ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  modprm0 GIF version

Theorem modprm0 12395
Description: For two positive integers less than a given prime number there is always a nonnegative integer (less than the given prime number) so that the sum of one of the two positive integers and the other of the positive integers multiplied by the nonnegative integer is 0 ( modulo the given prime number). (Contributed by Alexander van der Vekens, 17-May-2018.)
Assertion
Ref Expression
modprm0 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (1..^𝑃) ∧ 𝐼 ∈ (1..^𝑃)) → ∃𝑗 ∈ (0..^𝑃)((𝐼 + (𝑗 · 𝑁)) mod 𝑃) = 0)
Distinct variable groups:   𝑗,𝐼   𝑗,𝑁   𝑃,𝑗

Proof of Theorem modprm0
Dummy variable 𝑟 is distinct from all other variables.
StepHypRef Expression
1 reumodprminv 12394 . . . 4 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (1..^𝑃)) → ∃!𝑟 ∈ (1...(𝑃 − 1))((𝑁 · 𝑟) mod 𝑃) = 1)
2 reurex 2712 . . . 4 (∃!𝑟 ∈ (1...(𝑃 − 1))((𝑁 · 𝑟) mod 𝑃) = 1 → ∃𝑟 ∈ (1...(𝑃 − 1))((𝑁 · 𝑟) mod 𝑃) = 1)
3 prmz 12252 . . . . . . . . . . 11 (𝑃 ∈ ℙ → 𝑃 ∈ ℤ)
433ad2ant1 1020 . . . . . . . . . 10 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (1..^𝑃) ∧ 𝐼 ∈ (1..^𝑃)) → 𝑃 ∈ ℤ)
54adantl 277 . . . . . . . . 9 (((𝑟 ∈ (1...(𝑃 − 1)) ∧ ((𝑁 · 𝑟) mod 𝑃) = 1) ∧ (𝑃 ∈ ℙ ∧ 𝑁 ∈ (1..^𝑃) ∧ 𝐼 ∈ (1..^𝑃))) → 𝑃 ∈ ℤ)
6 elfzelz 10094 . . . . . . . . . . 11 (𝑟 ∈ (1...(𝑃 − 1)) → 𝑟 ∈ ℤ)
76adantr 276 . . . . . . . . . 10 ((𝑟 ∈ (1...(𝑃 − 1)) ∧ ((𝑁 · 𝑟) mod 𝑃) = 1) → 𝑟 ∈ ℤ)
8 elfzoelz 10216 . . . . . . . . . . 11 (𝐼 ∈ (1..^𝑃) → 𝐼 ∈ ℤ)
983ad2ant3 1022 . . . . . . . . . 10 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (1..^𝑃) ∧ 𝐼 ∈ (1..^𝑃)) → 𝐼 ∈ ℤ)
10 zmulcl 9373 . . . . . . . . . 10 ((𝑟 ∈ ℤ ∧ 𝐼 ∈ ℤ) → (𝑟 · 𝐼) ∈ ℤ)
117, 9, 10syl2an 289 . . . . . . . . 9 (((𝑟 ∈ (1...(𝑃 − 1)) ∧ ((𝑁 · 𝑟) mod 𝑃) = 1) ∧ (𝑃 ∈ ℙ ∧ 𝑁 ∈ (1..^𝑃) ∧ 𝐼 ∈ (1..^𝑃))) → (𝑟 · 𝐼) ∈ ℤ)
125, 11zsubcld 9447 . . . . . . . 8 (((𝑟 ∈ (1...(𝑃 − 1)) ∧ ((𝑁 · 𝑟) mod 𝑃) = 1) ∧ (𝑃 ∈ ℙ ∧ 𝑁 ∈ (1..^𝑃) ∧ 𝐼 ∈ (1..^𝑃))) → (𝑃 − (𝑟 · 𝐼)) ∈ ℤ)
13 prmnn 12251 . . . . . . . . . 10 (𝑃 ∈ ℙ → 𝑃 ∈ ℕ)
