ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  isringid GIF version

Theorem isringid 13831
Description: Properties showing that an element 𝐼 is the unity element of a ring. (Contributed by NM, 7-Aug-2013.)
Hypotheses
Ref Expression
rngidm.b 𝐵 = (Base‘𝑅)
rngidm.t · = (.r𝑅)
rngidm.u 1 = (1r𝑅)
Assertion
Ref Expression
isringid (𝑅 ∈ Ring → ((𝐼𝐵 ∧ ∀𝑥𝐵 ((𝐼 · 𝑥) = 𝑥 ∧ (𝑥 · 𝐼) = 𝑥)) ↔ 1 = 𝐼))
Distinct variable groups:   𝑥,𝐵   𝑥,𝐼   𝑥,𝑅   𝑥, ·   𝑥, 1

Proof of Theorem isringid
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 eqid 2206 . . 3 (Base‘(mulGrp‘𝑅)) = (Base‘(mulGrp‘𝑅))
2 eqid 2206 . . 3 (0g‘(mulGrp‘𝑅)) = (0g‘(mulGrp‘𝑅))
3 eqid 2206 . . 3 (+g‘(mulGrp‘𝑅)) = (+g‘(mulGrp‘𝑅))
4 rngidm.b . . . . . 6 𝐵 = (Base‘𝑅)
5 rngidm.t . . . . . 6 · = (.r𝑅)
64, 5ringideu 13823 . . . . 5 (𝑅 ∈ Ring → ∃!𝑦𝐵𝑥𝐵 ((𝑦 · 𝑥) = 𝑥 ∧ (𝑥 · 𝑦) = 𝑥))
7 reurex 2725 . . . . 5 (∃!𝑦𝐵𝑥𝐵 ((𝑦 · 𝑥) = 𝑥 ∧ (𝑥 · 𝑦) = 𝑥) → ∃𝑦𝐵𝑥𝐵 ((𝑦 · 𝑥) = 𝑥 ∧ (𝑥 · 𝑦) = 𝑥))
86, 7syl 14 . . . 4 (𝑅 ∈ Ring → ∃𝑦𝐵𝑥𝐵 ((𝑦 · 𝑥) = 𝑥 ∧ (𝑥 · 𝑦) = 𝑥))
9 eqid 2206 . . . . . 6 (mulGrp‘𝑅) = (mulGrp‘𝑅)
109, 4mgpbasg 13732 . . . . 5 (𝑅 ∈ Ring → 𝐵 = (Base‘(mulGrp‘𝑅)))
119, 5mgpplusgg 13730 . . . . . . . . 9 (𝑅 ∈ Ring → · = (+g‘(mulGrp‘𝑅)))
1211oveqd 5968 . . . . . . . 8 (𝑅 ∈ Ring → (𝑦 · 𝑥) = (𝑦(+g‘(mulGrp‘𝑅))𝑥))
1312eqeq1d 2215 . . . . . . 7 (𝑅 ∈ Ring → ((𝑦 · 𝑥) = 𝑥 ↔ (𝑦(+g‘(mulGrp‘𝑅))𝑥) = 𝑥))
1411oveqd 5968 . . . . . . . 8 (𝑅 ∈ Ring → (𝑥 · 𝑦) = (𝑥(+g‘(mulGrp‘𝑅))𝑦))
1514eqeq1d 2215 . . . . . . 7 (𝑅 ∈ Ring → ((𝑥 · 𝑦) = 𝑥 ↔ (𝑥(+g‘(mulGrp‘𝑅))𝑦) = 𝑥))
1613, 15anbi12d 473 . . . . . 6 (𝑅 ∈ Ring → (((𝑦 · 𝑥) = 𝑥 ∧ (𝑥 · 𝑦) = 𝑥) ↔ ((𝑦(+g‘(mulGrp‘𝑅))𝑥) = 𝑥 ∧ (𝑥(+g‘(mulGrp‘𝑅))𝑦) = 𝑥)))
1710, 16raleqbidv 2719 . . . . 5 (𝑅 ∈ Ring → (∀𝑥𝐵 ((𝑦 · 𝑥) = 𝑥 ∧ (𝑥 · 𝑦) = 𝑥) ↔ ∀𝑥 ∈ (Base‘(mulGrp‘𝑅))((𝑦(+g‘(mulGrp‘𝑅))𝑥) = 𝑥 ∧ (𝑥(+g‘(mulGrp‘𝑅))𝑦) = 𝑥)))
1810, 17rexeqbidv 2720 . . . 4 (𝑅 ∈ Ring → (∃𝑦𝐵𝑥𝐵 ((𝑦 · 𝑥) = 𝑥 ∧ (𝑥 · 𝑦) = 𝑥) ↔ ∃𝑦 ∈ (Base‘(mulGrp‘𝑅))∀𝑥 ∈ (Base‘(mulGrp‘𝑅))((𝑦(+g‘(mulGrp‘𝑅))𝑥) = 𝑥 ∧ (𝑥(+g‘(mulGrp‘𝑅))𝑦) = 𝑥)))
198, 18mpbid 147 . . 3 (𝑅 ∈ Ring → ∃𝑦 ∈ (Base‘(mulGrp‘𝑅))∀𝑥 ∈ (Base‘(mulGrp‘𝑅))((𝑦(+g‘(mulGrp‘𝑅))𝑥) = 𝑥 ∧ (𝑥(+g‘(mulGrp‘𝑅))𝑦) = 𝑥))
201, 2, 3, 19ismgmid 13253 . 2 (𝑅 ∈ Ring → ((𝐼 ∈ (Base‘(mulGrp‘𝑅)) ∧ ∀𝑥 ∈ (Base‘(mulGrp‘𝑅))((𝐼(+g‘(mulGrp‘𝑅))𝑥) = 𝑥 ∧ (𝑥(+g‘(mulGrp‘𝑅))𝐼) = 𝑥)) ↔ (0g‘(mulGrp‘𝑅)) = 𝐼))
2110eleq2d 2276 . . 3 (𝑅 ∈ Ring → (𝐼𝐵𝐼 ∈ (Base‘(mulGrp‘𝑅))))
2211oveqd 5968 . . . . . 6 (𝑅 ∈ Ring → (𝐼 · 𝑥) = (𝐼(+g‘(mulGrp‘𝑅))𝑥))
2322eqeq1d 2215 . . . . 5 (𝑅 ∈ Ring → ((𝐼 · 𝑥) = 𝑥 ↔ (𝐼(+g‘(mulGrp‘𝑅))𝑥) = 𝑥))
