Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > prsrriota | GIF version |
Description: Mapping a restricted iota from a positive real to a signed real. (Contributed by Jim Kingdon, 29-Jun-2021.) |
Ref | Expression |
---|---|
prsrriota | ⊢ ((𝐴 ∈ R ∧ 0R <R 𝐴) → [〈((℩𝑥 ∈ P [〈(𝑥 +P 1P), 1P〉] ~R = 𝐴) +P 1P), 1P〉] ~R = 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | srpospr 7745 | . . 3 ⊢ ((𝐴 ∈ R ∧ 0R <R 𝐴) → ∃!𝑦 ∈ P [〈(𝑦 +P 1P), 1P〉] ~R = 𝐴) | |
2 | reurex 2683 | . . 3 ⊢ (∃!𝑦 ∈ P [〈(𝑦 +P 1P), 1P〉] ~R = 𝐴 → ∃𝑦 ∈ P [〈(𝑦 +P 1P), 1P〉] ~R = 𝐴) | |
3 | 1, 2 | syl 14 | . 2 ⊢ ((𝐴 ∈ R ∧ 0R <R 𝐴) → ∃𝑦 ∈ P [〈(𝑦 +P 1P), 1P〉] ~R = 𝐴) |
4 | simprr 527 | . . . . 5 ⊢ (((𝐴 ∈ R ∧ 0R <R 𝐴) ∧ (𝑦 ∈ P ∧ [〈(𝑦 +P 1P), 1P〉] ~R = 𝐴)) → [〈(𝑦 +P 1P), 1P〉] ~R = 𝐴) | |
5 | simprl 526 | . . . . . 6 ⊢ (((𝐴 ∈ R ∧ 0R <R 𝐴) ∧ (𝑦 ∈ P ∧ [〈(𝑦 +P 1P), 1P〉] ~R = 𝐴)) → 𝑦 ∈ P) | |
6 | srpospr 7745 | . . . . . . 7 ⊢ ((𝐴 ∈ R ∧ 0R <R 𝐴) → ∃!𝑥 ∈ P [〈(𝑥 +P 1P), 1P〉] ~R = 𝐴) | |
7 | 6 | adantr 274 | . . . . . 6 ⊢ (((𝐴 ∈ R ∧ 0R <R 𝐴) ∧ (𝑦 ∈ P ∧ [〈(𝑦 +P 1P), 1P〉] ~R = 𝐴)) → ∃!𝑥 ∈ P [〈(𝑥 +P 1P), 1P〉] ~R = 𝐴) |
8 | oveq1 5860 | . . . . . . . . . 10 ⊢ (𝑥 = 𝑦 → (𝑥 +P 1P) = (𝑦 +P 1P)) | |
9 | 8 | opeq1d 3771 | . . . . . . . . 9 ⊢ (𝑥 = 𝑦 → 〈(𝑥 +P 1P), 1P〉 = 〈(𝑦 +P 1P), 1P〉) |
10 | 9 | eceq1d 6549 | . . . . . . . 8 ⊢ (𝑥 = 𝑦 → [〈(𝑥 +P 1P), 1P〉] ~R = [〈(𝑦 +P 1P), 1P〉] ~R ) |
11 | 10 | eqeq1d 2179 | . . . . . . 7 ⊢ (𝑥 = 𝑦 → ([〈(𝑥 +P 1P), 1P〉] ~R = 𝐴 ↔ [〈(𝑦 +P 1P), 1P〉] ~R = 𝐴)) |
12 | 11 | riota2 5831 | . . . . . 6 ⊢ ((𝑦 ∈ P ∧ ∃!𝑥 ∈ P [〈(𝑥 +P 1P), 1P〉] ~R = 𝐴) → ([〈(𝑦 +P 1P), 1P〉] ~R = 𝐴 ↔ (℩𝑥 ∈ P [〈(𝑥 +P 1P), 1P〉] ~R = 𝐴) = 𝑦)) |
13 | 5, 7, 12 | syl2anc 409 | . . . . 5 ⊢ (((𝐴 ∈ R ∧ 0R <R 𝐴) ∧ (𝑦 ∈ P ∧ [〈(𝑦 +P 1P), 1P〉] ~R = 𝐴)) → ([〈(𝑦 +P 1P), 1P〉] ~R = 𝐴 ↔ (℩𝑥 ∈ P [〈(𝑥 +P 1P), 1P〉] ~R = 𝐴) = 𝑦)) |
14 | 4, 13 | mpbid 146 | . . . 4 ⊢ (((𝐴 ∈ R ∧ 0R <R 𝐴) ∧ (𝑦 ∈ P ∧ [〈(𝑦 +P 1P), 1P〉] ~R = 𝐴)) → (℩𝑥 ∈ P [〈(𝑥 +P 1P), 1P〉] ~R = 𝐴) = 𝑦) |
15 | oveq1 5860 | . . . . . 6 ⊢ ((℩𝑥 ∈ P [〈(𝑥 +P 1P), 1P〉] ~R = 𝐴) = 𝑦 → ((℩𝑥 ∈ P [〈(𝑥 +P 1P), 1P〉] ~R = 𝐴) +P 1P) = (𝑦 +P 1P)) | |
16 | 15 | opeq1d 3771 | . . . . 5 ⊢ ((℩𝑥 ∈ P [〈(𝑥 +P 1P), 1P〉] ~R = 𝐴) = 𝑦 → 〈((℩𝑥 ∈ P [〈(𝑥 +P 1P), 1P〉] ~R = 𝐴) +P 1P), 1P〉 = 〈(𝑦 +P 1P), 1P〉) |
