ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  issrgid GIF version

Theorem issrgid 13828
Description: Properties showing that an element 𝐼 is the unity element of a semiring. (Contributed by NM, 7-Aug-2013.) (Revised by Thierry Arnoux, 1-Apr-2018.)
Hypotheses
Ref Expression
srgidm.b 𝐵 = (Base‘𝑅)
srgidm.t · = (.r𝑅)
srgidm.u 1 = (1r𝑅)
Assertion
Ref Expression
issrgid (𝑅 ∈ SRing → ((𝐼𝐵 ∧ ∀𝑥𝐵 ((𝐼 · 𝑥) = 𝑥 ∧ (𝑥 · 𝐼) = 𝑥)) ↔ 1 = 𝐼))
Distinct variable groups:   𝑥,𝐵   𝑥,𝐼   𝑥,𝑅   𝑥, ·   𝑥, 1

Proof of Theorem issrgid
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 eqid 2206 . . 3 (Base‘(mulGrp‘𝑅)) = (Base‘(mulGrp‘𝑅))
2 eqid 2206 . . 3 (0g‘(mulGrp‘𝑅)) = (0g‘(mulGrp‘𝑅))
3 eqid 2206 . . 3 (+g‘(mulGrp‘𝑅)) = (+g‘(mulGrp‘𝑅))
4 srgidm.b . . . . . 6 𝐵 = (Base‘𝑅)
5 srgidm.t . . . . . 6 · = (.r𝑅)
64, 5srgideu 13819 . . . . 5 (𝑅 ∈ SRing → ∃!𝑦𝐵𝑥𝐵 ((𝑦 · 𝑥) = 𝑥 ∧ (𝑥 · 𝑦) = 𝑥))
7 reurex 2725 . . . . 5 (∃!𝑦𝐵𝑥𝐵 ((𝑦 · 𝑥) = 𝑥 ∧ (𝑥 · 𝑦) = 𝑥) → ∃𝑦𝐵𝑥𝐵 ((𝑦 · 𝑥) = 𝑥 ∧ (𝑥 · 𝑦) = 𝑥))
86, 7syl 14 . . . 4 (𝑅 ∈ SRing → ∃𝑦𝐵𝑥𝐵 ((𝑦 · 𝑥) = 𝑥 ∧ (𝑥 · 𝑦) = 𝑥))
9 eqid 2206 . . . . . 6 (mulGrp‘𝑅) = (mulGrp‘𝑅)
109, 4mgpbasg 13773 . . . . 5 (𝑅 ∈ SRing → 𝐵 = (Base‘(mulGrp‘𝑅)))
119, 5mgpplusgg 13771 . . . . . . . . 9 (𝑅 ∈ SRing → · = (+g‘(mulGrp‘𝑅)))
1211oveqd 5979 . . . . . . . 8 (𝑅 ∈ SRing → (𝑦 · 𝑥) = (𝑦(+g‘(mulGrp‘𝑅))𝑥))
1312eqeq1d 2215 . . . . . . 7 (𝑅 ∈ SRing → ((𝑦 · 𝑥) = 𝑥 ↔ (𝑦(+g‘(mulGrp‘𝑅))𝑥) = 𝑥))
1411oveqd 5979 . . . . . . . 8 (𝑅 ∈ SRing → (𝑥 · 𝑦) = (𝑥(+g‘(mulGrp‘𝑅))𝑦))
1514eqeq1d 2215 . . . . . . 7 (𝑅 ∈ SRing → ((𝑥 · 𝑦) = 𝑥 ↔ (𝑥(+g‘(mulGrp‘𝑅))𝑦) = 𝑥))
1613, 15anbi12d 473 . . . . . 6 (𝑅 ∈ SRing → (((𝑦 · 𝑥) = 𝑥 ∧ (𝑥 · 𝑦) = 𝑥) ↔ ((𝑦(+g‘(mulGrp‘𝑅))𝑥) = 𝑥 ∧ (𝑥(+g‘(mulGrp‘𝑅))𝑦) = 𝑥)))
1710, 16raleqbidv 2719 . . . . 5 (𝑅 ∈ SRing → (∀𝑥𝐵 ((𝑦 · 𝑥) = 𝑥 ∧ (𝑥 · 𝑦) = 𝑥) ↔ ∀𝑥 ∈ (Base‘(mulGrp‘𝑅))((𝑦(+g‘(mulGrp‘𝑅))𝑥) = 𝑥 ∧ (𝑥(+g‘(mulGrp‘𝑅))𝑦) = 𝑥)))
1810, 17rexeqbidv 2720 . . . 4 (𝑅 ∈ SRing → (∃𝑦𝐵𝑥𝐵 ((𝑦 · 𝑥) = 𝑥 ∧ (𝑥 · 𝑦) = 𝑥) ↔ ∃𝑦 ∈ (Base‘(mulGrp‘𝑅))∀𝑥 ∈ (Base‘(mulGrp‘𝑅))((𝑦(+g‘(mulGrp‘𝑅))𝑥) = 𝑥 ∧ (𝑥(+g‘(mulGrp‘𝑅))𝑦) = 𝑥)))
198, 18mpbid 147 . . 3 (𝑅 ∈ SRing → ∃𝑦 ∈ (Base‘(mulGrp‘𝑅))∀𝑥 ∈ (Base‘(mulGrp‘𝑅))((𝑦(+g‘(mulGrp‘𝑅))𝑥) = 𝑥 ∧ (𝑥(+g‘(mulGrp‘𝑅))𝑦) = 𝑥))
201, 2, 3, 19ismgmid 13294 . 2 (𝑅 ∈ SRing → ((𝐼 ∈ (Base‘(mulGrp‘𝑅)) ∧ ∀𝑥 ∈ (Base‘(mulGrp‘𝑅))((𝐼(+g‘(mulGrp‘𝑅))𝑥) = 𝑥 ∧ (𝑥(+g‘(mulGrp‘𝑅))𝐼) = 𝑥)) ↔ (0g‘(mulGrp‘𝑅)) = 𝐼))
2110eleq2d 2276 . . 3 (𝑅 ∈ SRing → (𝐼𝐵𝐼 ∈ (Base‘(mulGrp‘𝑅))))
2211oveqd 5979 . . . . . 6 (𝑅 ∈ SRing → (𝐼 · 𝑥) = (𝐼(+g‘(mulGrp‘𝑅))𝑥))
