![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > prsrriota | GIF version |
Description: Mapping a restricted iota from a positive real to a signed real. (Contributed by Jim Kingdon, 29-Jun-2021.) |
Ref | Expression |
---|---|
prsrriota | ⊢ ((𝐴 ∈ R ∧ 0R <R 𝐴) → [〈((℩𝑥 ∈ P [〈(𝑥 +P 1P), 1P〉] ~R = 𝐴) +P 1P), 1P〉] ~R = 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | srpospr 7799 | . . 3 ⊢ ((𝐴 ∈ R ∧ 0R <R 𝐴) → ∃!𝑦 ∈ P [〈(𝑦 +P 1P), 1P〉] ~R = 𝐴) | |
2 | reurex 2703 | . . 3 ⊢ (∃!𝑦 ∈ P [〈(𝑦 +P 1P), 1P〉] ~R = 𝐴 → ∃𝑦 ∈ P [〈(𝑦 +P 1P), 1P〉] ~R = 𝐴) | |
3 | 1, 2 | syl 14 | . 2 ⊢ ((𝐴 ∈ R ∧ 0R <R 𝐴) → ∃𝑦 ∈ P [〈(𝑦 +P 1P), 1P〉] ~R = 𝐴) |
4 | simprr 531 | . . . . 5 ⊢ (((𝐴 ∈ R ∧ 0R <R 𝐴) ∧ (𝑦 ∈ P ∧ [〈(𝑦 +P 1P), 1P〉] ~R = 𝐴)) → [〈(𝑦 +P 1P), 1P〉] ~R = 𝐴) | |
5 | simprl 529 | . . . . . 6 ⊢ (((𝐴 ∈ R ∧ 0R <R 𝐴) ∧ (𝑦 ∈ P ∧ [〈(𝑦 +P 1P), 1P〉] ~R = 𝐴)) → 𝑦 ∈ P) | |
6 | srpospr 7799 | . . . . . . 7 ⊢ ((𝐴 ∈ R ∧ 0R <R 𝐴) → ∃!𝑥 ∈ P [〈(𝑥 +P 1P), 1P〉] ~R = 𝐴) | |
7 | 6 | adantr 276 | . . . . . 6 ⊢ (((𝐴 ∈ R ∧ 0R <R 𝐴) ∧ (𝑦 ∈ P ∧ [〈(𝑦 +P 1P), 1P〉] ~R = 𝐴)) → ∃!𝑥 ∈ P [〈(𝑥 +P 1P), 1P〉] ~R = 𝐴) |
8 | oveq1 5897 | . . . . . . . . . 10 ⊢ (𝑥 = 𝑦 → (𝑥 +P 1P) = (𝑦 +P 1P)) | |
9 | 8 | opeq1d 3798 | . . . . . . . . 9 ⊢ (𝑥 = 𝑦 → 〈(𝑥 +P 1P), 1P〉 = 〈(𝑦 +P 1P), 1P〉) |
10 | 9 | eceq1d 6588 | . . . . . . . 8 ⊢ (𝑥 = 𝑦 → [〈(𝑥 +P 1P), 1P〉] ~R = [〈(𝑦 +P 1P), 1P〉] ~R ) |
11 | 10 | eqeq1d 2197 | . . . . . . 7 ⊢ (𝑥 = 𝑦 → ([〈(𝑥 +P 1P), 1P〉] ~R = 𝐴 ↔ [〈(𝑦 +P 1P), 1P〉] ~R = 𝐴)) |
12 | 11 | riota2 5868 | . . . . . 6 ⊢ ((𝑦 ∈ P ∧ ∃!𝑥 ∈ P [〈(𝑥 +P 1P), 1P〉] ~R = 𝐴) → ([〈(𝑦 +P 1P), 1P〉] ~R = 𝐴 ↔ (℩𝑥 ∈ P [〈(𝑥 +P 1P), 1P〉] ~R = 𝐴) = 𝑦)) |
13 | 5, 7, 12 | syl2anc 411 | . . . . 5 ⊢ (((𝐴 ∈ R ∧ 0R <R 𝐴) ∧ (𝑦 ∈ P ∧ [〈(𝑦 +P 1P), 1P〉] ~R = 𝐴)) → ([〈(𝑦 +P 1P), 1P〉] ~R = 𝐴 ↔ (℩𝑥 ∈ P [〈(𝑥 +P 1P), 1P〉] ~R = 𝐴) = 𝑦)) |
14 | 4, 13 | mpbid 147 | . . . 4 ⊢ (((𝐴 ∈ R ∧ 0R <R 𝐴) ∧ (𝑦 ∈ P ∧ [〈(𝑦 +P 1P), 1P〉] ~R = 𝐴)) → (℩𝑥 ∈ P [〈(𝑥 +P 1P), 1P〉] ~R = 𝐴) = 𝑦) |
15 | oveq1 5897 | . . . . . 6 ⊢ ((℩𝑥 ∈ P [〈(𝑥 +P 1P), 1P〉] ~R = 𝐴) = 𝑦 → ((℩𝑥 ∈ P [〈(𝑥 +P 1P), 1P〉] ~R = 𝐴) +P 1P) = (𝑦 +P 1P)) | |
16 | 15 | opeq1d 3798 | . . . . 5 ⊢ ((℩𝑥 ∈ P [〈(𝑥 +P 1P), 1P〉] ~R = 𝐴) = 𝑦 → 〈((℩𝑥 ∈ P [〈(𝑥 +P 1P), 1P〉] ~R = 𝐴) +P 1P), 1P〉 = 〈(𝑦 +P 1P), 1P〉) |
17 | 16 | eceq1d 6588 | . . . 4 ⊢ ((℩𝑥 ∈ P [〈(𝑥 +P 1P), 1P〉] ~R = 𝐴) = 𝑦 → [〈((℩𝑥 ∈ P [〈(𝑥 +P 1P), 1P〉] ~R = 𝐴) +P 1P), 1P〉] ~R = [〈(𝑦 +P 1P), 1P〉] ~R ) |