2411oveqd 5968 . . . . . 6 (𝑅 ∈ Ring → (𝑥 · 𝐼) = (𝑥(+g‘(mulGrp‘𝑅))𝐼))
2524eqeq1d 2215 . . . . 5 (𝑅 ∈ Ring → ((𝑥 · 𝐼) = 𝑥 ↔ (𝑥(+g‘(mulGrp‘𝑅))𝐼) = 𝑥))
2623, 25anbi12d 473 . . . 4 (𝑅 ∈ Ring → (((𝐼 · 𝑥) = 𝑥 ∧ (𝑥 · 𝐼) = 𝑥) ↔ ((𝐼(+g‘(mulGrp‘𝑅))𝑥) = 𝑥 ∧ (𝑥(+g‘(mulGrp‘𝑅))𝐼) = 𝑥)))
2710, 26raleqbidv 2719 . . 3 (𝑅 ∈ Ring → (∀𝑥𝐵 ((𝐼 · 𝑥) = 𝑥 ∧ (𝑥 · 𝐼) = 𝑥) ↔ ∀𝑥 ∈ (Base‘(mulGrp‘𝑅))((𝐼(+g‘(mulGrp‘𝑅))𝑥) = 𝑥 ∧ (𝑥(+g‘(mulGrp‘𝑅))𝐼) = 𝑥)))
2821, 27anbi12d 473 . 2 (𝑅 ∈ Ring → ((𝐼𝐵 ∧ ∀𝑥𝐵 ((𝐼 · 𝑥) = 𝑥 ∧ (𝑥 · 𝐼) = 𝑥)) ↔ (𝐼 ∈ (Base‘(mulGrp‘𝑅)) ∧ ∀𝑥 ∈ (Base‘(mulGrp‘𝑅))((𝐼(+g‘(mulGrp‘𝑅))𝑥) = 𝑥 ∧ (𝑥(+g‘(mulGrp‘𝑅))𝐼) = 𝑥))))
29 rngidm.u . . . 4 1 = (1r𝑅)
309, 29ringidvalg 13767 . . 3 (𝑅 ∈ Ring → 1 = (0g‘(mulGrp‘𝑅)))
3130eqeq1d 2215 . 2 (𝑅 ∈ Ring → ( 1 = 𝐼 ↔ (0g‘(mulGrp‘𝑅)) = 𝐼))
3220, 28, 313bitr4d 220 1 (𝑅 ∈ Ring → ((𝐼𝐵 ∧ ∀𝑥𝐵 ((𝐼 · 𝑥) = 𝑥 ∧ (𝑥 · 𝐼) = 𝑥)) ↔ 1 = 𝐼))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1373  wcel 2177  wral 2485  wrex 2486  ∃!wreu 2487  cfv 5276  (class class class)co 5951  Basecbs 12876  +gcplusg 12953  .rcmulr 12954  0gc0g 13132  mulGrpcmgp 13726  1rcur 13765  Ringcrg 13802
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-sep 4166  ax-pow 4222  ax-pr 4257  ax-un 4484  ax-setind 4589  ax-cnex 8023  ax-resscn 8024  ax-1cn 8025  ax-1re 8026  ax-icn 8027  ax-addcl 8028  ax-addrcl 8029  ax-mulcl 8030  ax-addcom 8032  ax-addass 8034  ax-i2m1 8037  ax-0lt1 8038  ax-0id 8040  ax-rnegex 8041  ax-pre-ltirr 8044  ax-pre-ltadd 8048
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-nel 2473  df-ral 2490  df-rex 2491  df-reu 2492  df-rmo 2493  df-rab 2494  df-v 2775  df-sbc 3000  df-csb 3095  df-dif 3169  df-un 3171  df-in 3173  df-ss 3180  df-nul 3462  df-pw 3619  df-sn 3640  df-pr 3641  df-op 3643  df-uni 3853  df-int 3888  df-br 4048  df-opab 4110  df-mpt 4111  df-id 4344  df-xp 4685  df-rel 4686  df-cnv 4687  df-co 4688  df-dm 4689  df-rn 4690  df-res 4691  df-ima 4692  df-iota 5237  df-fun 5278  df-fn 5279  df-fv 5284  df-riota 5906  df-ov 5954  df-oprab 5955  df-mpo 5956  df-pnf 8116  df-mnf 8117  df-ltxr 8119  df-inn 9044  df-2 9102  df-3 9103  df-ndx 12879  df-slot 12880  df-base 12882  df-sets 12883  df-plusg 12966  df-mulr 12967  df-0g 13134  df-mgm 13232  df-sgrp 13278  df-mnd 13293  df-mgp 13727  df-ur 13766  df-ring 13804
This theorem is referenced by:  imasring  13870  subrg1  14037  cnfld1  14378
  Copyright terms: Public domain W3C validator