Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > prsrriota | GIF version |
Description: Mapping a restricted iota from a positive real to a signed real. (Contributed by Jim Kingdon, 29-Jun-2021.) |
Ref | Expression |
---|---|
prsrriota | ⊢ ((𝐴 ∈ R ∧ 0R <R 𝐴) → [〈((℩𝑥 ∈ P [〈(𝑥 +P 1P), 1P〉] ~R = 𝐴) +P 1P), 1P〉] ~R = 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | srpospr 7724 | . . 3 ⊢ ((𝐴 ∈ R ∧ 0R <R 𝐴) → ∃!𝑦 ∈ P [〈(𝑦 +P 1P), 1P〉] ~R = 𝐴) | |
2 | reurex 2679 | . . 3 ⊢ (∃!𝑦 ∈ P [〈(𝑦 +P 1P), 1P〉] ~R = 𝐴 → ∃𝑦 ∈ P [〈(𝑦 +P 1P), 1P〉] ~R = 𝐴) | |
3 | 1, 2 | syl 14 | . 2 ⊢ ((𝐴 ∈ R ∧ 0R <R 𝐴) → ∃𝑦 ∈ P [〈(𝑦 +P 1P), 1P〉] ~R = 𝐴) |
4 | simprr 522 | . . . . 5 ⊢ (((𝐴 ∈ R ∧ 0R <R 𝐴) ∧ (𝑦 ∈ P ∧ [〈(𝑦 +P 1P), 1P〉] ~R = 𝐴)) → [〈(𝑦 +P 1P), 1P〉] ~R = 𝐴) | |
5 | simprl 521 | . . . . . 6 ⊢ (((𝐴 ∈ R ∧ 0R <R 𝐴) ∧ (𝑦 ∈ P ∧ [〈(𝑦 +P 1P), 1P〉] ~R = 𝐴)) → 𝑦 ∈ P) | |
6 | srpospr 7724 | . . . . . . 7 ⊢ ((𝐴 ∈ R ∧ 0R <R 𝐴) → ∃!𝑥 ∈ P [〈(𝑥 +P 1P), 1P〉] ~R = 𝐴) | |
7 | 6 | adantr 274 | . . . . . 6 ⊢ (((𝐴 ∈ R ∧ 0R <R 𝐴) ∧ (𝑦 ∈ P ∧ [〈(𝑦 +P 1P), 1P〉] ~R = 𝐴)) → ∃!𝑥 ∈ P [〈(𝑥 +P 1P), 1P〉] ~R = 𝐴) |
8 | oveq1 5849 | . . . . . . . . . 10 ⊢ (𝑥 = 𝑦 → (𝑥 +P 1P) = (𝑦 +P 1P)) | |
9 | 8 | opeq1d 3764 | . . . . . . . . 9 ⊢ (𝑥 = 𝑦 → 〈(𝑥 +P 1P), 1P〉 = 〈(𝑦 +P 1P), 1P〉) |
10 | 9 | eceq1d 6537 | . . . . . . . 8 ⊢ (𝑥 = 𝑦 → [〈(𝑥 +P 1P), 1P〉] ~R = [〈(𝑦 +P 1P), 1P〉] ~R ) |
11 | 10 | eqeq1d 2174 | . . . . . . 7 ⊢ (𝑥 = 𝑦 → ([〈(𝑥 +P 1P), 1P〉] ~R = 𝐴 ↔ [〈(𝑦 +P 1P), 1P〉] ~R = 𝐴)) |
12 | 11 | riota2 5820 | . . . . . 6 ⊢ ((𝑦 ∈ P ∧ ∃!𝑥 ∈ P [〈(𝑥 +P 1P), 1P〉] ~R = 𝐴) → ([〈(𝑦 +P 1P), 1P〉] ~R = 𝐴 ↔ (℩𝑥 ∈ P [〈(𝑥 +P 1P), 1P〉] ~R = 𝐴) = 𝑦)) |
13 | 5, 7, 12 | syl2anc 409 | . . . . 5 ⊢ (((𝐴 ∈ R ∧ 0R <R 𝐴) ∧ (𝑦 ∈ P ∧ [〈(𝑦 +P 1P), 1P〉] ~R = 𝐴)) → ([〈(𝑦 +P 1P), 1P〉] ~R = 𝐴 ↔ (℩𝑥 ∈ P [〈(𝑥 +P 1P), 1P〉] ~R = 𝐴) = 𝑦)) |
14 | 4, 13 | mpbid 146 | . . . 4 ⊢ (((𝐴 ∈ R ∧ 0R <R 𝐴) ∧ (𝑦 ∈ P ∧ [〈(𝑦 +P 1P), 1P〉] ~R = 𝐴)) → (℩𝑥 ∈ P [〈(𝑥 +P 1P), 1P〉] ~R = 𝐴) = 𝑦) |
15 | oveq1 5849 | . . . . . 6 ⊢ ((℩𝑥 ∈ P [〈(𝑥 +P 1P), 1P〉] ~R = 𝐴) = 𝑦 → ((℩𝑥 ∈ P [〈(𝑥 +P 1P), 1P〉] ~R = 𝐴) +P 1P) = (𝑦 +P 1P)) | |
16 | 15 | opeq1d 3764 | . . . . 5 ⊢ ((℩𝑥 ∈ P [〈(𝑥 +P 1P), 1P〉] ~R = 𝐴) = 𝑦 → 〈((℩𝑥 ∈ P [〈(𝑥 +P 1P), 1P〉] ~R = 𝐴) +P 1P), 1P〉 = 〈(𝑦 +P 1P), 1P〉) |
