ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  prsrriota GIF version

Theorem prsrriota 7729
Description: Mapping a restricted iota from a positive real to a signed real. (Contributed by Jim Kingdon, 29-Jun-2021.)
Assertion
Ref Expression
prsrriota ((𝐴R ∧ 0R <R 𝐴) → [⟨((𝑥P [⟨(𝑥 +P 1P), 1P⟩] ~R = 𝐴) +P 1P), 1P⟩] ~R = 𝐴)
Distinct variable group:   𝑥,𝐴

Proof of Theorem prsrriota
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 srpospr 7724 . . 3 ((𝐴R ∧ 0R <R 𝐴) → ∃!𝑦P [⟨(𝑦 +P 1P), 1P⟩] ~R = 𝐴)
2 reurex 2679 . . 3 (∃!𝑦P [⟨(𝑦 +P 1P), 1P⟩] ~R = 𝐴 → ∃𝑦P [⟨(𝑦 +P 1P), 1P⟩] ~R = 𝐴)
31, 2syl 14 . 2 ((𝐴R ∧ 0R <R 𝐴) → ∃𝑦P [⟨(𝑦 +P 1P), 1P⟩] ~R = 𝐴)
4 simprr 522 . . . . 5 (((𝐴R ∧ 0R <R 𝐴) ∧ (𝑦P ∧ [⟨(𝑦 +P 1P), 1P⟩] ~R = 𝐴)) → [⟨(𝑦 +P 1P), 1P⟩] ~R = 𝐴)
5 simprl 521 . . . . . 6 (((𝐴R ∧ 0R <R 𝐴) ∧ (𝑦P ∧ [⟨(𝑦 +P 1P), 1P⟩] ~R = 𝐴)) → 𝑦P)
6 srpospr 7724 . . . . . . 7 ((𝐴R ∧ 0R <R 𝐴) → ∃!𝑥P [⟨(𝑥 +P 1P), 1P⟩] ~R = 𝐴)
76adantr 274 . . . . . 6 (((𝐴R ∧ 0R <R 𝐴) ∧ (𝑦P ∧ [⟨(𝑦 +P 1P), 1P⟩] ~R = 𝐴)) → ∃!𝑥P [⟨(𝑥 +P 1P), 1P⟩] ~R = 𝐴)
8 oveq1 5849 . . . . . . . . . 10 (𝑥 = 𝑦 → (𝑥 +P 1P) = (𝑦 +P 1P))
98opeq1d 3764 . . . . . . . . 9 (𝑥 = 𝑦 → ⟨(𝑥 +P 1P), 1P⟩ = ⟨(𝑦 +P 1P), 1P⟩)
109eceq1d 6537 . . . . . . . 8 (𝑥 = 𝑦 → [⟨(𝑥 +P 1P), 1P⟩] ~R = [⟨(𝑦 +P 1P), 1P⟩] ~R )
1110eqeq1d 2174 . . . . . . 7 (𝑥 = 𝑦 → ([⟨(𝑥 +P 1P), 1P⟩] ~R = 𝐴 ↔ [⟨(𝑦 +P 1P), 1P⟩] ~R = 𝐴))
1211riota2 5820 . . . . . 6 ((𝑦P ∧ ∃!𝑥P [⟨(𝑥 +P 1P), 1P⟩] ~R = 𝐴) → ([⟨(𝑦 +P 1P), 1P⟩] ~R = 𝐴 ↔ (𝑥P [⟨(𝑥 +P 1P), 1P⟩] ~R = 𝐴) = 𝑦))
135, 7, 12syl2anc 409 . . . . 5 (((𝐴R ∧ 0R <R 𝐴) ∧ (𝑦P ∧ [⟨(𝑦 +P 1P), 1P⟩] ~R = 𝐴)) → ([⟨(𝑦 +P 1P), 1P⟩] ~R = 𝐴 ↔ (𝑥P [⟨(𝑥 +P 1P), 1P⟩] ~R = 𝐴) = 𝑦))
144, 13mpbid 146 . . . 4 (((𝐴R ∧ 0R <R 𝐴) ∧ (𝑦P ∧ [⟨(𝑦 +P 1P), 1P⟩] ~R = 𝐴)) → (𝑥P [⟨(𝑥 +P 1P), 1P⟩] ~R = 𝐴) = 𝑦)
15 oveq1 5849 . . . . . 6 ((𝑥P [⟨(𝑥 +P 1P), 1P⟩] ~R = 𝐴) = 𝑦 → ((𝑥P [⟨(𝑥 +P 1P), 1P⟩] ~R = 𝐴) +P 1P) = (𝑦 +P 1P))
1615opeq1d 3764 . . . . 5 ((𝑥P [⟨(𝑥 +P 1P), 1P⟩] ~R = 𝐴) = 𝑦 → ⟨((𝑥P [⟨(𝑥 +P 1P), 1P⟩] ~R = 𝐴) +P 1P), 1P⟩ = ⟨(𝑦 +P 1P), 1P⟩)
1716eceq1d 6537 . . . 4 ((𝑥P [⟨(𝑥 +P 1P), 1P⟩] ~R = 𝐴) = 𝑦 → [⟨((𝑥P [⟨(𝑥 +P 1P), 1P⟩] ~R = 𝐴) +P 1P), 1P⟩] ~R = [⟨(𝑦 +P 1P), 1P⟩] ~R )
