ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  issrgid GIF version

Theorem issrgid 13685
Description: Properties showing that an element 𝐼 is the unity element of a semiring. (Contributed by NM, 7-Aug-2013.) (Revised by Thierry Arnoux, 1-Apr-2018.)
Hypotheses
Ref Expression
srgidm.b 𝐵 = (Base‘𝑅)
srgidm.t · = (.r𝑅)
srgidm.u 1 = (1r𝑅)
Assertion
Ref Expression
issrgid (𝑅 ∈ SRing → ((𝐼𝐵 ∧ ∀𝑥𝐵 ((𝐼 · 𝑥) = 𝑥 ∧ (𝑥 · 𝐼) = 𝑥)) ↔ 1 = 𝐼))
Distinct variable groups:   𝑥,𝐵   𝑥,𝐼   𝑥,𝑅   𝑥, ·   𝑥, 1

Proof of Theorem issrgid
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 eqid 2204 . . 3 (Base‘(mulGrp‘𝑅)) = (Base‘(mulGrp‘𝑅))
2 eqid 2204 . . 3 (0g‘(mulGrp‘𝑅)) = (0g‘(mulGrp‘𝑅))
3 eqid 2204 . . 3 (+g‘(mulGrp‘𝑅)) = (+g‘(mulGrp‘𝑅))
4 srgidm.b . . . . . 6 𝐵 = (Base‘𝑅)
5 srgidm.t . . . . . 6 · = (.r𝑅)
64, 5srgideu 13676 . . . . 5 (𝑅 ∈ SRing → ∃!𝑦𝐵𝑥𝐵 ((𝑦 · 𝑥) = 𝑥 ∧ (𝑥 · 𝑦) = 𝑥))
7 reurex 2723 . . . . 5 (∃!𝑦𝐵𝑥𝐵 ((𝑦 · 𝑥) = 𝑥 ∧ (𝑥 · 𝑦) = 𝑥) → ∃𝑦𝐵𝑥𝐵 ((𝑦 · 𝑥) = 𝑥 ∧ (𝑥 · 𝑦) = 𝑥))
86, 7syl 14 . . . 4 (𝑅 ∈ SRing → ∃𝑦𝐵𝑥𝐵 ((𝑦 · 𝑥) = 𝑥 ∧ (𝑥 · 𝑦) = 𝑥))
9 eqid 2204 . . . . . 6 (mulGrp‘𝑅) = (mulGrp‘𝑅)
109, 4mgpbasg 13630 . . . . 5 (𝑅 ∈ SRing → 𝐵 = (Base‘(mulGrp‘𝑅)))
119, 5mgpplusgg 13628 . . . . . . . . 9 (𝑅 ∈ SRing → · = (+g‘(mulGrp‘𝑅)))
1211oveqd 5960 . . . . . . . 8 (𝑅 ∈ SRing → (𝑦 · 𝑥) = (𝑦(+g‘(mulGrp‘𝑅))𝑥))
1312eqeq1d 2213 . . . . . . 7 (𝑅 ∈ SRing → ((𝑦 · 𝑥) = 𝑥 ↔ (𝑦(+g‘(mulGrp‘𝑅))𝑥) = 𝑥))
1411oveqd 5960 . . . . . . . 8 (𝑅 ∈ SRing → (𝑥 · 𝑦) = (𝑥(+g‘(mulGrp‘𝑅))𝑦))
1514eqeq1d 2213 . . . . . . 7 (𝑅 ∈ SRing → ((𝑥 · 𝑦) = 𝑥 ↔ (𝑥(+g‘(mulGrp‘𝑅))𝑦) = 𝑥))
1613, 15anbi12d 473 . . . . . 6 (𝑅 ∈ SRing → (((𝑦 · 𝑥) = 𝑥 ∧ (𝑥 · 𝑦) = 𝑥) ↔ ((𝑦(+g‘(mulGrp‘𝑅))𝑥) = 𝑥 ∧ (𝑥(+g‘(mulGrp‘𝑅))𝑦) = 𝑥)))
1710, 16raleqbidv 2717 . . . . 5 (𝑅 ∈ SRing → (∀𝑥𝐵 ((𝑦 · 𝑥) = 𝑥 ∧ (𝑥 · 𝑦) = 𝑥) ↔ ∀𝑥 ∈ (Base‘(mulGrp‘𝑅))((𝑦(+g‘(mulGrp‘𝑅))𝑥) = 𝑥 ∧ (𝑥(+g‘(mulGrp‘𝑅))𝑦) = 𝑥)))
1810, 17rexeqbidv 2718 . . . 4 (𝑅 ∈ SRing → (∃𝑦𝐵𝑥𝐵 ((𝑦 · 𝑥) = 𝑥 ∧ (𝑥 · 𝑦) = 𝑥) ↔ ∃𝑦 ∈ (Base‘(mulGrp‘𝑅))∀𝑥 ∈ (Base‘(mulGrp‘𝑅))((𝑦(+g‘(mulGrp‘𝑅))𝑥) = 𝑥 ∧ (𝑥(+g‘(mulGrp‘𝑅))𝑦) = 𝑥)))
198, 18mpbid 147 . . 3 (𝑅 ∈ SRing → ∃𝑦 ∈ (Base‘(mulGrp‘𝑅))∀𝑥 ∈ (Base‘(mulGrp‘𝑅))((𝑦(+g‘(mulGrp‘𝑅))𝑥) = 𝑥 ∧ (𝑥(+g‘(mulGrp‘𝑅))𝑦) = 𝑥))
201, 2, 3, 19ismgmid 13151 . 2 (𝑅 ∈ SRing → ((𝐼 ∈ (Base‘(mulGrp‘𝑅)) ∧ ∀𝑥 ∈ (Base‘(mulGrp‘𝑅))((𝐼(+g‘(mulGrp‘𝑅))𝑥) = 𝑥 ∧ (𝑥(+g‘(mulGrp‘𝑅))𝐼) = 𝑥)) ↔ (0g‘(mulGrp‘𝑅)) = 𝐼))
2110eleq2d 2274 . . 3 (𝑅 ∈ SRing → (𝐼𝐵𝐼 ∈ (Base‘(mulGrp‘𝑅))))
2211oveqd 5960 . . . . . 6 (𝑅 ∈ SRing → (𝐼 · 𝑥) = (𝐼(+g‘(mulGrp‘𝑅))𝑥))
2322eqeq1d 2213 . . . . 5 (𝑅 ∈ SRing → ((𝐼 · 𝑥) = 𝑥 ↔ (𝐼(+g‘(mulGrp‘𝑅))𝑥) = 𝑥))