18 | 14, 17 | syl 14 | . . 3 ⊢ (((𝐴 ∈ R ∧ 0R <R 𝐴) ∧ (𝑦 ∈ P ∧ [〈(𝑦 +P 1P), 1P〉] ~R = 𝐴)) → [〈((℩𝑥 ∈ P [〈(𝑥 +P 1P), 1P〉] ~R = 𝐴) +P 1P), 1P〉] ~R = [〈(𝑦 +P 1P), 1P〉] ~R ) |
19 | 18, 4 | eqtrd 2221 | . 2 ⊢ (((𝐴 ∈ R ∧ 0R <R 𝐴) ∧ (𝑦 ∈ P ∧ [〈(𝑦 +P 1P), 1P〉] ~R = 𝐴)) → [〈((℩𝑥 ∈ P [〈(𝑥 +P 1P), 1P〉] ~R = 𝐴) +P 1P), 1P〉] ~R = 𝐴) |
20 | 3, 19 | rexlimddv 2611 | 1 ⊢ ((𝐴 ∈ R ∧ 0R <R 𝐴) → [〈((℩𝑥 ∈ P [〈(𝑥 +P 1P), 1P〉] ~R = 𝐴) +P 1P), 1P〉] ~R = 𝐴) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 = wceq 1363 ∈ wcel 2159 ∃wrex 2468 ∃!wreu 2469 〈cop 3609 class class class wbr 4017 ℩crio 5845 (class class class)co 5890 [cec 6550 Pcnp 7307 1Pc1p 7308 +P cpp 7309 ~R cer 7312 Rcnr 7313 0Rc0r 7314 <R cltr 7319 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1457 ax-7 1458 ax-gen 1459 ax-ie1 1503 ax-ie2 1504 ax-8 1514 ax-10 1515 ax-11 1516 ax-i12 1517 ax-bndl 1519 ax-4 1520 ax-17 1536 ax-i9 1540 ax-ial 1544 ax-i5r 1545 ax-13 2161 ax-14 2162 ax-ext 2170 ax-coll 4132 ax-sep 4135 ax-nul 4143 ax-pow 4188 ax-pr 4223 ax-un 4447 ax-setind 4550 ax-iinf 4601 |
This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 980 df-3an 981 df-tru 1366 df-fal 1369 df-nf 1471 df-sb 1773 df-eu 2040 df-mo 2041 df-clab 2175 df-cleq 2181 df-clel 2184 df-nfc 2320 df-ne 2360 df-ral 2472 df-rex 2473 df-reu 2474 df-rmo 2475 df-rab 2476 df-v 2753 df-sbc 2977 df-csb 3072 df-dif 3145 df-un 3147 df-in 3149 df-ss 3156 df-nul 3437 df-pw 3591 df-sn 3612 df-pr 3613 df-op 3615 df-uni 3824 df-int 3859 df-iun 3902 df-br 4018 df-opab 4079 df-mpt 4080 df-tr 4116 df-eprel 4303 df-id 4307 df-po 4310 df-iso 4311 df-iord 4380 df-on 4382 df-suc 4385 df-iom 4604 df-xp 4646 df-rel 4647 df-cnv 4648 df-co 4649 df-dm 4650 df-rn 4651 df-res 4652 df-ima 4653 df-iota 5192 df-fun 5232 df-fn 5233 df-f 5234 df-f1 5235 df-fo 5236 df-f1o 5237 df-fv 5238 df-riota 5846 df-ov 5893 df-oprab 5894 df-mpo 5895 df-1st 6158 df-2nd 6159 df-recs 6323 df-irdg 6388 df-1o 6434 df-2o 6435 df-oadd 6438 df-omul 6439 df-er 6552 df-ec 6554 df-qs 6558 df-ni 7320 df-pli 7321 df-mi 7322 df-lti 7323 df-plpq 7360 df-mpq 7361 df-enq 7363 df-nqqs 7364 df-plqqs 7365 df-mqqs 7366 df-1nqqs 7367 df-rq 7368 df-ltnqqs 7369 df-enq0 7440 df-nq0 7441 df-0nq0 7442 df-plq0 7443 df-mq0 7444 df-inp 7482 df-i1p 7483 df-iplp 7484 df-iltp 7486 df-enr 7742 df-nr 7743 df-ltr 7746 df-0r 7747 |
This theorem is referenced by: caucvgsrlemfv 7807 caucvgsrlemgt1 7811 |
Copyright terms: Public domain | W3C validator |