![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > prsrriota | GIF version |
Description: Mapping a restricted iota from a positive real to a signed real. (Contributed by Jim Kingdon, 29-Jun-2021.) |
Ref | Expression |
---|---|
prsrriota | ⊢ ((𝐴 ∈ R ∧ 0R <R 𝐴) → [⟨((℩𝑥 ∈ P [⟨(𝑥 +P 1P), 1P⟩] ~R = 𝐴) +P 1P), 1P⟩] ~R = 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | srpospr 7784 | . . 3 ⊢ ((𝐴 ∈ R ∧ 0R <R 𝐴) → ∃!𝑦 ∈ P [⟨(𝑦 +P 1P), 1P⟩] ~R = 𝐴) | |
2 | reurex 2691 | . . 3 ⊢ (∃!𝑦 ∈ P [⟨(𝑦 +P 1P), 1P⟩] ~R = 𝐴 → ∃𝑦 ∈ P [⟨(𝑦 +P 1P), 1P⟩] ~R = 𝐴) | |
3 | 1, 2 | syl 14 | . 2 ⊢ ((𝐴 ∈ R ∧ 0R <R 𝐴) → ∃𝑦 ∈ P [⟨(𝑦 +P 1P), 1P⟩] ~R = 𝐴) |
4 | simprr 531 | . . . . 5 ⊢ (((𝐴 ∈ R ∧ 0R <R 𝐴) ∧ (𝑦 ∈ P ∧ [⟨(𝑦 +P 1P), 1P⟩] ~R = 𝐴)) → [⟨(𝑦 +P 1P), 1P⟩] ~R = 𝐴) | |
5 | simprl 529 | . . . . . 6 ⊢ (((𝐴 ∈ R ∧ 0R <R 𝐴) ∧ (𝑦 ∈ P ∧ [⟨(𝑦 +P 1P), 1P⟩] ~R = 𝐴)) → 𝑦 ∈ P) | |
6 | srpospr 7784 | . . . . . . 7 ⊢ ((𝐴 ∈ R ∧ 0R <R 𝐴) → ∃!𝑥 ∈ P [⟨(𝑥 +P 1P), 1P⟩] ~R = 𝐴) | |
7 | 6 | adantr 276 | . . . . . 6 ⊢ (((𝐴 ∈ R ∧ 0R <R 𝐴) ∧ (𝑦 ∈ P ∧ [⟨(𝑦 +P 1P), 1P⟩] ~R = 𝐴)) → ∃!𝑥 ∈ P [⟨(𝑥 +P 1P), 1P⟩] ~R = 𝐴) |
8 | oveq1 5884 | . . . . . . . . . 10 ⊢ (𝑥 = 𝑦 → (𝑥 +P 1P) = (𝑦 +P 1P)) | |
9 | 8 | opeq1d 3786 | . . . . . . . . 9 ⊢ (𝑥 = 𝑦 → ⟨(𝑥 +P 1P), 1P⟩ = ⟨(𝑦 +P 1P), 1P⟩) |
10 | 9 | eceq1d 6573 | . . . . . . . 8 ⊢ (𝑥 = 𝑦 → [⟨(𝑥 +P 1P), 1P⟩] ~R = [⟨(𝑦 +P 1P), 1P⟩] ~R ) |
11 | 10 | eqeq1d 2186 | . . . . . . 7 ⊢ (𝑥 = 𝑦 → ([⟨(𝑥 +P 1P), 1P⟩] ~R = 𝐴 ↔ [⟨(𝑦 +P 1P), 1P⟩] ~R = 𝐴)) |
12 | 11 | riota2 5855 | . . . . . 6 ⊢ ((𝑦 ∈ P ∧ ∃!𝑥 ∈ P [⟨(𝑥 +P 1P), 1P⟩] ~R = 𝐴) → ([⟨(𝑦 +P 1P), 1P⟩] ~R = 𝐴 ↔ (℩𝑥 ∈ P [⟨(𝑥 +P 1P), 1P⟩] ~R = 𝐴) = 𝑦)) |
13 | 5, 7, 12 | syl2anc 411 | . . . . 5 ⊢ (((𝐴 ∈ R ∧ 0R <R 𝐴) ∧ (𝑦 ∈ P ∧ [⟨(𝑦 +P 1P), 1P⟩] ~R = 𝐴)) → ([⟨(𝑦 +P 1P), 1P⟩] ~R = 𝐴 ↔ (℩𝑥 ∈ P [⟨(𝑥 +P 1P), 1P⟩] ~R = 𝐴) = 𝑦)) |
14 | 4, 13 | mpbid 147 | . . . 4 ⊢ (((𝐴 ∈ R ∧ 0R <R 𝐴) ∧ (𝑦 ∈ P ∧ [⟨(𝑦 +P 1P), 1P⟩] ~R = 𝐴)) → (℩𝑥 ∈ P [⟨(𝑥 +P 1P), 1P⟩] ~R = 𝐴) = 𝑦) |
15 | oveq1 5884 | . . . . . 6 ⊢ ((℩𝑥 ∈ P [⟨(𝑥 +P 1P), 1P⟩] ~R = 𝐴) = 𝑦 → ((℩𝑥 ∈ P [⟨(𝑥 +P 1P), 1P⟩] ~R = 𝐴) +P 1P) = (𝑦 +P 1P)) | |
16 | 15 | opeq1d 3786 | . . . . 5 ⊢ ((℩𝑥 ∈ P [⟨(𝑥 +P 1P), 1P⟩] ~R = 𝐴) = 𝑦 → ⟨((℩𝑥 ∈ P [⟨(𝑥 +P 1P), 1P⟩] ~R = 𝐴) +P 1P), 1P⟩ = ⟨(𝑦 +P 1P), 1P⟩) |
17 | 16 | eceq1d 6573 | . . . 4 ⊢ ((℩𝑥 ∈ P [⟨(𝑥 +P 1P), 1P⟩] ~R = 𝐴) = 𝑦 → [⟨((℩𝑥 ∈ P [⟨(𝑥 +P 1P), 1P⟩] ~R = 𝐴) +P 1P), 1P⟩] ~R = [⟨(𝑦 +P 1P), 1P⟩] ~R ) |