14133ad2ant1 1020 . . . . . . . . 9 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (1..^𝑃) ∧ 𝐼 ∈ (1..^𝑃)) → 𝑃 ∈ ℕ)
1514adantl 277 . . . . . . . 8 (((𝑟 ∈ (1...(𝑃 − 1)) ∧ ((𝑁 · 𝑟) mod 𝑃) = 1) ∧ (𝑃 ∈ ℙ ∧ 𝑁 ∈ (1..^𝑃) ∧ 𝐼 ∈ (1..^𝑃))) → 𝑃 ∈ ℕ)
16 zmodfzo 10421 . . . . . . . 8 (((𝑃 − (𝑟 · 𝐼)) ∈ ℤ ∧ 𝑃 ∈ ℕ) → ((𝑃 − (𝑟 · 𝐼)) mod 𝑃) ∈ (0..^𝑃))
1712, 15, 16syl2anc 411 . . . . . . 7 (((𝑟 ∈ (1...(𝑃 − 1)) ∧ ((𝑁 · 𝑟) mod 𝑃) = 1) ∧ (𝑃 ∈ ℙ ∧ 𝑁 ∈ (1..^𝑃) ∧ 𝐼 ∈ (1..^𝑃))) → ((𝑃 − (𝑟 · 𝐼)) mod 𝑃) ∈ (0..^𝑃))
189adantl 277 . . . . . . . . . 10 (((𝑟 ∈ (1...(𝑃 − 1)) ∧ ((𝑁 · 𝑟) mod 𝑃) = 1) ∧ (𝑃 ∈ ℙ ∧ 𝑁 ∈ (1..^𝑃) ∧ 𝐼 ∈ (1..^𝑃))) → 𝐼 ∈ ℤ)
19 zq 9694 . . . . . . . . . 10 (𝐼 ∈ ℤ → 𝐼 ∈ ℚ)
2018, 19syl 14 . . . . . . . . 9 (((𝑟 ∈ (1...(𝑃 − 1)) ∧ ((𝑁 · 𝑟) mod 𝑃) = 1) ∧ (𝑃 ∈ ℙ ∧ 𝑁 ∈ (1..^𝑃) ∧ 𝐼 ∈ (1..^𝑃))) → 𝐼 ∈ ℚ)
21 zq 9694 . . . . . . . . . 10 ((𝑃 − (𝑟 · 𝐼)) ∈ ℤ → (𝑃 − (𝑟 · 𝐼)) ∈ ℚ)
2212, 21syl 14 . . . . . . . . 9 (((𝑟 ∈ (1...(𝑃 − 1)) ∧ ((𝑁 · 𝑟) mod 𝑃) = 1) ∧ (𝑃 ∈ ℙ ∧ 𝑁 ∈ (1..^𝑃) ∧ 𝐼 ∈ (1..^𝑃))) → (𝑃 − (𝑟 · 𝐼)) ∈ ℚ)
23 elfzoelz 10216 . . . . . . . . . . 11 (𝑁 ∈ (1..^𝑃) → 𝑁 ∈ ℤ)
24233ad2ant2 1021 . . . . . . . . . 10 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (1..^𝑃) ∧ 𝐼 ∈ (1..^𝑃)) → 𝑁 ∈ ℤ)
2524adantl 277 . . . . . . . . 9 (((𝑟 ∈ (1...(𝑃 − 1)) ∧ ((𝑁 · 𝑟) mod 𝑃) = 1) ∧ (𝑃 ∈ ℙ ∧ 𝑁 ∈ (1..^𝑃) ∧ 𝐼 ∈ (1..^𝑃))) → 𝑁 ∈ ℤ)
26 zq 9694 . . . . . . . . . 10 (𝑃 ∈ ℤ → 𝑃 ∈ ℚ)
275, 26syl 14 . . . . . . . . 9 (((𝑟 ∈ (1...(𝑃 − 1)) ∧ ((𝑁 · 𝑟) mod 𝑃) = 1) ∧ (𝑃 ∈ ℙ ∧ 𝑁 ∈ (1..^𝑃) ∧ 𝐼 ∈ (1..^𝑃))) → 𝑃 ∈ ℚ)
2815nngt0d 9028 . . . . . . . . 9 (((𝑟 ∈ (1...(𝑃 − 1)) ∧ ((𝑁 · 𝑟) mod 𝑃) = 1) ∧ (𝑃 ∈ ℙ ∧ 𝑁 ∈ (1..^𝑃) ∧ 𝐼 ∈ (1..^𝑃))) → 0 < 𝑃)
29 modqaddmulmod 10465 . . . . . . . . 9 (((𝐼 ∈ ℚ ∧ (𝑃 − (𝑟 · 𝐼)) ∈ ℚ ∧ 𝑁 ∈ ℤ) ∧ (𝑃 ∈ ℚ ∧ 0 < 𝑃)) → ((𝐼 + (((𝑃 − (𝑟 · 𝐼)) mod 𝑃) · 𝑁)) mod 𝑃) = ((𝐼 + ((𝑃 − (𝑟 · 𝐼)) · 𝑁)) mod 𝑃))
3020, 22, 25, 27, 28, 29syl32anc 1257 . . . . . . . 8 (((𝑟 ∈ (1...(𝑃 − 1)) ∧ ((𝑁 · 𝑟) mod 𝑃) = 1) ∧ (𝑃 ∈ ℙ ∧ 𝑁 ∈ (1..^𝑃) ∧ 𝐼 ∈ (1..^𝑃))) → ((𝐼 + (((𝑃 − (𝑟 · 𝐼)) mod 𝑃) · 𝑁)) mod 𝑃) = ((𝐼 + ((𝑃 − (𝑟 · 𝐼)) · 𝑁)) mod 𝑃))
