| Step | Hyp | Ref
| Expression |
| 1 | | eqid 2196 |
. . 3
⊢
(Base‘(mulGrp‘𝑅)) = (Base‘(mulGrp‘𝑅)) |
| 2 | | eqid 2196 |
. . 3
⊢
(0g‘(mulGrp‘𝑅)) =
(0g‘(mulGrp‘𝑅)) |
| 3 | | eqid 2196 |
. . 3
⊢
(+g‘(mulGrp‘𝑅)) =
(+g‘(mulGrp‘𝑅)) |
| 4 | | srgidm.b |
. . . . . 6
⊢ 𝐵 = (Base‘𝑅) |
| 5 | | srgidm.t |
. . . . . 6
⊢ · =
(.r‘𝑅) |
| 6 | 4, 5 | srgideu 13528 |
. . . . 5
⊢ (𝑅 ∈ SRing →
∃!𝑦 ∈ 𝐵 ∀𝑥 ∈ 𝐵 ((𝑦 · 𝑥) = 𝑥 ∧ (𝑥 · 𝑦) = 𝑥)) |
| 7 | | reurex 2715 |
. . . . 5
⊢
(∃!𝑦 ∈
𝐵 ∀𝑥 ∈ 𝐵 ((𝑦 · 𝑥) = 𝑥 ∧ (𝑥 · 𝑦) = 𝑥) → ∃𝑦 ∈ 𝐵 ∀𝑥 ∈ 𝐵 ((𝑦 · 𝑥) = 𝑥 ∧ (𝑥 · 𝑦) = 𝑥)) |
| 8 | 6, 7 | syl 14 |
. . . 4
⊢ (𝑅 ∈ SRing →
∃𝑦 ∈ 𝐵 ∀𝑥 ∈ 𝐵 ((𝑦 · 𝑥) = 𝑥 ∧ (𝑥 · 𝑦) = 𝑥)) |
| 9 | | eqid 2196 |
. . . . . 6
⊢
(mulGrp‘𝑅) =
(mulGrp‘𝑅) |
| 10 | 9, 4 | mgpbasg 13482 |
. . . . 5
⊢ (𝑅 ∈ SRing → 𝐵 =
(Base‘(mulGrp‘𝑅))) |
| 11 | 9, 5 | mgpplusgg 13480 |
. . . . . . . . 9
⊢ (𝑅 ∈ SRing → · =
(+g‘(mulGrp‘𝑅))) |
| 12 | 11 | oveqd 5939 |
. . . . . . . 8
⊢ (𝑅 ∈ SRing → (𝑦 · 𝑥) = (𝑦(+g‘(mulGrp‘𝑅))𝑥)) |
| 13 | 12 | eqeq1d 2205 |
. . . . . . 7
⊢ (𝑅 ∈ SRing → ((𝑦 · 𝑥) = 𝑥 ↔ (𝑦(+g‘(mulGrp‘𝑅))𝑥) = 𝑥)) |
| 14 | 11 | oveqd 5939 |
. . . . . . . 8
⊢ (𝑅 ∈ SRing → (𝑥 · 𝑦) = (𝑥(+g‘(mulGrp‘𝑅))𝑦)) |
| 15 | 14 | eqeq1d 2205 |
. . . . . . 7
⊢ (𝑅 ∈ SRing → ((𝑥 · 𝑦) = 𝑥 ↔ (𝑥(+g‘(mulGrp‘𝑅))𝑦) = 𝑥)) |
| 16 | 13, 15 | anbi12d 473 |
. . . . . 6
⊢ (𝑅 ∈ SRing → (((𝑦 · 𝑥) = 𝑥 ∧ (𝑥 · 𝑦) = 𝑥) ↔ ((𝑦(+g‘(mulGrp‘𝑅))𝑥) = 𝑥 ∧ (𝑥(+g‘(mulGrp‘𝑅))𝑦) = 𝑥))) |
| 17 | 10, 16 | raleqbidv 2709 |
. . . . 5
⊢ (𝑅 ∈ SRing →
(∀𝑥 ∈ 𝐵 ((𝑦 · 𝑥) = 𝑥 ∧ (𝑥 · 𝑦) = 𝑥) ↔ ∀𝑥 ∈ (Base‘(mulGrp‘𝑅))((𝑦(+g‘(mulGrp‘𝑅))𝑥) = 𝑥 ∧ (𝑥(+g‘(mulGrp‘𝑅))𝑦) = 𝑥))) |
| 18 | 10, 17 | rexeqbidv 2710 |
. . . 4
⊢ (𝑅 ∈ SRing →
