ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  isringid GIF version

Theorem isringid 13201
Description: Properties showing that an element 𝐼 is the unity element of a ring. (Contributed by NM, 7-Aug-2013.)
Hypotheses
Ref Expression
rngidm.b 𝐵 = (Base‘𝑅)
rngidm.t · = (.r𝑅)
rngidm.u 1 = (1r𝑅)
Assertion
Ref Expression
isringid (𝑅 ∈ Ring → ((𝐼𝐵 ∧ ∀𝑥𝐵 ((𝐼 · 𝑥) = 𝑥 ∧ (𝑥 · 𝐼) = 𝑥)) ↔ 1 = 𝐼))
Distinct variable groups:   𝑥,𝐵   𝑥,𝐼   𝑥,𝑅   𝑥, ·   𝑥, 1

Proof of Theorem isringid
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 eqid 2177 . . 3 (Base‘(mulGrp‘𝑅)) = (Base‘(mulGrp‘𝑅))
2 eqid 2177 . . 3 (0g‘(mulGrp‘𝑅)) = (0g‘(mulGrp‘𝑅))
3 eqid 2177 . . 3 (+g‘(mulGrp‘𝑅)) = (+g‘(mulGrp‘𝑅))
4 rngidm.b . . . . . 6 𝐵 = (Base‘𝑅)
5 rngidm.t . . . . . 6 · = (.r𝑅)
64, 5ringideu 13193 . . . . 5 (𝑅 ∈ Ring → ∃!𝑦𝐵𝑥𝐵 ((𝑦 · 𝑥) = 𝑥 ∧ (𝑥 · 𝑦) = 𝑥))
7 reurex 2690 . . . . 5 (∃!𝑦𝐵𝑥𝐵 ((𝑦 · 𝑥) = 𝑥 ∧ (𝑥 · 𝑦) = 𝑥) → ∃𝑦𝐵𝑥𝐵 ((𝑦 · 𝑥) = 𝑥 ∧ (𝑥 · 𝑦) = 𝑥))
86, 7syl 14 . . . 4 (𝑅 ∈ Ring → ∃𝑦𝐵𝑥𝐵 ((𝑦 · 𝑥) = 𝑥 ∧ (𝑥 · 𝑦) = 𝑥))
9 eqid 2177 . . . . . 6 (mulGrp‘𝑅) = (mulGrp‘𝑅)
109, 4mgpbasg 13129 . . . . 5 (𝑅 ∈ Ring → 𝐵 = (Base‘(mulGrp‘𝑅)))
119, 5mgpplusgg 13127 . . . . . . . . 9 (𝑅 ∈ Ring → · = (+g‘(mulGrp‘𝑅)))
1211oveqd 5891 . . . . . . . 8 (𝑅 ∈ Ring → (𝑦 · 𝑥) = (𝑦(+g‘(mulGrp‘𝑅))𝑥))
1312eqeq1d 2186 . . . . . . 7 (𝑅 ∈ Ring → ((𝑦 · 𝑥) = 𝑥 ↔ (𝑦(+g‘(mulGrp‘𝑅))𝑥) = 𝑥))
1411oveqd 5891 . . . . . . . 8 (𝑅 ∈ Ring → (𝑥 · 𝑦) = (𝑥(+g‘(mulGrp‘𝑅))𝑦))
1514eqeq1d 2186 . . . . . . 7 (𝑅 ∈ Ring → ((𝑥 · 𝑦) = 𝑥 ↔ (𝑥(+g‘(mulGrp‘𝑅))𝑦) = 𝑥))
1613, 15anbi12d 473 . . . . . 6 (𝑅 ∈ Ring → (((𝑦 · 𝑥) = 𝑥 ∧ (𝑥 · 𝑦) = 𝑥) ↔ ((𝑦(+g‘(mulGrp‘𝑅))𝑥) = 𝑥 ∧ (𝑥(+g‘(mulGrp‘𝑅))𝑦) = 𝑥)))
1710, 16raleqbidv 2684 . . . . 5 (𝑅 ∈ Ring → (∀𝑥𝐵 ((𝑦 · 𝑥) = 𝑥 ∧ (𝑥 · 𝑦) = 𝑥) ↔ ∀𝑥 ∈ (Base‘(mulGrp‘𝑅))((𝑦(+g‘(mulGrp‘𝑅))𝑥) = 𝑥 ∧ (𝑥(+g‘(mulGrp‘𝑅))𝑦) = 𝑥)))
1810, 17rexeqbidv 2685 . . . 4 (𝑅 ∈ Ring → (∃𝑦𝐵𝑥𝐵 ((𝑦 · 𝑥) = 𝑥 ∧ (𝑥 · 𝑦) = 𝑥) ↔ ∃𝑦 ∈ (Base‘(mulGrp‘𝑅))∀𝑥 ∈ (Base‘(mulGrp‘𝑅))((𝑦(+g‘(mulGrp‘𝑅))𝑥) = 𝑥 ∧ (𝑥(+g‘(mulGrp‘𝑅))𝑦) = 𝑥)))
198, 18mpbid 147 . . 3 (𝑅 ∈ Ring → ∃𝑦 ∈ (Base‘(mulGrp‘𝑅))∀𝑥 ∈ (Base‘(mulGrp‘𝑅))((𝑦(+g‘(mulGrp‘𝑅))𝑥) = 𝑥 ∧ (𝑥(+g‘(mulGrp‘𝑅))𝑦) = 𝑥))
201, 2, 3, 19ismgmid 12790 . 2 (𝑅 ∈ Ring → ((𝐼 ∈ (Base‘(mulGrp‘𝑅)) ∧ ∀𝑥 ∈ (Base‘(mulGrp‘𝑅))((𝐼(+g‘(mulGrp‘𝑅))𝑥) = 𝑥 ∧ (𝑥(+g‘(mulGrp‘𝑅))𝐼) = 𝑥)) ↔ (0g‘(mulGrp‘𝑅)) = 𝐼))
2110eleq2d 2247 . . 3 (𝑅 ∈ Ring → (𝐼𝐵𝐼 ∈ (Base‘(mulGrp‘𝑅))))
2211oveqd 5891 . . . . . 6 (𝑅 ∈ Ring → (𝐼 · 𝑥) = (𝐼(+g‘(mulGrp‘𝑅))𝑥))