3113nncnd 8998 . . . . . . . . . . . . 13 (𝑃 ∈ ℙ → 𝑃 ∈ ℂ)
32313ad2ant1 1020 . . . . . . . . . . . 12 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (1..^𝑃) ∧ 𝐼 ∈ (1..^𝑃)) → 𝑃 ∈ ℂ)
3332adantl 277 . . . . . . . . . . 11 (((𝑟 ∈ (1...(𝑃 − 1)) ∧ ((𝑁 · 𝑟) mod 𝑃) = 1) ∧ (𝑃 ∈ ℙ ∧ 𝑁 ∈ (1..^𝑃) ∧ 𝐼 ∈ (1..^𝑃))) → 𝑃 ∈ ℂ)
346zcnd 9443 . . . . . . . . . . . . 13 (𝑟 ∈ (1...(𝑃 − 1)) → 𝑟 ∈ ℂ)
3534adantr 276 . . . . . . . . . . . 12 ((𝑟 ∈ (1...(𝑃 − 1)) ∧ ((𝑁 · 𝑟) mod 𝑃) = 1) → 𝑟 ∈ ℂ)
368zcnd 9443 . . . . . . . . . . . . 13 (𝐼 ∈ (1..^𝑃) → 𝐼 ∈ ℂ)
37363ad2ant3 1022 . . . . . . . . . . . 12 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (1..^𝑃) ∧ 𝐼 ∈ (1..^𝑃)) → 𝐼 ∈ ℂ)
38 mulcl 8001 . . . . . . . . . . . 12 ((𝑟 ∈ ℂ ∧ 𝐼 ∈ ℂ) → (𝑟 · 𝐼) ∈ ℂ)
3935, 37, 38syl2an 289 . . . . . . . . . . 11 (((𝑟 ∈ (1...(𝑃 − 1)) ∧ ((𝑁 · 𝑟) mod 𝑃) = 1) ∧ (𝑃 ∈ ℙ ∧ 𝑁 ∈ (1..^𝑃) ∧ 𝐼 ∈ (1..^𝑃))) → (𝑟 · 𝐼) ∈ ℂ)
4023zcnd 9443 . . . . . . . . . . . . 13 (𝑁 ∈ (1..^𝑃) → 𝑁 ∈ ℂ)
41403ad2ant2 1021 . . . . . . . . . . . 12 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (1..^𝑃) ∧ 𝐼 ∈ (1..^𝑃)) → 𝑁 ∈ ℂ)
4241adantl 277 . . . . . . . . . . 11 (((𝑟 ∈ (1...(𝑃 − 1)) ∧ ((𝑁 · 𝑟) mod 𝑃) = 1) ∧ (𝑃 ∈ ℙ ∧ 𝑁 ∈ (1..^𝑃) ∧ 𝐼 ∈ (1..^𝑃))) → 𝑁 ∈ ℂ)
4333, 39, 42subdird 8436 . . . . . . . . . 10 (((𝑟 ∈ (1...(𝑃 − 1)) ∧ ((𝑁 · 𝑟) mod 𝑃) = 1) ∧ (𝑃 ∈ ℙ ∧ 𝑁 ∈ (1..^𝑃) ∧ 𝐼 ∈ (1..^𝑃))) → ((𝑃 − (𝑟 · 𝐼)) · 𝑁) = ((𝑃 · 𝑁) − ((𝑟 · 𝐼) · 𝑁)))
4443oveq2d 5935 . . . . . . . . 9 (((𝑟 ∈ (1...(𝑃 − 1)) ∧ ((𝑁 · 𝑟) mod 𝑃) = 1) ∧ (𝑃 ∈ ℙ ∧ 𝑁 ∈ (1..^𝑃) ∧ 𝐼 ∈ (1..^𝑃))) → (𝐼 + ((𝑃 − (𝑟 · 𝐼)) · 𝑁)) = (𝐼 + ((𝑃 · 𝑁) − ((𝑟 · 𝐼) · 𝑁))))
4544oveq1d 5934 . . . . . . . 8 (((𝑟 ∈ (1...(𝑃 − 1)) ∧ ((𝑁 · 𝑟) mod 𝑃) = 1) ∧ (𝑃 ∈ ℙ ∧ 𝑁 ∈ (1..^𝑃) ∧ 𝐼 ∈ (1..^𝑃))) → ((𝐼 + ((𝑃 − (𝑟 · 𝐼)) · 𝑁)) mod 𝑃) = ((𝐼 + ((𝑃 · 𝑁) − ((𝑟 · 𝐼) · 𝑁))) mod 𝑃))
46 mulcom 8003 . . . . . . . . . . . . . . . . . . 19 ((𝑃 ∈ ℂ ∧ 𝑁 ∈ ℂ) → (𝑃 · 𝑁) = (𝑁 · 𝑃))
4731, 40, 46syl2an 289 . . . . . . . . . . . . . . . . . 18 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (1..^𝑃)) → (𝑃 · 𝑁) = (𝑁 · 𝑃))
