ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  prsrriota GIF version

Theorem prsrriota 7804
Description: Mapping a restricted iota from a positive real to a signed real. (Contributed by Jim Kingdon, 29-Jun-2021.)
Assertion
Ref Expression
prsrriota ((𝐴R ∧ 0R <R 𝐴) → [⟨((𝑥P [⟨(𝑥 +P 1P), 1P⟩] ~R = 𝐴) +P 1P), 1P⟩] ~R = 𝐴)
Distinct variable group:   𝑥,𝐴

Proof of Theorem prsrriota
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 srpospr 7799 . . 3 ((𝐴R ∧ 0R <R 𝐴) → ∃!𝑦P [⟨(𝑦 +P 1P), 1P⟩] ~R = 𝐴)
2 reurex 2703 . . 3 (∃!𝑦P [⟨(𝑦 +P 1P), 1P⟩] ~R = 𝐴 → ∃𝑦P [⟨(𝑦 +P 1P), 1P⟩] ~R = 𝐴)
31, 2syl 14 . 2 ((𝐴R ∧ 0R <R 𝐴) → ∃𝑦P [⟨(𝑦 +P 1P), 1P⟩] ~R = 𝐴)
4 simprr 531 . . . . 5 (((𝐴R ∧ 0R <R 𝐴) ∧ (𝑦P ∧ [⟨(𝑦 +P 1P), 1P⟩] ~R = 𝐴)) → [⟨(𝑦 +P 1P), 1P⟩] ~R = 𝐴)
5 simprl 529 . . . . . 6 (((𝐴R ∧ 0R <R 𝐴) ∧ (𝑦P ∧ [⟨(𝑦 +P 1P), 1P⟩] ~R = 𝐴)) → 𝑦P)
6 srpospr 7799 . . . . . . 7 ((𝐴R ∧ 0R <R 𝐴) → ∃!𝑥P [⟨(𝑥 +P 1P), 1P⟩] ~R = 𝐴)
76adantr 276 . . . . . 6 (((𝐴R ∧ 0R <R 𝐴) ∧ (𝑦P ∧ [⟨(𝑦 +P 1P), 1P⟩] ~R = 𝐴)) → ∃!𝑥P [⟨(𝑥 +P 1P), 1P⟩] ~R = 𝐴)
8 oveq1 5897 . . . . . . . . . 10 (𝑥 = 𝑦 → (𝑥 +P 1P) = (𝑦 +P 1P))
98opeq1d 3798 . . . . . . . . 9 (𝑥 = 𝑦 → ⟨(𝑥 +P 1P), 1P⟩ = ⟨(𝑦 +P 1P), 1P⟩)
109eceq1d 6588 . . . . . . . 8 (𝑥 = 𝑦 → [⟨(𝑥 +P 1P), 1P⟩] ~R = [⟨(𝑦 +P 1P), 1P⟩] ~R )
1110eqeq1d 2197 . . . . . . 7 (𝑥 = 𝑦 → ([⟨(𝑥 +P 1P), 1P⟩] ~R = 𝐴 ↔ [⟨(𝑦 +P 1P), 1P⟩] ~R = 𝐴))
1211riota2 5868 . . . . . 6 ((𝑦P ∧ ∃!𝑥P [⟨(𝑥 +P 1P), 1P⟩] ~R = 𝐴) → ([⟨(𝑦 +P 1P), 1P⟩] ~R = 𝐴 ↔ (𝑥P [⟨(𝑥 +P 1P), 1P⟩] ~R = 𝐴) = 𝑦))
135, 7, 12syl2anc 411 . . . . 5 (((𝐴R ∧ 0R <R 𝐴) ∧ (𝑦P ∧ [⟨(𝑦 +P 1P), 1P⟩] ~R = 𝐴)) → ([⟨(𝑦 +P 1P), 1P⟩] ~R = 𝐴 ↔ (𝑥P [⟨(𝑥 +P 1P), 1P⟩] ~R = 𝐴) = 𝑦))
144, 13mpbid 147 . . . 4 (((𝐴R ∧ 0R <R 𝐴) ∧ (𝑦P ∧ [⟨(𝑦 +P 1P), 1P⟩] ~R = 𝐴)) → (𝑥P [⟨(𝑥 +P 1P), 1P⟩] ~R = 𝐴) = 𝑦)
15 oveq1 5897 . . . . . 6 ((𝑥P [⟨(𝑥 +P 1P), 1P⟩] ~R = 𝐴) = 𝑦 → ((𝑥P [⟨(𝑥 +P 1P), 1P⟩] ~R = 𝐴) +P 1P) = (𝑦 +P 1P))
1615opeq1d 3798 . . . . 5 ((𝑥P [⟨(𝑥 +P 1P), 1P⟩] ~R = 𝐴) = 𝑦 → ⟨((𝑥P [⟨(𝑥 +P 1P), 1P⟩] ~R = 𝐴) +P 1P), 1P⟩ = ⟨(𝑦 +P 1P), 1P⟩)
1716eceq1d 6588 . . . 4 ((𝑥P [⟨(𝑥 +P 1P), 1P⟩] ~R = 𝐴) = 𝑦 → [⟨((𝑥P [⟨(𝑥 +P 1P), 1P⟩] ~R = 𝐴) +P 1P), 1P⟩] ~R = [⟨(𝑦 +P 1P), 1P⟩] ~R )
1814, 17syl 14 . . 3 (((𝐴R ∧ 0R <R 𝐴) ∧ (𝑦P ∧ [⟨(𝑦 +P 1P), 1P⟩] ~R = 𝐴)) → [⟨((𝑥P [⟨(𝑥 +P 1P), 1P⟩] ~R = 𝐴) +P 1P), 1P⟩] ~R = [⟨(𝑦 +P 1P), 1P⟩] ~R )
