| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > prsrriota | GIF version | ||
| Description: Mapping a restricted iota from a positive real to a signed real. (Contributed by Jim Kingdon, 29-Jun-2021.) |
| Ref | Expression |
|---|---|
| prsrriota | ⊢ ((𝐴 ∈ R ∧ 0R <R 𝐴) → [〈((℩𝑥 ∈ P [〈(𝑥 +P 1P), 1P〉] ~R = 𝐴) +P 1P), 1P〉] ~R = 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | srpospr 7970 | . . 3 ⊢ ((𝐴 ∈ R ∧ 0R <R 𝐴) → ∃!𝑦 ∈ P [〈(𝑦 +P 1P), 1P〉] ~R = 𝐴) | |
| 2 | reurex 2750 | . . 3 ⊢ (∃!𝑦 ∈ P [〈(𝑦 +P 1P), 1P〉] ~R = 𝐴 → ∃𝑦 ∈ P [〈(𝑦 +P 1P), 1P〉] ~R = 𝐴) | |
| 3 | 1, 2 | syl 14 | . 2 ⊢ ((𝐴 ∈ R ∧ 0R <R 𝐴) → ∃𝑦 ∈ P [〈(𝑦 +P 1P), 1P〉] ~R = 𝐴) |
| 4 | simprr 531 | . . . . 5 ⊢ (((𝐴 ∈ R ∧ 0R <R 𝐴) ∧ (𝑦 ∈ P ∧ [〈(𝑦 +P 1P), 1P〉] ~R = 𝐴)) → [〈(𝑦 +P 1P), 1P〉] ~R = 𝐴) | |
| 5 | simprl 529 | . . . . . 6 ⊢ (((𝐴 ∈ R ∧ 0R <R 𝐴) ∧ (𝑦 ∈ P ∧ [〈(𝑦 +P 1P), 1P〉] ~R = 𝐴)) → 𝑦 ∈ P) | |
| 6 | srpospr 7970 | . . . . . . 7 ⊢ ((𝐴 ∈ R ∧ 0R <R 𝐴) → ∃!𝑥 ∈ P [〈(𝑥 +P 1P), 1P〉] ~R = 𝐴) | |
| 7 | 6 | adantr 276 | . . . . . 6 ⊢ (((𝐴 ∈ R ∧ 0R <R 𝐴) ∧ (𝑦 ∈ P ∧ [〈(𝑦 +P 1P), 1P〉] ~R = 𝐴)) → ∃!𝑥 ∈ P [〈(𝑥 +P 1P), 1P〉] ~R = 𝐴) |
| 8 | oveq1 6008 | . . . . . . . . . 10 ⊢ (𝑥 = 𝑦 → (𝑥 +P 1P) = (𝑦 +P 1P)) | |
| 9 | 8 | opeq1d 3863 | . . . . . . . . 9 ⊢ (𝑥 = 𝑦 → 〈(𝑥 +P 1P), 1P〉 = 〈(𝑦 +P 1P), 1P〉) |
| 10 | 9 | eceq1d 6716 | . . . . . . . 8 ⊢ (𝑥 = 𝑦 → [〈(𝑥 +P 1P), 1P〉] ~R = [〈(𝑦 +P 1P), 1P〉] ~R ) |
| 11 | 10 | eqeq1d 2238 | . . . . . . 7 ⊢ (𝑥 = 𝑦 → ([〈(𝑥 +P 1P), 1P〉] ~R = 𝐴 ↔ [〈(𝑦 +P 1P), 1P〉] ~R = 𝐴)) |
| 12 | 11 | riota2 5978 | . . . . . 6 ⊢ ((𝑦 ∈ P ∧ ∃!𝑥 ∈ P [〈(𝑥 +P 1P), 1P〉] ~R = 𝐴) → ([〈(𝑦 +P 1P), 1P〉] ~R = 𝐴 ↔ (℩𝑥 ∈ P [〈(𝑥 +P 1P), 1P〉] ~R = 𝐴) = 𝑦)) |
| 13 | 5, 7, 12 | syl2anc 411 | . . . . 5 ⊢ (((𝐴 ∈ R ∧ 0R <R 𝐴) ∧ (𝑦 ∈ P ∧ [〈(𝑦 +P 1P), 1P〉] ~R = 𝐴)) → ([〈(𝑦 +P 1P), 1P〉] ~R = 𝐴 ↔ (℩𝑥 ∈ P [〈(𝑥 +P 1P), 1P〉] ~R = 𝐴) = 𝑦)) |
| 14 | 4, 13 | mpbid 147 | . . . 4 ⊢ (((𝐴 ∈ R ∧ 0R <R 𝐴) ∧ (𝑦 ∈ P ∧ [〈(𝑦 +P 1P), 1P〉] ~R = 𝐴)) → (℩𝑥 ∈ P [〈(𝑥 +P 1P), 1P〉] ~R = 𝐴) = 𝑦) |
| 15 | oveq1 6008 | . . . . . 6 ⊢ ((℩𝑥 ∈ P [〈(𝑥 +P 1P), 1P〉] ~R = 𝐴) = 𝑦 → ((℩𝑥 ∈ P [〈(𝑥 +P 1P), 1P〉] ~R = 𝐴) +P 1P) = (𝑦 +P 1P)) | |
| 16 | 15 | opeq1d 3863 | . . . . 5 ⊢ ((℩𝑥 ∈ P [〈(𝑥 +P 1P), 1P〉] ~R = 𝐴) = 𝑦 → 〈((℩𝑥 ∈ P [〈(𝑥 +P 1P), 1P〉] ~R = 𝐴) +P 1P), 1P〉 = 〈(𝑦 +P 1P), 1P〉) |