4847oveq1d 5934 . . . . . . . . . . . . . . . . 17 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (1..^𝑃)) → ((𝑃 · 𝑁) mod 𝑃) = ((𝑁 · 𝑃) mod 𝑃))
4923adantl 277 . . . . . . . . . . . . . . . . . 18 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (1..^𝑃)) → 𝑁 ∈ ℤ)
503adantr 276 . . . . . . . . . . . . . . . . . . 19 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (1..^𝑃)) → 𝑃 ∈ ℤ)
5150, 26syl 14 . . . . . . . . . . . . . . . . . 18 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (1..^𝑃)) → 𝑃 ∈ ℚ)
5213nngt0d 9028 . . . . . . . . . . . . . . . . . . 19 (𝑃 ∈ ℙ → 0 < 𝑃)
5352adantr 276 . . . . . . . . . . . . . . . . . 18 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (1..^𝑃)) → 0 < 𝑃)
54 mulqmod0 10404 . . . . . . . . . . . . . . . . . 18 ((𝑁 ∈ ℤ ∧ 𝑃 ∈ ℚ ∧ 0 < 𝑃) → ((𝑁 · 𝑃) mod 𝑃) = 0)
5549, 51, 53, 54syl3anc 1249 . . . . . . . . . . . . . . . . 17 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (1..^𝑃)) → ((𝑁 · 𝑃) mod 𝑃) = 0)
5648, 55eqtrd 2226 . . . . . . . . . . . . . . . 16 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (1..^𝑃)) → ((𝑃 · 𝑁) mod 𝑃) = 0)
57563adant3 1019 . . . . . . . . . . . . . . 15 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (1..^𝑃) ∧ 𝐼 ∈ (1..^𝑃)) → ((𝑃 · 𝑁) mod 𝑃) = 0)
5857adantl 277 . . . . . . . . . . . . . 14 (((𝑟 ∈ (1...(𝑃 − 1)) ∧ ((𝑁 · 𝑟) mod 𝑃) = 1) ∧ (𝑃 ∈ ℙ ∧ 𝑁 ∈ (1..^𝑃) ∧ 𝐼 ∈ (1..^𝑃))) → ((𝑃 · 𝑁) mod 𝑃) = 0)
5935adantr 276 . . . . . . . . . . . . . . . . 17 (((𝑟 ∈ (1...(𝑃 − 1)) ∧ ((𝑁 · 𝑟) mod 𝑃) = 1) ∧ (𝑃 ∈ ℙ ∧ 𝑁 ∈ (1..^𝑃) ∧ 𝐼 ∈ (1..^𝑃))) → 𝑟 ∈ ℂ)
6037adantl 277 . . . . . . . . . . . . . . . . 17 (((𝑟 ∈ (1...(𝑃 − 1)) ∧ ((𝑁 · 𝑟) mod 𝑃) = 1) ∧ (𝑃 ∈ ℙ ∧ 𝑁 ∈ (1..^𝑃) ∧ 𝐼 ∈ (1..^𝑃))) → 𝐼 ∈ ℂ)
6159, 60, 42mul32d 8174 . . . . . . . . . . . . . . . 16 (((𝑟 ∈ (1...(𝑃 − 1)) ∧ ((𝑁 · 𝑟) mod 𝑃) = 1) ∧ (𝑃 ∈ ℙ ∧ 𝑁 ∈ (1..^𝑃) ∧ 𝐼 ∈ (1..^𝑃))) → ((𝑟 · 𝐼) · 𝑁) = ((𝑟 · 𝑁) · 𝐼))
6261oveq1d 5934 . . . . . . . . . . . . . . 15 (((𝑟 ∈ (1...(𝑃 − 1)) ∧ ((𝑁 · 𝑟) mod 𝑃) = 1) ∧ (𝑃 ∈ ℙ ∧ 𝑁 ∈ (1..^𝑃) ∧ 𝐼 ∈ (1..^𝑃))) → (((𝑟 · 𝐼) · 𝑁) mod 𝑃) = (((𝑟 · 𝑁) · 𝐼) mod 𝑃))