1918, 4eqtrd 2221 . 2 (((𝐴R ∧ 0R <R 𝐴) ∧ (𝑦P ∧ [⟨(𝑦 +P 1P), 1P⟩] ~R = 𝐴)) → [⟨((𝑥P [⟨(𝑥 +P 1P), 1P⟩] ~R = 𝐴) +P 1P), 1P⟩] ~R = 𝐴)
203, 19rexlimddv 2611 1 ((𝐴R ∧ 0R <R 𝐴) → [⟨((𝑥P [⟨(𝑥 +P 1P), 1P⟩] ~R = 𝐴) +P 1P), 1P⟩] ~R = 𝐴)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1363  wcel 2159  wrex 2468  ∃!wreu 2469  cop 3609   class class class wbr 4017  crio 5845  (class class class)co 5890  [cec 6550  Pcnp 7307  1Pc1p 7308   +P cpp 7309   ~R cer 7312  Rcnr 7313  0Rc0r 7314   <R cltr 7319
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1457  ax-7 1458  ax-gen 1459  ax-ie1 1503  ax-ie2 1504  ax-8 1514  ax-10 1515  ax-11 1516  ax-i12 1517  ax-bndl 1519  ax-4 1520  ax-17 1536  ax-i9 1540  ax-ial 1544  ax-i5r 1545  ax-13 2161  ax-14 2162  ax-ext 2170  ax-coll 4132  ax-sep 4135  ax-nul 4143  ax-pow 4188  ax-pr 4223  ax-un 4447  ax-setind 4550  ax-iinf 4601
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 980  df-3an 981  df-tru 1366  df-fal 1369  df-nf 1471  df-sb 1773  df-eu 2040  df-mo 2041  df-clab 2175  df-cleq 2181  df-clel 2184  df-nfc 2320  df-ne 2360  df-ral 2472  df-rex 2473  df-reu 2474  df-rmo 2475  df-rab 2476  df-v 2753  df-sbc 2977  df-csb 3072  df-dif 3145  df-un 3147  df-in 3149  df-ss 3156  df-nul 3437  df-pw 3591  df-sn 3612  df-pr 3613  df-op 3615  df-uni 3824  df-int 3859  df-iun 3902  df-br 4018  df-opab 4079  df-mpt 4080  df-tr 4116  df-eprel 4303  df-id 4307  df-po 4310  df-iso 4311  df-iord 4380  df-on 4382  df-suc 4385  df-iom 4604  df-xp 4646  df-rel 4647  df-cnv 4648  df-co 4649  df-dm 4650  df-rn 4651  df-res 4652  df-ima 4653  df-iota 5192  df-fun 5232  df-fn 5233  df-f 5234  df-f1 5235  df-fo 5236  df-f1o 5237  df-fv 5238  df-riota 5846  df-ov 5893  df-oprab 5894  df-mpo 5895  df-1st 6158  df-2nd 6159  df-recs 6323  df-irdg 6388  df-1o 6434  df-2o 6435  df-oadd 6438  df-omul 6439  df-er 6552  df-ec 6554  df-qs 6558  df-ni 7320  df-pli 7321  df-mi 7322  df-lti 7323  df-plpq 7360  df-mpq 7361  df-enq 7363  df-nqqs 7364  df-plqqs 7365  df-mqqs 7366  df-1nqqs 7367  df-rq 7368  df-ltnqqs 7369  df-enq0 7440  df-nq0 7441  df-0nq0 7442  df-plq0 7443  df-mq0 7444  df-inp 7482  df-i1p 7483  df-iplp 7484  df-iltp 7486  df-enr 7742  df-nr 7743  df-ltr 7746  df-0r 7747
This theorem is referenced by:  caucvgsrlemfv  7807  caucvgsrlemgt1  7811
  Copyright terms: Public domain W3C validator