17 | 16 | eceq1d 6537 | . . . 4 ⊢ ((℩𝑥 ∈ P [〈(𝑥 +P 1P), 1P〉] ~R = 𝐴) = 𝑦 → [〈((℩𝑥 ∈ P [〈(𝑥 +P 1P), 1P〉] ~R = 𝐴) +P 1P), 1P〉] ~R = [〈(𝑦 +P 1P), 1P〉] ~R ) |
18 | 14, 17 | syl 14 | . . 3 ⊢ (((𝐴 ∈ R ∧ 0R <R 𝐴) ∧ (𝑦 ∈ P ∧ [〈(𝑦 +P 1P), 1P〉] ~R = 𝐴)) → [〈((℩𝑥 ∈ P [〈(𝑥 +P 1P), 1P〉] ~R = 𝐴) +P 1P), 1P〉] ~R = [〈(𝑦 +P 1P), 1P〉] ~R ) |
19 | 18, 4 | eqtrd 2198 | . 2 ⊢ (((𝐴 ∈ R ∧ 0R <R 𝐴) ∧ (𝑦 ∈ P ∧ [〈(𝑦 +P 1P), 1P〉] ~R = 𝐴)) → [〈((℩𝑥 ∈ P [〈(𝑥 +P 1P), 1P〉] ~R = 𝐴) +P 1P), 1P〉] ~R = 𝐴) |
20 | 3, 19 | rexlimddv 2588 | 1 ⊢ ((𝐴 ∈ R ∧ 0R <R 𝐴) → [〈((℩𝑥 ∈ P [〈(𝑥 +P 1P), 1P〉] ~R = 𝐴) +P 1P), 1P〉] ~R = 𝐴) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ↔ wb 104 = wceq 1343 ∈ wcel 2136 ∃wrex 2445 ∃!wreu 2446 〈cop 3579 class class class wbr 3982 ℩crio 5797 (class class class)co 5842 [cec 6499 Pcnp 7232 1Pc1p 7233 +P cpp 7234 ~R cer 7237 Rcnr 7238 0Rc0r 7239 <R cltr 7244 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-coll 4097 ax-sep 4100 ax-nul 4108 ax-pow 4153 ax-pr 4187 ax-un 4411 ax-setind 4514 ax-iinf 4565 |
This theorem depends on definitions: df-bi 116 df-dc 825 df-3or 969 df-3an 970 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ne 2337 df-ral 2449 df-rex 2450 df-reu 2451 df-rmo 2452 df-rab 2453 df-v 2728 df-sbc 2952 df-csb 3046 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-nul 3410 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-int 3825 df-iun 3868 df-br 3983 df-opab 4044 df-mpt 4045 df-tr 4081 df-eprel 4267 df-id 4271 df-po 4274 df-iso 4275 df-iord 4344 df-on 4346 df-suc 4349 df-iom 4568 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-rn 4615 df-res 4616 df-ima 4617 df-iota 5153 df-fun 5190 df-fn 5191 df-f 5192 df-f1 5193 df-fo 5194 df-f1o 5195 df-fv 5196 df-riota 5798 df-ov 5845 df-oprab 5846 df-mpo 5847 df-1st 6108 df-2nd 6109 df-recs 6273 df-irdg 6338 df-1o 6384 df-2o 6385 df-oadd 6388 df-omul 6389 df-er 6501 df-ec 6503 df-qs 6507 df-ni 7245 df-pli 7246 df-mi 7247 df-lti 7248 df-plpq 7285 df-mpq 7286 df-enq 7288 df-nqqs 7289 df-plqqs 7290 df-mqqs 7291 df-1nqqs 7292 df-rq 7293 df-ltnqqs 7294 df-enq0 7365 df-nq0 7366 df-0nq0 7367 df-plq0 7368 df-mq0 7369 df-inp 7407 df-i1p 7408 df-iplp 7409 df-iltp 7411 df-enr 7667 df-nr 7668 df-ltr 7671 df-0r 7672 |
This theorem is referenced by: caucvgsrlemfv 7732 caucvgsrlemgt1 7736 |
Copyright terms: Public domain | W3C validator |