63 elfznn 10123 . . . . . . . . . . . . . . . . . . . 20 (𝑟 ∈ (1...(𝑃 − 1)) → 𝑟 ∈ ℕ)
6463adantr 276 . . . . . . . . . . . . . . . . . . 19 ((𝑟 ∈ (1...(𝑃 − 1)) ∧ ((𝑁 · 𝑟) mod 𝑃) = 1) → 𝑟 ∈ ℕ)
6564adantr 276 . . . . . . . . . . . . . . . . . 18 (((𝑟 ∈ (1...(𝑃 − 1)) ∧ ((𝑁 · 𝑟) mod 𝑃) = 1) ∧ (𝑃 ∈ ℙ ∧ 𝑁 ∈ (1..^𝑃) ∧ 𝐼 ∈ (1..^𝑃))) → 𝑟 ∈ ℕ)
66 elfzo1 10260 . . . . . . . . . . . . . . . . . . . . 21 (𝑁 ∈ (1..^𝑃) ↔ (𝑁 ∈ ℕ ∧ 𝑃 ∈ ℕ ∧ 𝑁 < 𝑃))
6766simp1bi 1014 . . . . . . . . . . . . . . . . . . . 20 (𝑁 ∈ (1..^𝑃) → 𝑁 ∈ ℕ)
68673ad2ant2 1021 . . . . . . . . . . . . . . . . . . 19 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (1..^𝑃) ∧ 𝐼 ∈ (1..^𝑃)) → 𝑁 ∈ ℕ)
6968adantl 277 . . . . . . . . . . . . . . . . . 18 (((𝑟 ∈ (1...(𝑃 − 1)) ∧ ((𝑁 · 𝑟) mod 𝑃) = 1) ∧ (𝑃 ∈ ℙ ∧ 𝑁 ∈ (1..^𝑃) ∧ 𝐼 ∈ (1..^𝑃))) → 𝑁 ∈ ℕ)
7065, 69nnmulcld 9033 . . . . . . . . . . . . . . . . 17 (((𝑟 ∈ (1...(𝑃 − 1)) ∧ ((𝑁 · 𝑟) mod 𝑃) = 1) ∧ (𝑃 ∈ ℙ ∧ 𝑁 ∈ (1..^𝑃) ∧ 𝐼 ∈ (1..^𝑃))) → (𝑟 · 𝑁) ∈ ℕ)
71 nnq 9701 . . . . . . . . . . . . . . . . 17 ((𝑟 · 𝑁) ∈ ℕ → (𝑟 · 𝑁) ∈ ℚ)
7270, 71syl 14 . . . . . . . . . . . . . . . 16 (((𝑟 ∈ (1...(𝑃 − 1)) ∧ ((𝑁 · 𝑟) mod 𝑃) = 1) ∧ (𝑃 ∈ ℙ ∧ 𝑁 ∈ (1..^𝑃) ∧ 𝐼 ∈ (1..^𝑃))) → (𝑟 · 𝑁) ∈ ℚ)
73 modqmulmod 10463 . . . . . . . . . . . . . . . 16 ((((𝑟 · 𝑁) ∈ ℚ ∧ 𝐼 ∈ ℤ) ∧ (𝑃 ∈ ℚ ∧ 0 < 𝑃)) → ((((𝑟 · 𝑁) mod 𝑃) · 𝐼) mod 𝑃) = (((𝑟 · 𝑁) · 𝐼) mod 𝑃))
7472, 18, 27, 28, 73syl22anc 1250 . . . . . . . . . . . . . . 15 (((𝑟 ∈ (1...(𝑃 − 1)) ∧ ((𝑁 · 𝑟) mod 𝑃) = 1) ∧ (𝑃 ∈ ℙ ∧ 𝑁 ∈ (1..^𝑃) ∧ 𝐼 ∈ (1..^𝑃))) → ((((𝑟 · 𝑁) mod 𝑃) · 𝐼) mod 𝑃) = (((𝑟 · 𝑁) · 𝐼) mod 𝑃))
7562, 74eqtr4d 2229 . . . . . . . . . . . . . 14 (((𝑟 ∈ (1...(𝑃 − 1)) ∧ ((𝑁 · 𝑟) mod 𝑃) = 1) ∧ (𝑃 ∈ ℙ ∧ 𝑁 ∈ (1..^𝑃) ∧ 𝐼 ∈ (1..^𝑃))) → (((𝑟 · 𝐼) · 𝑁) mod 𝑃) = ((((𝑟 · 𝑁) mod 𝑃) · 𝐼) mod 𝑃))
7658, 75oveq12d 5937 . . . . . . . . . . . . 13 (((𝑟 ∈ (1...(𝑃 − 1)) ∧ ((𝑁 · 𝑟) mod 𝑃) = 1) ∧ (𝑃 ∈ ℙ ∧ 𝑁 ∈ (1..^𝑃) ∧ 𝐼 ∈ (1..^𝑃))) → (((𝑃 · 𝑁) mod 𝑃) − (((𝑟 · 𝐼) · 𝑁) mod 𝑃)) = (0 − ((((𝑟 · 𝑁) mod 𝑃) · 𝐼) mod 𝑃)))