2411oveqd 5960 . . . . . 6 (𝑅 ∈ SRing → (𝑥 · 𝐼) = (𝑥(+g‘(mulGrp‘𝑅))𝐼))
2524eqeq1d 2213 . . . . 5 (𝑅 ∈ SRing → ((𝑥 · 𝐼) = 𝑥 ↔ (𝑥(+g‘(mulGrp‘𝑅))𝐼) = 𝑥))
2623, 25anbi12d 473 . . . 4 (𝑅 ∈ SRing → (((𝐼 · 𝑥) = 𝑥 ∧ (𝑥 · 𝐼) = 𝑥) ↔ ((𝐼(+g‘(mulGrp‘𝑅))𝑥) = 𝑥 ∧ (𝑥(+g‘(mulGrp‘𝑅))𝐼) = 𝑥)))
2710, 26raleqbidv 2717 . . 3 (𝑅 ∈ SRing → (∀𝑥𝐵 ((𝐼 · 𝑥) = 𝑥 ∧ (𝑥 · 𝐼) = 𝑥) ↔ ∀𝑥 ∈ (Base‘(mulGrp‘𝑅))((𝐼(+g‘(mulGrp‘𝑅))𝑥) = 𝑥 ∧ (𝑥(+g‘(mulGrp‘𝑅))𝐼) = 𝑥)))
2821, 27anbi12d 473 . 2 (𝑅 ∈ SRing → ((𝐼𝐵 ∧ ∀𝑥𝐵 ((𝐼 · 𝑥) = 𝑥 ∧ (𝑥 · 𝐼) = 𝑥)) ↔ (𝐼 ∈ (Base‘(mulGrp‘𝑅)) ∧ ∀𝑥 ∈ (Base‘(mulGrp‘𝑅))((𝐼(+g‘(mulGrp‘𝑅))𝑥) = 𝑥 ∧ (𝑥(+g‘(mulGrp‘𝑅))𝐼) = 𝑥))))
29 srgidm.u . . . 4 1 = (1r𝑅)
309, 29ringidvalg 13665 . . 3 (𝑅 ∈ SRing → 1 = (0g‘(mulGrp‘𝑅)))
3130eqeq1d 2213 . 2 (𝑅 ∈ SRing → ( 1 = 𝐼 ↔ (0g‘(mulGrp‘𝑅)) = 𝐼))
3220, 28, 313bitr4d 220 1 (𝑅 ∈ SRing → ((𝐼𝐵 ∧ ∀𝑥𝐵 ((𝐼 · 𝑥) = 𝑥 ∧ (𝑥 · 𝐼) = 𝑥)) ↔ 1 = 𝐼))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1372  wcel 2175  wral 2483  wrex 2484  ∃!wreu 2485  cfv 5270  (class class class)co 5943  Basecbs 12774  +gcplusg 12851  .rcmulr 12852  0gc0g 13030  mulGrpcmgp 13624  1rcur 13663  SRingcsrg 13667
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-13 2177  ax-14 2178  ax-ext 2186  ax-sep 4161  ax-pow 4217  ax-pr 4252  ax-un 4479  ax-setind 4584  ax-cnex 8015  ax-resscn 8016  ax-1cn 8017  ax-1re 8018  ax-icn 8019  ax-addcl 8020  ax-addrcl 8021  ax-mulcl 8022  ax-addcom 8024  ax-addass 8026  ax-i2m1 8029  ax-0lt1 8030  ax-0id 8032  ax-rnegex 8033  ax-pre-ltirr 8036  ax-pre-ltadd 8040
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1375  df-fal 1378  df-nf 1483  df-sb 1785  df-eu 2056  df-mo 2057  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ne 2376  df-nel 2471  df-ral 2488  df-rex 2489  df-reu 2490  df-rmo 2491  df-rab 2492  df-v 2773  df-sbc 2998  df-csb 3093  df-dif 3167  df-un 3169  df-in 3171  df-ss 3178  df-nul 3460  df-pw 3617  df-sn 3638  df-pr 3639  df-op 3641  df-uni 3850  df-int 3885  df-br 4044  df-opab 4105  df-mpt 4106  df-id 4339  df-xp 4680  df-rel 4681  df-cnv 4682  df-co 4683  df-dm 4684  df-rn 4685  df-res 4686  df-ima 4687  df-iota 5231  df-fun 5272  df-fn 5273  df-fv 5278  df-riota 5898  df-ov 5946  df-oprab 5947  df-mpo 5948  df-pnf 8108  df-mnf 8109  df-ltxr 8111  df-inn 9036  df-2 9094  df-3 9095  df-ndx 12777  df-slot 12778  df-base 12780  df-sets 12781  df-plusg 12864  df-mulr 12865  df-0g 13032  df-mgm 13130  df-sgrp 13176  df-mnd 13191  df-mgp 13625  df-ur 13664  df-srg 13668
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator