ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  prsrriota GIF version

Theorem prsrriota 7936
Description: Mapping a restricted iota from a positive real to a signed real. (Contributed by Jim Kingdon, 29-Jun-2021.)
Assertion
Ref Expression
prsrriota ((𝐴R ∧ 0R <R 𝐴) → [⟨((𝑥P [⟨(𝑥 +P 1P), 1P⟩] ~R = 𝐴) +P 1P), 1P⟩] ~R = 𝐴)
Distinct variable group:   𝑥,𝐴

Proof of Theorem prsrriota
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 srpospr 7931 . . 3 ((𝐴R ∧ 0R <R 𝐴) → ∃!𝑦P [⟨(𝑦 +P 1P), 1P⟩] ~R = 𝐴)
2 reurex 2727 . . 3 (∃!𝑦P [⟨(𝑦 +P 1P), 1P⟩] ~R = 𝐴 → ∃𝑦P [⟨(𝑦 +P 1P), 1P⟩] ~R = 𝐴)
31, 2syl 14 . 2 ((𝐴R ∧ 0R <R 𝐴) → ∃𝑦P [⟨(𝑦 +P 1P), 1P⟩] ~R = 𝐴)
4 simprr 531 . . . . 5 (((𝐴R ∧ 0R <R 𝐴) ∧ (𝑦P ∧ [⟨(𝑦 +P 1P), 1P⟩] ~R = 𝐴)) → [⟨(𝑦 +P 1P), 1P⟩] ~R = 𝐴)
5 simprl 529 . . . . . 6 (((𝐴R ∧ 0R <R 𝐴) ∧ (𝑦P ∧ [⟨(𝑦 +P 1P), 1P⟩] ~R = 𝐴)) → 𝑦P)
6 srpospr 7931 . . . . . . 7 ((𝐴R ∧ 0R <R 𝐴) → ∃!𝑥P [⟨(𝑥 +P 1P), 1P⟩] ~R = 𝐴)
76adantr 276 . . . . . 6 (((𝐴R ∧ 0R <R 𝐴) ∧ (𝑦P ∧ [⟨(𝑦 +P 1P), 1P⟩] ~R = 𝐴)) → ∃!𝑥P [⟨(𝑥 +P 1P), 1P⟩] ~R = 𝐴)
8 oveq1 5974 . . . . . . . . . 10 (𝑥 = 𝑦 → (𝑥 +P 1P) = (𝑦 +P 1P))
98opeq1d 3839 . . . . . . . . 9 (𝑥 = 𝑦 → ⟨(𝑥 +P 1P), 1P⟩ = ⟨(𝑦 +P 1P), 1P⟩)
109eceq1d 6679 . . . . . . . 8 (𝑥 = 𝑦 → [⟨(𝑥 +P 1P), 1P⟩] ~R = [⟨(𝑦 +P 1P), 1P⟩] ~R )
1110eqeq1d 2216 . . . . . . 7 (𝑥 = 𝑦 → ([⟨(𝑥 +P 1P), 1P⟩] ~R = 𝐴 ↔ [⟨(𝑦 +P 1P), 1P⟩] ~R = 𝐴))
1211riota2 5945 . . . . . 6 ((𝑦P ∧ ∃!𝑥P [⟨(𝑥 +P 1P), 1P⟩] ~R = 𝐴) → ([⟨(𝑦 +P 1P), 1P⟩] ~R = 𝐴 ↔ (𝑥P [⟨(𝑥 +P 1P), 1P⟩] ~R = 𝐴) = 𝑦))
135, 7, 12syl2anc 411 . . . . 5 (((𝐴R ∧ 0R <R 𝐴) ∧ (𝑦P ∧ [⟨(𝑦 +P 1P), 1P⟩] ~R = 𝐴)) → ([⟨(𝑦 +P 1P), 1P⟩] ~R = 𝐴 ↔ (𝑥P [⟨(𝑥 +P 1P), 1P⟩] ~R = 𝐴) = 𝑦))
144, 13mpbid 147 . . . 4 (((𝐴R ∧ 0R <R 𝐴) ∧ (𝑦P ∧ [⟨(𝑦 +P 1P), 1P⟩] ~R = 𝐴)) → (𝑥P [⟨(𝑥 +P 1P), 1P⟩] ~R = 𝐴) = 𝑦)
15 oveq1 5974 . . . . . 6 ((𝑥P [⟨(𝑥 +P 1P), 1P⟩] ~R = 𝐴) = 𝑦 → ((𝑥P [⟨(𝑥 +P 1P), 1P⟩] ~R = 𝐴) +P 1P) = (𝑦 +P 1P))
1615opeq1d 3839 . . . . 5 ((𝑥P [⟨(𝑥 +P 1P), 1P⟩] ~R = 𝐴) = 𝑦 → ⟨((𝑥P [⟨(𝑥 +P 1P), 1P⟩] ~R = 𝐴) +P 1P), 1P⟩ = ⟨(𝑦 +P 1P), 1P⟩)
1716eceq1d 6679 . . . 4 ((𝑥P [⟨(𝑥 +P 1P), 1P⟩] ~R = 𝐴) = 𝑦 → [⟨((𝑥P [⟨(𝑥 +P 1P), 1P⟩] ~R = 𝐴) +P 1P), 1P⟩] ~R = [⟨(𝑦 +P 1P), 1P⟩] ~R )