7776oveq1d 5934 . . . . . . . . . . . 12 (((𝑟 ∈ (1...(𝑃 − 1)) ∧ ((𝑁 · 𝑟) mod 𝑃) = 1) ∧ (𝑃 ∈ ℙ ∧ 𝑁 ∈ (1..^𝑃) ∧ 𝐼 ∈ (1..^𝑃))) → ((((𝑃 · 𝑁) mod 𝑃) − (((𝑟 · 𝐼) · 𝑁) mod 𝑃)) mod 𝑃) = ((0 − ((((𝑟 · 𝑁) mod 𝑃) · 𝐼) mod 𝑃)) mod 𝑃))
7815, 69nnmulcld 9033 . . . . . . . . . . . . . 14 (((𝑟 ∈ (1...(𝑃 − 1)) ∧ ((𝑁 · 𝑟) mod 𝑃) = 1) ∧ (𝑃 ∈ ℙ ∧ 𝑁 ∈ (1..^𝑃) ∧ 𝐼 ∈ (1..^𝑃))) → (𝑃 · 𝑁) ∈ ℕ)
79 nnq 9701 . . . . . . . . . . . . . 14 ((𝑃 · 𝑁) ∈ ℕ → (𝑃 · 𝑁) ∈ ℚ)
8078, 79syl 14 . . . . . . . . . . . . 13 (((𝑟 ∈ (1...(𝑃 − 1)) ∧ ((𝑁 · 𝑟) mod 𝑃) = 1) ∧ (𝑃 ∈ ℙ ∧ 𝑁 ∈ (1..^𝑃) ∧ 𝐼 ∈ (1..^𝑃))) → (𝑃 · 𝑁) ∈ ℚ)
81 elfzo1 10260 . . . . . . . . . . . . . . . . . . 19 (𝐼 ∈ (1..^𝑃) ↔ (𝐼 ∈ ℕ ∧ 𝑃 ∈ ℕ ∧ 𝐼 < 𝑃))
8281simp1bi 1014 . . . . . . . . . . . . . . . . . 18 (𝐼 ∈ (1..^𝑃) → 𝐼 ∈ ℕ)
83823ad2ant3 1022 . . . . . . . . . . . . . . . . 17 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (1..^𝑃) ∧ 𝐼 ∈ (1..^𝑃)) → 𝐼 ∈ ℕ)
8483adantl 277 . . . . . . . . . . . . . . . 16 (((𝑟 ∈ (1...(𝑃 − 1)) ∧ ((𝑁 · 𝑟) mod 𝑃) = 1) ∧ (𝑃 ∈ ℙ ∧ 𝑁 ∈ (1..^𝑃) ∧ 𝐼 ∈ (1..^𝑃))) → 𝐼 ∈ ℕ)
8565, 84nnmulcld 9033 . . . . . . . . . . . . . . 15 (((𝑟 ∈ (1...(𝑃 − 1)) ∧ ((𝑁 · 𝑟) mod 𝑃) = 1) ∧ (𝑃 ∈ ℙ ∧ 𝑁 ∈ (1..^𝑃) ∧ 𝐼 ∈ (1..^𝑃))) → (𝑟 · 𝐼) ∈ ℕ)
8685, 69nnmulcld 9033 . . . . . . . . . . . . . 14 (((𝑟 ∈ (1...(𝑃 − 1)) ∧ ((𝑁 · 𝑟) mod 𝑃) = 1) ∧ (𝑃 ∈ ℙ ∧ 𝑁 ∈ (1..^𝑃) ∧ 𝐼 ∈ (1..^𝑃))) → ((𝑟 · 𝐼) · 𝑁) ∈ ℕ)
87 nnq 9701 . . . . . . . . . . . . . 14 (((𝑟 · 𝐼) · 𝑁) ∈ ℕ → ((𝑟 · 𝐼) · 𝑁) ∈ ℚ)
8886, 87syl 14 . . . . . . . . . . . . 13 (((𝑟 ∈ (1...(𝑃 − 1)) ∧ ((𝑁 · 𝑟) mod 𝑃) = 1) ∧ (𝑃 ∈ ℙ ∧ 𝑁 ∈ (1..^𝑃) ∧ 𝐼 ∈ (1..^𝑃))) → ((𝑟 · 𝐼) · 𝑁) ∈ ℚ)
89 modqsubmodmod 10457 . . . . . . . . . . . . 13 ((((𝑃 · 𝑁) ∈ ℚ ∧ ((𝑟 · 𝐼) · 𝑁) ∈ ℚ) ∧ (𝑃 ∈ ℚ ∧ 0 < 𝑃)) → ((((𝑃 · 𝑁) mod 𝑃) − (((𝑟 · 𝐼) · 𝑁) mod 𝑃)) mod 𝑃) = (((𝑃 · 𝑁) − ((𝑟 · 𝐼) · 𝑁)) mod 𝑃))
9080, 88, 27, 28, 89syl22anc 1250 . . . . . . . . . . . 12 (((𝑟 ∈ (1...(𝑃 − 1)) ∧ ((𝑁 · 𝑟) mod 𝑃) = 1) ∧ (𝑃 ∈ ℙ ∧ 𝑁 ∈ (1..^𝑃) ∧ 𝐼 ∈ (1..^𝑃))) → ((((𝑃 · 𝑁) mod 𝑃) − (((𝑟 · 𝐼) · 𝑁) mod 𝑃)) mod 𝑃) = (((𝑃 · 𝑁) − ((𝑟 · 𝐼) · 𝑁)) mod 𝑃))
91 mulcom 8003 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑁 ∈ ℂ ∧ 𝑟 ∈ ℂ) → (𝑁 · 𝑟) = (𝑟 · 𝑁))