| 17 | 16 | eceq1d 6716 | . . . 4 ⊢ ((℩𝑥 ∈ P [〈(𝑥 +P 1P), 1P〉] ~R = 𝐴) = 𝑦 → [〈((℩𝑥 ∈ P [〈(𝑥 +P 1P), 1P〉] ~R = 𝐴) +P 1P), 1P〉] ~R = [〈(𝑦 +P 1P), 1P〉] ~R ) |
| 18 | 14, 17 | syl 14 | . . 3 ⊢ (((𝐴 ∈ R ∧ 0R <R 𝐴) ∧ (𝑦 ∈ P ∧ [〈(𝑦 +P 1P), 1P〉] ~R = 𝐴)) → [〈((℩𝑥 ∈ P [〈(𝑥 +P 1P), 1P〉] ~R = 𝐴) +P 1P), 1P〉] ~R = [〈(𝑦 +P 1P), 1P〉] ~R ) |
| 19 | 18, 4 | eqtrd 2262 | . 2 ⊢ (((𝐴 ∈ R ∧ 0R <R 𝐴) ∧ (𝑦 ∈ P ∧ [〈(𝑦 +P 1P), 1P〉] ~R = 𝐴)) → [〈((℩𝑥 ∈ P [〈(𝑥 +P 1P), 1P〉] ~R = 𝐴) +P 1P), 1P〉] ~R = 𝐴) |
| 20 | 3, 19 | rexlimddv 2653 | 1 ⊢ ((𝐴 ∈ R ∧ 0R <R 𝐴) → [〈((℩𝑥 ∈ P [〈(𝑥 +P 1P), 1P〉] ~R = 𝐴) +P 1P), 1P〉] ~R = 𝐴) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 = wceq 1395 ∈ wcel 2200 ∃wrex 2509 ∃!wreu 2510 〈cop 3669 class class class wbr 4083 ℩crio 5953 (class class class)co 6001 [cec 6678 Pcnp 7478 1Pc1p 7479 +P cpp 7480 ~R cer 7483 Rcnr 7484 0Rc0r 7485 <R cltr 7490 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-coll 4199 ax-sep 4202 ax-nul 4210 ax-pow 4258 ax-pr 4293 ax-un 4524 ax-setind 4629 ax-iinf 4680 |
| This theorem depends on definitions: df-bi 117 df-dc 840 df-3or 1003 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-ral 2513 df-rex 2514 df-reu 2515 df-rmo 2516 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-int 3924 df-iun 3967 df-br 4084 df-opab 4146 df-mpt 4147 df-tr 4183 df-eprel 4380 df-id 4384 df-po 4387 df-iso 4388 df-iord 4457 df-on 4459 df-suc 4462 df-iom 4683 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-rn 4730 df-res 4731 df-ima 4732 df-iota 5278 df-fun 5320 df-fn 5321 df-f 5322 df-f1 5323 df-fo 5324 df-f1o 5325 df-fv 5326 df-riota 5954 df-ov 6004 df-oprab 6005 df-mpo 6006 df-1st 6286 df-2nd 6287 df-recs 6451 df-irdg 6516 df-1o 6562 df-2o 6563 df-oadd 6566 df-omul 6567 df-er 6680 df-ec 6682 df-qs 6686 df-ni 7491 df-pli 7492 df-mi 7493 df-lti 7494 df-plpq 7531 df-mpq 7532 df-enq 7534 df-nqqs 7535 df-plqqs 7536 df-mqqs 7537 df-1nqqs 7538 df-rq 7539 df-ltnqqs 7540 df-enq0 7611 df-nq0 7612 df-0nq0 7613 df-plq0 7614 df-mq0 7615 df-inp 7653 df-i1p 7654 df-iplp 7655 df-iltp 7657 df-enr 7913 df-nr 7914 df-ltr 7917 df-0r 7918 |
| This theorem is referenced by: caucvgsrlemfv 7978 caucvgsrlemgt1 7982 |
| Copyright terms: Public domain | W3C validator |