2322eqeq1d 2186 . . . . 5 (𝑅 ∈ Ring → ((𝐼 · 𝑥) = 𝑥 ↔ (𝐼(+g‘(mulGrp‘𝑅))𝑥) = 𝑥))
2411oveqd 5891 . . . . . 6 (𝑅 ∈ Ring → (𝑥 · 𝐼) = (𝑥(+g‘(mulGrp‘𝑅))𝐼))
2524eqeq1d 2186 . . . . 5 (𝑅 ∈ Ring → ((𝑥 · 𝐼) = 𝑥 ↔ (𝑥(+g‘(mulGrp‘𝑅))𝐼) = 𝑥))
2623, 25anbi12d 473 . . . 4 (𝑅 ∈ Ring → (((𝐼 · 𝑥) = 𝑥 ∧ (𝑥 · 𝐼) = 𝑥) ↔ ((𝐼(+g‘(mulGrp‘𝑅))𝑥) = 𝑥 ∧ (𝑥(+g‘(mulGrp‘𝑅))𝐼) = 𝑥)))
2710, 26raleqbidv 2684 . . 3 (𝑅 ∈ Ring → (∀𝑥𝐵 ((𝐼 · 𝑥) = 𝑥 ∧ (𝑥 · 𝐼) = 𝑥) ↔ ∀𝑥 ∈ (Base‘(mulGrp‘𝑅))((𝐼(+g‘(mulGrp‘𝑅))𝑥) = 𝑥 ∧ (𝑥(+g‘(mulGrp‘𝑅))𝐼) = 𝑥)))
2821, 27anbi12d 473 . 2 (𝑅 ∈ Ring → ((𝐼𝐵 ∧ ∀𝑥𝐵 ((𝐼 · 𝑥) = 𝑥 ∧ (𝑥 · 𝐼) = 𝑥)) ↔ (𝐼 ∈ (Base‘(mulGrp‘𝑅)) ∧ ∀𝑥 ∈ (Base‘(mulGrp‘𝑅))((𝐼(+g‘(mulGrp‘𝑅))𝑥) = 𝑥 ∧ (𝑥(+g‘(mulGrp‘𝑅))𝐼) = 𝑥))))
29 rngidm.u . . . 4 1 = (1r𝑅)
309, 29ringidvalg 13137 . . 3 (𝑅 ∈ Ring → 1 = (0g‘(mulGrp‘𝑅)))
3130eqeq1d 2186 . 2 (𝑅 ∈ Ring → ( 1 = 𝐼 ↔ (0g‘(mulGrp‘𝑅)) = 𝐼))
3220, 28, 313bitr4d 220 1 (𝑅 ∈ Ring → ((𝐼𝐵 ∧ ∀𝑥𝐵 ((𝐼 · 𝑥) = 𝑥 ∧ (𝑥 · 𝐼) = 𝑥)) ↔ 1 = 𝐼))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1353  wcel 2148  wral 2455  wrex 2456  ∃!wreu 2457  cfv 5216  (class class class)co 5874  Basecbs 12456  +gcplusg 12530  .rcmulr 12531  0gc0g 12699  mulGrpcmgp 13123  1rcur 13135  Ringcrg 13172
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4121  ax-pow 4174  ax-pr 4209  ax-un 4433  ax-setind 4536  ax-cnex 7901  ax-resscn 7902  ax-1cn 7903  ax-1re 7904  ax-icn 7905  ax-addcl 7906  ax-addrcl 7907  ax-mulcl 7908  ax-addcom 7910  ax-addass 7912  ax-i2m1 7915  ax-0lt1 7916  ax-0id 7918  ax-rnegex 7919  ax-pre-ltirr 7922  ax-pre-ltadd 7926
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rmo 2463  df-rab 2464  df-v 2739  df-sbc 2963  df-csb 3058  df-dif 3131  df-un 3133  df-in 3135  df-ss 3142  df-nul 3423  df-pw 3577  df-sn 3598  df-pr 3599  df-op 3601  df-uni 3810  df-int 3845  df-br 4004  df-opab 4065  df-mpt 4066  df-id 4293  df-xp 4632  df-rel 4633  df-cnv 4634  df-co 4635  df-dm 4636  df-rn 4637  df-res 4638  df-ima 4639  df-iota 5178  df-fun 5218  df-fn 5219  df-fv 5224  df-riota 5830  df-ov 5877  df-oprab 5878  df-mpo 5879  df-pnf 7992  df-mnf 7993  df-ltxr 7995  df-inn 8918  df-2 8976  df-3 8977  df-ndx 12459  df-slot 12460  df-base 12462  df-sets 12463  df-plusg 12543  df-mulr 12544  df-0g 12701  df-mgm 12769  df-sgrp 12802  df-mnd 12812  df-mgp 13124  df-ur 13136  df-ring 13174
This theorem is referenced by:  subrg1  13352  cnfld1  13397
  Copyright terms: Public domain W3C validator