9241, 34, 91syl2anr 290 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑟 ∈ (1...(𝑃 − 1)) ∧ (𝑃 ∈ ℙ ∧ 𝑁 ∈ (1..^𝑃) ∧ 𝐼 ∈ (1..^𝑃))) → (𝑁 · 𝑟) = (𝑟 · 𝑁))
9392oveq1d 5934 . . . . . . . . . . . . . . . . . . . . 21 ((𝑟 ∈ (1...(𝑃 − 1)) ∧ (𝑃 ∈ ℙ ∧ 𝑁 ∈ (1..^𝑃) ∧ 𝐼 ∈ (1..^𝑃))) → ((𝑁 · 𝑟) mod 𝑃) = ((𝑟 · 𝑁) mod 𝑃))
9493eqeq1d 2202 . . . . . . . . . . . . . . . . . . . 20 ((𝑟 ∈ (1...(𝑃 − 1)) ∧ (𝑃 ∈ ℙ ∧ 𝑁 ∈ (1..^𝑃) ∧ 𝐼 ∈ (1..^𝑃))) → (((𝑁 · 𝑟) mod 𝑃) = 1 ↔ ((𝑟 · 𝑁) mod 𝑃) = 1))
9594biimpd 144 . . . . . . . . . . . . . . . . . . 19 ((𝑟 ∈ (1...(𝑃 − 1)) ∧ (𝑃 ∈ ℙ ∧ 𝑁 ∈ (1..^𝑃) ∧ 𝐼 ∈ (1..^𝑃))) → (((𝑁 · 𝑟) mod 𝑃) = 1 → ((𝑟 · 𝑁) mod 𝑃) = 1))
9695impancom 260 . . . . . . . . . . . . . . . . . 18 ((𝑟 ∈ (1...(𝑃 − 1)) ∧ ((𝑁 · 𝑟) mod 𝑃) = 1) → ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (1..^𝑃) ∧ 𝐼 ∈ (1..^𝑃)) → ((𝑟 · 𝑁) mod 𝑃) = 1))
9796imp 124 . . . . . . . . . . . . . . . . 17 (((𝑟 ∈ (1...(𝑃 − 1)) ∧ ((𝑁 · 𝑟) mod 𝑃) = 1) ∧ (𝑃 ∈ ℙ ∧ 𝑁 ∈ (1..^𝑃) ∧ 𝐼 ∈ (1..^𝑃))) → ((𝑟 · 𝑁) mod 𝑃) = 1)
9897oveq1d 5934 . . . . . . . . . . . . . . . 16 (((𝑟 ∈ (1...(𝑃 − 1)) ∧ ((𝑁 · 𝑟) mod 𝑃) = 1) ∧ (𝑃 ∈ ℙ ∧ 𝑁 ∈ (1..^𝑃) ∧ 𝐼 ∈ (1..^𝑃))) → (((𝑟 · 𝑁) mod 𝑃) · 𝐼) = (1 · 𝐼))
9998oveq1d 5934 . . . . . . . . . . . . . . 15 (((𝑟 ∈ (1...(𝑃 − 1)) ∧ ((𝑁 · 𝑟) mod 𝑃) = 1) ∧ (𝑃 ∈ ℙ ∧ 𝑁 ∈ (1..^𝑃) ∧ 𝐼 ∈ (1..^𝑃))) → ((((𝑟 · 𝑁) mod 𝑃) · 𝐼) mod 𝑃) = ((1 · 𝐼) mod 𝑃))
10099oveq2d 5935 . . . . . . . . . . . . . 14 (((𝑟 ∈ (1...(𝑃 − 1)) ∧ ((𝑁 · 𝑟) mod 𝑃) = 1) ∧ (𝑃 ∈ ℙ ∧ 𝑁 ∈ (1..^𝑃) ∧ 𝐼 ∈ (1..^𝑃))) → (0 − ((((𝑟 · 𝑁) mod 𝑃) · 𝐼) mod 𝑃)) = (0 − ((1 · 𝐼) mod 𝑃)))
101100oveq1d 5934 . . . . . . . . . . . . 13 (((𝑟 ∈ (1...(𝑃 − 1)) ∧ ((𝑁 · 𝑟) mod 𝑃) = 1) ∧ (𝑃 ∈ ℙ ∧ 𝑁 ∈ (1..^𝑃) ∧ 𝐼 ∈ (1..^𝑃))) → ((0 − ((((𝑟 · 𝑁) mod 𝑃) · 𝐼) mod 𝑃)) mod 𝑃) = ((0 − ((1 · 𝐼) mod 𝑃)) mod 𝑃))
10260mulid2d 8040 . . . . . . . . . . . . . . . . 17 (((𝑟 ∈ (1...(𝑃 − 1)) ∧ ((𝑁 · 𝑟) mod 𝑃) = 1) ∧ (𝑃 ∈ ℙ ∧ 𝑁 ∈ (1..^𝑃) ∧ 𝐼 ∈ (1..^𝑃))) → (1 · 𝐼) = 𝐼)
103102oveq1d 5934 . . . . . . . . . . . . . . . 16 (((𝑟 ∈ (1...(𝑃 − 1)) ∧ ((𝑁 · 𝑟) mod 𝑃) = 1) ∧ (𝑃 ∈ ℙ ∧ 𝑁 ∈ (1..^𝑃) ∧ 𝐼 ∈ (1..^𝑃))) → ((1 · 𝐼) mod 𝑃) = (𝐼 mod 𝑃))