2322eqeq1d 2215 . . . . 5 (𝑅 ∈ SRing → ((𝐼 · 𝑥) = 𝑥 ↔ (𝐼(+g‘(mulGrp‘𝑅))𝑥) = 𝑥))
2411oveqd 5979 . . . . . 6 (𝑅 ∈ SRing → (𝑥 · 𝐼) = (𝑥(+g‘(mulGrp‘𝑅))𝐼))
2524eqeq1d 2215 . . . . 5 (𝑅 ∈ SRing → ((𝑥 · 𝐼) = 𝑥 ↔ (𝑥(+g‘(mulGrp‘𝑅))𝐼) = 𝑥))
2623, 25anbi12d 473 . . . 4 (𝑅 ∈ SRing → (((𝐼 · 𝑥) = 𝑥 ∧ (𝑥 · 𝐼) = 𝑥) ↔ ((𝐼(+g‘(mulGrp‘𝑅))𝑥) = 𝑥 ∧ (𝑥(+g‘(mulGrp‘𝑅))𝐼) = 𝑥)))
2710, 26raleqbidv 2719 . . 3 (𝑅 ∈ SRing → (∀𝑥𝐵 ((𝐼 · 𝑥) = 𝑥 ∧ (𝑥 · 𝐼) = 𝑥) ↔ ∀𝑥 ∈ (Base‘(mulGrp‘𝑅))((𝐼(+g‘(mulGrp‘𝑅))𝑥) = 𝑥 ∧ (𝑥(+g‘(mulGrp‘𝑅))𝐼) = 𝑥)))
2821, 27anbi12d 473 . 2 (𝑅 ∈ SRing → ((𝐼𝐵 ∧ ∀𝑥𝐵 ((𝐼 · 𝑥) = 𝑥 ∧ (𝑥 · 𝐼) = 𝑥)) ↔ (𝐼 ∈ (Base‘(mulGrp‘𝑅)) ∧ ∀𝑥 ∈ (Base‘(mulGrp‘𝑅))((𝐼(+g‘(mulGrp‘𝑅))𝑥) = 𝑥 ∧ (𝑥(+g‘(mulGrp‘𝑅))𝐼) = 𝑥))))
29 srgidm.u . . . 4 1 = (1r𝑅)
309, 29ringidvalg 13808 . . 3 (𝑅 ∈ SRing → 1 = (0g‘(mulGrp‘𝑅)))
3130eqeq1d 2215 . 2 (𝑅 ∈ SRing → ( 1 = 𝐼 ↔ (0g‘(mulGrp‘𝑅)) = 𝐼))
3220, 28, 313bitr4d 220 1 (𝑅 ∈ SRing → ((𝐼𝐵 ∧ ∀𝑥𝐵 ((𝐼 · 𝑥) = 𝑥 ∧ (𝑥 · 𝐼) = 𝑥)) ↔ 1 = 𝐼))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1373  wcel 2177  wral 2485  wrex 2486  ∃!wreu 2487  cfv 5285  (class class class)co 5962  Basecbs 12917  +gcplusg 12994  .rcmulr 12995  0gc0g 13173  mulGrpcmgp 13767  1rcur 13806  SRingcsrg 13810
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-sep 4173  ax-pow 4229  ax-pr 4264  ax-un 4493  ax-setind 4598  ax-cnex 8046  ax-resscn 8047  ax-1cn 8048  ax-1re 8049  ax-icn 8050  ax-addcl 8051  ax-addrcl 8052  ax-mulcl 8053  ax-addcom 8055  ax-addass 8057  ax-i2m1 8060  ax-0lt1 8061  ax-0id 8063  ax-rnegex 8064  ax-pre-ltirr 8067  ax-pre-ltadd 8071
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-nel 2473  df-ral 2490  df-rex 2491  df-reu 2492  df-rmo 2493  df-rab 2494  df-v 2775  df-sbc 3003  df-csb 3098  df-dif 3172  df-un 3174  df-in 3176  df-ss 3183  df-nul 3465  df-pw 3623  df-sn 3644  df-pr 3645  df-op 3647  df-uni 3860  df-int 3895  df-br 4055  df-opab 4117  df-mpt 4118  df-id 4353  df-xp 4694  df-rel 4695  df-cnv 4696  df-co 4697  df-dm 4698  df-rn 4699  df-res 4700  df-ima 4701  df-iota 5246  df-fun 5287  df-fn 5288  df-fv 5293  df-riota 5917  df-ov 5965  df-oprab 5966  df-mpo 5967  df-pnf 8139  df-mnf 8140  df-ltxr 8142  df-inn 9067  df-2 9125  df-3 9126  df-ndx 12920  df-slot 12921  df-base 12923  df-sets 12924  df-plusg 13007  df-mulr 13008  df-0g 13175  df-mgm 13273  df-sgrp 13319  df-mnd 13334  df-mgp 13768  df-ur 13807  df-srg 13811
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator