 ∧ 0R = 0R)))
76ad2antlr 489 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 𝑥R) ∧ 𝑦R) → (⟨𝑥, 0R⟩ = ⟨𝑦, 0R⟩ ↔ (𝑥 = 𝑦 ∧ 0R = 0R)))
83, 7imbitrid 154 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝑥R) ∧ 𝑦R) → ((⟨𝑥, 0R⟩ = 𝐴 ∧ ⟨𝑦, 0R⟩ = 𝐴) → (𝑥 = 𝑦 ∧ 0R = 0R)))
9 simpl 109 . . . . . . 7 ((𝑥 = 𝑦 ∧ 0R = 0R) → 𝑥 = 𝑦)
108, 9syl6 33 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝑥R) ∧ 𝑦R) → ((⟨𝑥, 0R⟩ = 𝐴 ∧ ⟨𝑦, 0R⟩ = 𝐴) → 𝑥 = 𝑦))
1110ralrimiva 2570 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝑥R) → ∀𝑦R ((⟨𝑥, 0R⟩ = 𝐴 ∧ ⟨𝑦, 0R⟩ = 𝐴) → 𝑥 = 𝑦))
1211ralrimiva 2570 . . . 4 (𝐴 ∈ ℝ → ∀𝑥R𝑦R ((⟨𝑥, 0R⟩ = 𝐴 ∧ ⟨𝑦, 0R⟩ = 𝐴) → 𝑥 = 𝑦))
13 opeq1 3808 . . . . . 6 (𝑥 = 𝑦 → ⟨𝑥, 0R⟩ = ⟨𝑦, 0R⟩)
1413eqeq1d 2205 . . . . 5 (𝑥 = 𝑦 → (⟨𝑥, 0R⟩ = 𝐴 ↔ ⟨𝑦, 0R⟩ = 𝐴))
1514rmo4 2957 . . . 4 (∃*𝑥R𝑥, 0R⟩ = 𝐴 ↔ ∀𝑥R𝑦R ((⟨𝑥, 0R⟩ = 𝐴 ∧ ⟨𝑦, 0R⟩ = 𝐴) → 𝑥 = 𝑦))
1612, 15sylibr 134 . . 3 (𝐴 ∈ ℝ → ∃*𝑥R𝑥, 0R⟩ = 𝐴)
17 reu5 2714 . . 3 (∃!𝑥R𝑥, 0R⟩ = 𝐴 ↔ (∃𝑥R𝑥, 0R⟩ = 𝐴 ∧ ∃*𝑥R𝑥, 0R⟩ = 𝐴))
182, 16, 17sylanbrc 417 . 2 (𝐴 ∈ ℝ → ∃!𝑥R𝑥, 0R⟩ = 𝐴)
19 reurex 2715 . . 3 (∃!𝑥R𝑥, 0R⟩ = 𝐴 → ∃𝑥R𝑥, 0R⟩ = 𝐴)
2019, 1sylibr 134 . 2 (∃!𝑥R𝑥, 0R⟩ = 𝐴𝐴 ∈ ℝ)
2118, 20impbii 126 1 (𝐴 ∈ ℝ ↔ ∃!𝑥R𝑥, 0R⟩ = 𝐴)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1364  wcel 2167  wral 2475  wrex 2476  ∃!wreu 2477  ∃*wrmo 2478  cop 3625  Rcnr 7364  0Rc0r 7365  cr 7878
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4148  ax-sep 4151  ax-nul 4159  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-iinf 4624
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3451  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-int 3875  df-iun 3918  df-br 4034  df-opab 4095  df-mpt 4096  df-tr 4132  df-eprel 4324  df-id 4328  df-po 4331  df-iso 4332  df-iord 4401  df-on 4403  df-suc 4406  df-iom 4627  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-f1 5263  df-fo 5264  df-f1o 5265  df-fv 5266  df-ov 5925  df-oprab 5926  df-mpo 5927  df-1st 6198  df-2nd 6199  df-recs 6363  df-irdg 6428  df-1o 6474  df-oadd 6478  df-omul 6479  df-er 6592  df-ec 6594  df-qs 6598  df-ni 7371  df-pli 7372  df-mi 7373  df-lti 7374  df-plpq 7411  df-mpq 7412  df-enq 7414  df-nqqs 7415  df-plqqs 7416  df-mqqs 7417  df-1nqqs 7418  df-rq 7419  df-ltnqqs 7420  df-inp 7533  df-i1p 7534  df-enr 7793  df-nr 7794  df-0r 7798  df-r 7889
This theorem is referenced by:  axcaucvglemcl  7962  axcaucvglemval  7964
  Copyright terms: Public domain W3C validator