17 | 16 | eceq1d 6549 | . . . 4 ⊢ ((℩𝑥 ∈ P [〈(𝑥 +P 1P), 1P〉] ~R = 𝐴) = 𝑦 → [〈((℩𝑥 ∈ P [〈(𝑥 +P 1P), 1P〉] ~R = 𝐴) +P 1P), 1P〉] ~R = [〈(𝑦 +P 1P), 1P〉] ~R ) |
18 | 14, 17 | syl 14 | . . 3 ⊢ (((𝐴 ∈ R ∧ 0R <R 𝐴) ∧ (𝑦 ∈ P ∧ [〈(𝑦 +P 1P), 1P〉] ~R = 𝐴)) → [〈((℩𝑥 ∈ P [〈(𝑥 +P 1P), 1P〉] ~R = 𝐴) +P 1P), 1P〉] ~R = [〈(𝑦 +P 1P), 1P〉] ~R ) |
19 | 18, 4 | eqtrd 2203 | . 2 ⊢ (((𝐴 ∈ R ∧ 0R <R 𝐴) ∧ (𝑦 ∈ P ∧ [〈(𝑦 +P 1P), 1P〉] ~R = 𝐴)) → [〈((℩𝑥 ∈ P [〈(𝑥 +P 1P), 1P〉] ~R = 𝐴) +P 1P), 1P〉] ~R = 𝐴) |
20 | 3, 19 | rexlimddv 2592 | 1 ⊢ ((𝐴 ∈ R ∧ 0R <R 𝐴) → [〈((℩𝑥 ∈ P [〈(𝑥 +P 1P), 1P〉] ~R = 𝐴) +P 1P), 1P〉] ~R = 𝐴) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ↔ wb 104 = wceq 1348 ∈ wcel 2141 ∃wrex 2449 ∃!wreu 2450 〈cop 3586 class class class wbr 3989 ℩crio 5808 (class class class)co 5853 [cec 6511 Pcnp 7253 1Pc1p 7254 +P cpp 7255 ~R cer 7258 Rcnr 7259 0Rc0r 7260 <R cltr 7265 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-coll 4104 ax-sep 4107 ax-nul 4115 ax-pow 4160 ax-pr 4194 ax-un 4418 ax-setind 4521 ax-iinf 4572 |
This theorem depends on definitions: df-bi 116 df-dc 830 df-3or 974 df-3an 975 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ne 2341 df-ral 2453 df-rex 2454 df-reu 2455 df-rmo 2456 df-rab 2457 df-v 2732 df-sbc 2956 df-csb 3050 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-nul 3415 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-int 3832 df-iun 3875 df-br 3990 df-opab 4051 df-mpt 4052 df-tr 4088 df-eprel 4274 df-id 4278 df-po 4281 df-iso 4282 df-iord 4351 df-on 4353 df-suc 4356 df-iom 4575 df-xp 4617 df-rel 4618 df-cnv 4619 df-co 4620 df-dm 4621 df-rn 4622 df-res 4623 df-ima 4624 df-iota 5160 df-fun 5200 df-fn 5201 df-f 5202 df-f1 5203 df-fo 5204 df-f1o 5205 df-fv 5206 df-riota 5809 df-ov 5856 df-oprab 5857 df-mpo 5858 df-1st 6119 df-2nd 6120 df-recs 6284 df-irdg 6349 df-1o 6395 df-2o 6396 df-oadd 6399 df-omul 6400 df-er 6513 df-ec 6515 df-qs 6519 df-ni 7266 df-pli 7267 df-mi 7268 df-lti 7269 df-plpq 7306 df-mpq 7307 df-enq 7309 df-nqqs 7310 df-plqqs 7311 df-mqqs 7312 df-1nqqs 7313 df-rq 7314 df-ltnqqs 7315 df-enq0 7386 df-nq0 7387 df-0nq0 7388 df-plq0 7389 df-mq0 7390 df-inp 7428 df-i1p 7429 df-iplp 7430 df-iltp 7432 df-enr 7688 df-nr 7689 df-ltr 7692 df-0r 7693 |
This theorem is referenced by: caucvgsrlemfv 7753 caucvgsrlemgt1 7757 |
Copyright terms: Public domain | W3C validator |