1814, 17syl 14 . . 3 (((𝐴R ∧ 0R <R 𝐴) ∧ (𝑦P ∧ [⟨(𝑦 +P 1P), 1P⟩] ~R = 𝐴)) → [⟨((𝑥P [⟨(𝑥 +P 1P), 1P⟩] ~R = 𝐴) +P 1P), 1P⟩] ~R = [⟨(𝑦 +P 1P), 1P⟩] ~R )
1918, 4eqtrd 2240 . 2 (((𝐴R ∧ 0R <R 𝐴) ∧ (𝑦P ∧ [⟨(𝑦 +P 1P), 1P⟩] ~R = 𝐴)) → [⟨((𝑥P [⟨(𝑥 +P 1P), 1P⟩] ~R = 𝐴) +P 1P), 1P⟩] ~R = 𝐴)
203, 19rexlimddv 2630 1 ((𝐴R ∧ 0R <R 𝐴) → [⟨((𝑥P [⟨(𝑥 +P 1P), 1P⟩] ~R = 𝐴) +P 1P), 1P⟩] ~R = 𝐴)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1373  wcel 2178  wrex 2487  ∃!wreu 2488  cop 3646   class class class wbr 4059  crio 5921  (class class class)co 5967  [cec 6641  Pcnp 7439  1Pc1p 7440   +P cpp 7441   ~R cer 7444  Rcnr 7445  0Rc0r 7446   <R cltr 7451
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-coll 4175  ax-sep 4178  ax-nul 4186  ax-pow 4234  ax-pr 4269  ax-un 4498  ax-setind 4603  ax-iinf 4654
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ne 2379  df-ral 2491  df-rex 2492  df-reu 2493  df-rmo 2494  df-rab 2495  df-v 2778  df-sbc 3006  df-csb 3102  df-dif 3176  df-un 3178  df-in 3180  df-ss 3187  df-nul 3469  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-int 3900  df-iun 3943  df-br 4060  df-opab 4122  df-mpt 4123  df-tr 4159  df-eprel 4354  df-id 4358  df-po 4361  df-iso 4362  df-iord 4431  df-on 4433  df-suc 4436  df-iom 4657  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-rn 4704  df-res 4705  df-ima 4706  df-iota 5251  df-fun 5292  df-fn 5293  df-f 5294  df-f1 5295  df-fo 5296  df-f1o 5297  df-fv 5298  df-riota 5922  df-ov 5970  df-oprab 5971  df-mpo 5972  df-1st 6249  df-2nd 6250  df-recs 6414  df-irdg 6479  df-1o 6525  df-2o 6526  df-oadd 6529  df-omul 6530  df-er 6643  df-ec 6645  df-qs 6649  df-ni 7452  df-pli 7453  df-mi 7454  df-lti 7455  df-plpq 7492  df-mpq 7493  df-enq 7495  df-nqqs 7496  df-plqqs 7497  df-mqqs 7498  df-1nqqs 7499  df-rq 7500  df-ltnqqs 7501  df-enq0 7572  df-nq0 7573  df-0nq0 7574  df-plq0 7575  df-mq0 7576  df-inp 7614  df-i1p 7615  df-iplp 7616  df-iltp 7618  df-enr 7874  df-nr 7875  df-ltr 7878  df-0r 7879
This theorem is referenced by:  caucvgsrlemfv  7939  caucvgsrlemgt1  7943
  Copyright terms: Public domain W3C validator