ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  prsrriota GIF version

Theorem prsrriota 7620
Description: Mapping a restricted iota from a positive real to a signed real. (Contributed by Jim Kingdon, 29-Jun-2021.)
Assertion
Ref Expression
prsrriota ((𝐴R ∧ 0R <R 𝐴) → [⟨((𝑥P [⟨(𝑥 +P 1P), 1P⟩] ~R = 𝐴) +P 1P), 1P⟩] ~R = 𝐴)
Distinct variable group:   𝑥,𝐴

Proof of Theorem prsrriota
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 srpospr 7615 . . 3 ((𝐴R ∧ 0R <R 𝐴) → ∃!𝑦P [⟨(𝑦 +P 1P), 1P⟩] ~R = 𝐴)
2 reurex 2647 . . 3 (∃!𝑦P [⟨(𝑦 +P 1P), 1P⟩] ~R = 𝐴 → ∃𝑦P [⟨(𝑦 +P 1P), 1P⟩] ~R = 𝐴)
31, 2syl 14 . 2 ((𝐴R ∧ 0R <R 𝐴) → ∃𝑦P [⟨(𝑦 +P 1P), 1P⟩] ~R = 𝐴)
4 simprr 522 . . . . 5 (((𝐴R ∧ 0R <R 𝐴) ∧ (𝑦P ∧ [⟨(𝑦 +P 1P), 1P⟩] ~R = 𝐴)) → [⟨(𝑦 +P 1P), 1P⟩] ~R = 𝐴)
5 simprl 521 . . . . . 6 (((𝐴R ∧ 0R <R 𝐴) ∧ (𝑦P ∧ [⟨(𝑦 +P 1P), 1P⟩] ~R = 𝐴)) → 𝑦P)
6 srpospr 7615 . . . . . . 7 ((𝐴R ∧ 0R <R 𝐴) → ∃!𝑥P [⟨(𝑥 +P 1P), 1P⟩] ~R = 𝐴)
76adantr 274 . . . . . 6 (((𝐴R ∧ 0R <R 𝐴) ∧ (𝑦P ∧ [⟨(𝑦 +P 1P), 1P⟩] ~R = 𝐴)) → ∃!𝑥P [⟨(𝑥 +P 1P), 1P⟩] ~R = 𝐴)
8 oveq1 5789 . . . . . . . . . 10 (𝑥 = 𝑦 → (𝑥 +P 1P) = (𝑦 +P 1P))
98opeq1d 3719 . . . . . . . . 9 (𝑥 = 𝑦 → ⟨(𝑥 +P 1P), 1P⟩ = ⟨(𝑦 +P 1P), 1P⟩)
109eceq1d 6473 . . . . . . . 8 (𝑥 = 𝑦 → [⟨(𝑥 +P 1P), 1P⟩] ~R = [⟨(𝑦 +P 1P), 1P⟩] ~R )
1110eqeq1d 2149 . . . . . . 7 (𝑥 = 𝑦 → ([⟨(𝑥 +P 1P), 1P⟩] ~R = 𝐴 ↔ [⟨(𝑦 +P 1P), 1P⟩] ~R = 𝐴))
1211riota2 5760 . . . . . 6 ((𝑦P ∧ ∃!𝑥P [⟨(𝑥 +P 1P), 1P⟩] ~R = 𝐴) → ([⟨(𝑦 +P 1P), 1P⟩] ~R = 𝐴 ↔ (𝑥P [⟨(𝑥 +P 1P), 1P⟩] ~R = 𝐴) = 𝑦))
135, 7, 12syl2anc 409 . . . . 5 (((𝐴R ∧ 0R <R 𝐴) ∧ (𝑦P ∧ [⟨(𝑦 +P 1P), 1P⟩] ~R = 𝐴)) → ([⟨(𝑦 +P 1P), 1P⟩] ~R = 𝐴 ↔ (𝑥P [⟨(𝑥 +P 1P), 1P⟩] ~R = 𝐴) = 𝑦))
144, 13mpbid 146 . . . 4 (((𝐴R ∧ 0R <R 𝐴) ∧ (𝑦P ∧ [⟨(𝑦 +P 1P), 1P⟩] ~R = 𝐴)) → (𝑥P [⟨(𝑥 +P 1P), 1P⟩] ~R = 𝐴) = 𝑦)
15 oveq1 5789 . . . . . 6 ((𝑥P [⟨(𝑥 +P 1P), 1P⟩] ~R = 𝐴) = 𝑦 → ((𝑥P [⟨(𝑥 +P 1P), 1P⟩] ~R = 𝐴) +P 1P) = (𝑦 +P 1P))
1615opeq1d 3719 . . . . 5 ((𝑥P [⟨(𝑥 +P 1P), 1P⟩] ~R = 𝐴) = 𝑦 → ⟨((𝑥P [⟨(𝑥 +P 1P), 1P⟩] ~R = 𝐴) +P 1P), 1P⟩ = ⟨(𝑦 +P 1P), 1P⟩)
1716eceq1d 6473 . . . 4 ((𝑥P [⟨(𝑥 +P 1P), 1P⟩] ~R = 𝐴) = 𝑦 → [⟨((𝑥P [⟨(𝑥 +P 1P), 1P⟩] ~R = 𝐴) +P 1P), 1P⟩] ~R = [⟨(𝑦 +P 1P), 1P⟩] ~R )
1814, 17syl 14 . . 3 (((𝐴R ∧ 0R <R 𝐴) ∧ (𝑦P ∧ [⟨(𝑦 +P 1P), 1P⟩] ~R = 𝐴)) → [⟨((𝑥P [⟨(𝑥 +P 1P), 1P⟩] ~R = 𝐴) +P 1P), 1P⟩] ~R = [⟨(𝑦 +P 1P), 1P⟩] ~R )