(∃𝑦 ∈ 𝐵 ∀𝑥 ∈ 𝐵 ((𝑦 · 𝑥) = 𝑥 ∧ (𝑥 · 𝑦) = 𝑥) ↔ ∃𝑦 ∈ (Base‘(mulGrp‘𝑅))∀𝑥 ∈ (Base‘(mulGrp‘𝑅))((𝑦(+g‘(mulGrp‘𝑅))𝑥) = 𝑥 ∧ (𝑥(+g‘(mulGrp‘𝑅))𝑦) = 𝑥))) |
| 19 | 8, 18 | mpbid 147 |
. . 3
⊢ (𝑅 ∈ SRing →
∃𝑦 ∈
(Base‘(mulGrp‘𝑅))∀𝑥 ∈ (Base‘(mulGrp‘𝑅))((𝑦(+g‘(mulGrp‘𝑅))𝑥) = 𝑥 ∧ (𝑥(+g‘(mulGrp‘𝑅))𝑦) = 𝑥)) |
| 20 | 1, 2, 3, 19 | ismgmid 13020 |
. 2
⊢ (𝑅 ∈ SRing → ((𝐼 ∈
(Base‘(mulGrp‘𝑅)) ∧ ∀𝑥 ∈ (Base‘(mulGrp‘𝑅))((𝐼(+g‘(mulGrp‘𝑅))𝑥) = 𝑥 ∧ (𝑥(+g‘(mulGrp‘𝑅))𝐼) = 𝑥)) ↔
(0g‘(mulGrp‘𝑅)) = 𝐼)) |
| 21 | 10 | eleq2d 2266 |
. . 3
⊢ (𝑅 ∈ SRing → (𝐼 ∈ 𝐵 ↔ 𝐼 ∈ (Base‘(mulGrp‘𝑅)))) |
| 22 | 11 | oveqd 5939 |
. . . . . 6
⊢ (𝑅 ∈ SRing → (𝐼 · 𝑥) = (𝐼(+g‘(mulGrp‘𝑅))𝑥)) |
| 23 | 22 | eqeq1d 2205 |
. . . . 5
⊢ (𝑅 ∈ SRing → ((𝐼 · 𝑥) = 𝑥 ↔ (𝐼(+g‘(mulGrp‘𝑅))𝑥) = 𝑥)) |
| 24 | 11 | oveqd 5939 |
. . . . . 6
⊢ (𝑅 ∈ SRing → (𝑥 · 𝐼) = (𝑥(+g‘(mulGrp‘𝑅))𝐼)) |
| 25 | 24 | eqeq1d 2205 |
. . . . 5
⊢ (𝑅 ∈ SRing → ((𝑥 · 𝐼) = 𝑥 ↔ (𝑥(+g‘(mulGrp‘𝑅))𝐼) = 𝑥)) |
| 26 | 23, 25 | anbi12d 473 |
. . . 4
⊢ (𝑅 ∈ SRing → (((𝐼 · 𝑥) = 𝑥 ∧ (𝑥 · 𝐼) = 𝑥) ↔ ((𝐼(+g‘(mulGrp‘𝑅))𝑥) = 𝑥 ∧ (𝑥(+g‘(mulGrp‘𝑅))𝐼) = 𝑥))) |
| 27 | 10, 26 | raleqbidv 2709 |
. . 3
⊢ (𝑅 ∈ SRing →
(∀𝑥 ∈ 𝐵 ((𝐼 · 𝑥) = 𝑥 ∧ (𝑥 · 𝐼) = 𝑥) ↔ ∀𝑥 ∈ (Base‘(mulGrp‘𝑅))((𝐼(+g‘(mulGrp‘𝑅))𝑥) = 𝑥 ∧ (𝑥(+g‘(mulGrp‘𝑅))𝐼) = 𝑥))) |
| 28 | 21, 27 | anbi12d 473 |
. 2
⊢ (𝑅 ∈ SRing → ((𝐼 ∈ 𝐵 ∧ ∀𝑥 ∈ 𝐵 ((𝐼 · 𝑥) = 𝑥 ∧ (𝑥 · 𝐼) = 𝑥)) ↔ (𝐼 ∈ (Base‘(mulGrp‘𝑅)) ∧ ∀𝑥 ∈
(Base‘(mulGrp‘𝑅))((𝐼(+g‘(mulGrp‘𝑅))𝑥) = 𝑥 ∧ (𝑥(+g‘(mulGrp‘𝑅))𝐼) = 𝑥)))) |
| 29 | | srgidm.u |
. . . 4
⊢ 1 =
(1r‘𝑅) |
| 30 | 9, 29 | ringidvalg 13517 |
. . 3
⊢ (𝑅 ∈ SRing → 1 =
(0g‘(mulGrp‘𝑅))) |
| 31 | 30 | eqeq1d 2205 |
. 2
⊢ (𝑅 ∈ SRing → ( 1 = 𝐼 ↔
(0g‘(mulGrp‘𝑅)) = 𝐼)) |
| 32 | 20, 28, 31 | 3bitr4d 220 |
1
⊢ (𝑅 ∈ SRing → ((𝐼 ∈ 𝐵 ∧ ∀𝑥 ∈ 𝐵 ((𝐼 · 𝑥) = 𝑥 ∧ (𝑥 · 𝐼) = 𝑥)) ↔ 1 = 𝐼)) |