1814, 17syl 14 . . 3 (((𝐴R ∧ 0R <R 𝐴) ∧ (𝑦P ∧ [⟨(𝑦 +P 1P), 1P⟩] ~R = 𝐴)) → [⟨((𝑥P [⟨(𝑥 +P 1P), 1P⟩] ~R = 𝐴) +P 1P), 1P⟩] ~R = [⟨(𝑦 +P 1P), 1P⟩] ~R )
1918, 4eqtrd 2198 . 2 (((𝐴R ∧ 0R <R 𝐴) ∧ (𝑦P ∧ [⟨(𝑦 +P 1P), 1P⟩] ~R = 𝐴)) → [⟨((𝑥P [⟨(𝑥 +P 1P), 1P⟩] ~R = 𝐴) +P 1P), 1P⟩] ~R = 𝐴)
203, 19rexlimddv 2588 1 ((𝐴R ∧ 0R <R 𝐴) → [⟨((𝑥P [⟨(𝑥 +P 1P), 1P⟩] ~R = 𝐴) +P 1P), 1P⟩] ~R = 𝐴)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104   = wceq 1343  wcel 2136  wrex 2445  ∃!wreu 2446  cop 3579   class class class wbr 3982  crio 5797  (class class class)co 5842  [cec 6499  Pcnp 7232  1Pc1p 7233   +P cpp 7234   ~R cer 7237  Rcnr 7238  0Rc0r 7239   <R cltr 7244
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-coll 4097  ax-sep 4100  ax-nul 4108  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-setind 4514  ax-iinf 4565
This theorem depends on definitions:  df-bi 116  df-dc 825  df-3or 969  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-ral 2449  df-rex 2450  df-reu 2451  df-rmo 2452  df-rab 2453  df-v 2728  df-sbc 2952  df-csb 3046  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-nul 3410  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-int 3825  df-iun 3868  df-br 3983  df-opab 4044  df-mpt 4045  df-tr 4081  df-eprel 4267  df-id 4271  df-po 4274  df-iso 4275  df-iord 4344  df-on 4346  df-suc 4349  df-iom 4568  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-f1 5193  df-fo 5194  df-f1o 5195  df-fv 5196  df-riota 5798  df-ov 5845  df-oprab 5846  df-mpo 5847  df-1st 6108  df-2nd 6109  df-recs 6273  df-irdg 6338  df-1o 6384  df-2o 6385  df-oadd 6388  df-omul 6389  df-er 6501  df-ec 6503  df-qs 6507  df-ni 7245  df-pli 7246  df-mi 7247  df-lti 7248  df-plpq 7285  df-mpq 7286  df-enq 7288  df-nqqs 7289  df-plqqs 7290  df-mqqs 7291  df-1nqqs 7292  df-rq 7293  df-ltnqqs 7294  df-enq0 7365  df-nq0 7366  df-0nq0 7367  df-plq0 7368  df-mq0 7369  df-inp 7407  df-i1p 7408  df-iplp 7409  df-iltp 7411  df-enr 7667  df-nr 7668  df-ltr 7671  df-0r 7672
This theorem is referenced by:  caucvgsrlemfv  7732  caucvgsrlemgt1  7736
  Copyright terms: Public domain W3C validator