18 | 14, 17 | syl 14 | . . 3 ⊢ (((𝐴 ∈ R ∧ 0R <R 𝐴) ∧ (𝑦 ∈ P ∧ [⟨(𝑦 +P 1P), 1P⟩] ~R = 𝐴)) → [⟨((℩𝑥 ∈ P [⟨(𝑥 +P 1P), 1P⟩] ~R = 𝐴) +P 1P), 1P⟩] ~R = [⟨(𝑦 +P 1P), 1P⟩] ~R ) |
19 | 18, 4 | eqtrd 2210 | . 2 ⊢ (((𝐴 ∈ R ∧ 0R <R 𝐴) ∧ (𝑦 ∈ P ∧ [⟨(𝑦 +P 1P), 1P⟩] ~R = 𝐴)) → [⟨((℩𝑥 ∈ P [⟨(𝑥 +P 1P), 1P⟩] ~R = 𝐴) +P 1P), 1P⟩] ~R = 𝐴) |
20 | 3, 19 | rexlimddv 2599 | 1 ⊢ ((𝐴 ∈ R ∧ 0R <R 𝐴) → [⟨((℩𝑥 ∈ P [⟨(𝑥 +P 1P), 1P⟩] ~R = 𝐴) +P 1P), 1P⟩] ~R = 𝐴) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 = wceq 1353 ∈ wcel 2148 ∃wrex 2456 ∃!wreu 2457 ⟨cop 3597 class class class wbr 4005 ℩crio 5832 (class class class)co 5877 [cec 6535 Pcnp 7292 1Pc1p 7293 +P cpp 7294 ~R cer 7297 Rcnr 7298 0Rc0r 7299 <R cltr 7304 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-13 2150 ax-14 2151 ax-ext 2159 ax-coll 4120 ax-sep 4123 ax-nul 4131 ax-pow 4176 ax-pr 4211 ax-un 4435 ax-setind 4538 ax-iinf 4589 |
This theorem depends on definitions: df-bi 117 df-dc 835 df-3or 979 df-3an 980 df-tru 1356 df-fal 1359 df-nf 1461 df-sb 1763 df-eu 2029 df-mo 2030 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ne 2348 df-ral 2460 df-rex 2461 df-reu 2462 df-rmo 2463 df-rab 2464 df-v 2741 df-sbc 2965 df-csb 3060 df-dif 3133 df-un 3135 df-in 3137 df-ss 3144 df-nul 3425 df-pw 3579 df-sn 3600 df-pr 3601 df-op 3603 df-uni 3812 df-int 3847 df-iun 3890 df-br 4006 df-opab 4067 df-mpt 4068 df-tr 4104 df-eprel 4291 df-id 4295 df-po 4298 df-iso 4299 df-iord 4368 df-on 4370 df-suc 4373 df-iom 4592 df-xp 4634 df-rel 4635 df-cnv 4636 df-co 4637 df-dm 4638 df-rn 4639 df-res 4640 df-ima 4641 df-iota 5180 df-fun 5220 df-fn 5221 df-f 5222 df-f1 5223 df-fo 5224 df-f1o 5225 df-fv 5226 df-riota 5833 df-ov 5880 df-oprab 5881 df-mpo 5882 df-1st 6143 df-2nd 6144 df-recs 6308 df-irdg 6373 df-1o 6419 df-2o 6420 df-oadd 6423 df-omul 6424 df-er 6537 df-ec 6539 df-qs 6543 df-ni 7305 df-pli 7306 df-mi 7307 df-lti 7308 df-plpq 7345 df-mpq 7346 df-enq 7348 df-nqqs 7349 df-plqqs 7350 df-mqqs 7351 df-1nqqs 7352 df-rq 7353 df-ltnqqs 7354 df-enq0 7425 df-nq0 7426 df-0nq0 7427 df-plq0 7428 df-mq0 7429 df-inp 7467 df-i1p 7468 df-iplp 7469 df-iltp 7471 df-enr 7727 df-nr 7728 df-ltr 7731 df-0r 7732 |
This theorem is referenced by: caucvgsrlemfv 7792 caucvgsrlemgt1 7796 |
Copyright terms: Public domain | W3C validator |