1918, 4eqtrd 2173 . 2 (((𝐴R ∧ 0R <R 𝐴) ∧ (𝑦P ∧ [⟨(𝑦 +P 1P), 1P⟩] ~R = 𝐴)) → [⟨((𝑥P [⟨(𝑥 +P 1P), 1P⟩] ~R = 𝐴) +P 1P), 1P⟩] ~R = 𝐴)
203, 19rexlimddv 2557 1 ((𝐴R ∧ 0R <R 𝐴) → [⟨((𝑥P [⟨(𝑥 +P 1P), 1P⟩] ~R = 𝐴) +P 1P), 1P⟩] ~R = 𝐴)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104   = wceq 1332  wcel 1481  wrex 2418  ∃!wreu 2419  cop 3535   class class class wbr 3937  crio 5737  (class class class)co 5782  [cec 6435  Pcnp 7123  1Pc1p 7124   +P cpp 7125   ~R cer 7128  Rcnr 7129  0Rc0r 7130   <R cltr 7135
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-13 1492  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-coll 4051  ax-sep 4054  ax-nul 4062  ax-pow 4106  ax-pr 4139  ax-un 4363  ax-setind 4460  ax-iinf 4510
This theorem depends on definitions:  df-bi 116  df-dc 821  df-3or 964  df-3an 965  df-tru 1335  df-fal 1338  df-nf 1438  df-sb 1737  df-eu 2003  df-mo 2004  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ne 2310  df-ral 2422  df-rex 2423  df-reu 2424  df-rmo 2425  df-rab 2426  df-v 2691  df-sbc 2914  df-csb 3008  df-dif 3078  df-un 3080  df-in 3082  df-ss 3089  df-nul 3369  df-pw 3517  df-sn 3538  df-pr 3539  df-op 3541  df-uni 3745  df-int 3780  df-iun 3823  df-br 3938  df-opab 3998  df-mpt 3999  df-tr 4035  df-eprel 4219  df-id 4223  df-po 4226  df-iso 4227  df-iord 4296  df-on 4298  df-suc 4301  df-iom 4513  df-xp 4553  df-rel 4554  df-cnv 4555  df-co 4556  df-dm 4557  df-rn 4558  df-res 4559  df-ima 4560  df-iota 5096  df-fun 5133  df-fn 5134  df-f 5135  df-f1 5136  df-fo 5137  df-f1o 5138  df-fv 5139  df-riota 5738  df-ov 5785  df-oprab 5786  df-mpo 5787  df-1st 6046  df-2nd 6047  df-recs 6210  df-irdg 6275  df-1o 6321  df-2o 6322  df-oadd 6325  df-omul 6326  df-er 6437  df-ec 6439  df-qs 6443  df-ni 7136  df-pli 7137  df-mi 7138  df-lti 7139  df-plpq 7176  df-mpq 7177  df-enq 7179  df-nqqs 7180  df-plqqs 7181  df-mqqs 7182  df-1nqqs 7183  df-rq 7184  df-ltnqqs 7185  df-enq0 7256  df-nq0 7257  df-0nq0 7258  df-plq0 7259  df-mq0 7260  df-inp 7298  df-i1p 7299  df-iplp 7300  df-iltp 7302  df-enr 7558  df-nr 7559  df-ltr 7562  df-0r 7563
This theorem is referenced by:  caucvgsrlemfv  7623  caucvgsrlemgt1  7627
  Copyright terms: Public domain W3C validator