10484nnnn0d 9296 . . . . . . . . . . . . . . . . . 18 (((𝑟 ∈ (1...(𝑃 − 1)) ∧ ((𝑁 · 𝑟) mod 𝑃) = 1) ∧ (𝑃 ∈ ℙ ∧ 𝑁 ∈ (1..^𝑃) ∧ 𝐼 ∈ (1..^𝑃))) → 𝐼 ∈ ℕ0)
105104nn0ge0d 9299 . . . . . . . . . . . . . . . . 17 (((𝑟 ∈ (1...(𝑃 − 1)) ∧ ((𝑁 · 𝑟) mod 𝑃) = 1) ∧ (𝑃 ∈ ℙ ∧ 𝑁 ∈ (1..^𝑃) ∧ 𝐼 ∈ (1..^𝑃))) → 0 ≤ 𝐼)
106 elfzolt2 10226 . . . . . . . . . . . . . . . . . . 19 (𝐼 ∈ (1..^𝑃) → 𝐼 < 𝑃)
1071063ad2ant3 1022 . . . . . . . . . . . . . . . . . 18 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (1..^𝑃) ∧ 𝐼 ∈ (1..^𝑃)) → 𝐼 < 𝑃)
108107adantl 277 . . . . . . . . . . . . . . . . 17 (((𝑟 ∈ (1...(𝑃 − 1)) ∧ ((𝑁 · 𝑟) mod 𝑃) = 1) ∧ (𝑃 ∈ ℙ ∧ 𝑁 ∈ (1..^𝑃) ∧ 𝐼 ∈ (1..^𝑃))) → 𝐼 < 𝑃)
109 modqid 10423 . . . . . . . . . . . . . . . . 17 (((𝐼 ∈ ℚ ∧ 𝑃 ∈ ℚ) ∧ (0 ≤ 𝐼𝐼 < 𝑃)) → (𝐼 mod 𝑃) = 𝐼)
11020, 27, 105, 108, 109syl22anc 1250 . . . . . . . . . . . . . . . 16 (((𝑟 ∈ (1...(𝑃 − 1)) ∧ ((𝑁 · 𝑟) mod 𝑃) = 1) ∧ (𝑃 ∈ ℙ ∧ 𝑁 ∈ (1..^𝑃) ∧ 𝐼 ∈ (1..^𝑃))) → (𝐼 mod 𝑃) = 𝐼)
111103, 110eqtrd 2226 . . . . . . . . . . . . . . 15 (((𝑟 ∈ (1...(𝑃 − 1)) ∧ ((𝑁 · 𝑟) mod 𝑃) = 1) ∧ (𝑃 ∈ ℙ ∧ 𝑁 ∈ (1..^𝑃) ∧ 𝐼 ∈ (1..^𝑃))) → ((1 · 𝐼) mod 𝑃) = 𝐼)
112111oveq2d 5935 . . . . . . . . . . . . . 14 (((𝑟 ∈ (1...(𝑃 − 1)) ∧ ((𝑁 · 𝑟) mod 𝑃) = 1) ∧ (𝑃 ∈ ℙ ∧ 𝑁 ∈ (1..^𝑃) ∧ 𝐼 ∈ (1..^𝑃))) → (0 − ((1 · 𝐼) mod 𝑃)) = (0 − 𝐼))
113112oveq1d 5934 . . . . . . . . . . . . 13 (((𝑟 ∈ (1...(𝑃 − 1)) ∧ ((𝑁 · 𝑟) mod 𝑃) = 1) ∧ (𝑃 ∈ ℙ ∧ 𝑁 ∈ (1..^𝑃) ∧ 𝐼 ∈ (1..^𝑃))) → ((0 − ((1 · 𝐼) mod 𝑃)) mod 𝑃) = ((0 − 𝐼) mod 𝑃))
114101, 113eqtrd 2226 . . . . . . . . . . . 12 (((𝑟 ∈ (1...(𝑃 − 1)) ∧ ((𝑁 · 𝑟) mod 𝑃) = 1) ∧ (𝑃 ∈ ℙ ∧ 𝑁 ∈ (1..^𝑃) ∧ 𝐼 ∈ (1..^𝑃))) → ((0 − ((((𝑟 · 𝑁) mod 𝑃) · 𝐼) mod 𝑃)) mod 𝑃) = ((0 − 𝐼) mod 𝑃))
11577, 90, 1143eqtr3d 2234 . . . . . . . . . . 11 (((𝑟 ∈ (1...(𝑃 − 1)) ∧ ((𝑁 · 𝑟) mod 𝑃) = 1) ∧ (𝑃 ∈ ℙ ∧ 𝑁 ∈ (1..^𝑃) ∧ 𝐼 ∈ (1..^𝑃))) → (((𝑃 · 𝑁) − ((𝑟 · 𝐼) · 𝑁)) mod 𝑃) = ((0 − 𝐼) mod 𝑃))
116115oveq2d 5935 . . . . . . . . . 10 (((𝑟 ∈ (1...(𝑃 − 1)) ∧ ((𝑁 · 𝑟) mod 𝑃) = 1) ∧ (𝑃 ∈ ℙ ∧ 𝑁 ∈ (1..^𝑃) ∧ 𝐼 ∈ (1..^𝑃))) → (𝐼 + (((𝑃 · 𝑁) − ((𝑟 · 𝐼) · 𝑁)) mod 𝑃)) = (𝐼 + ((0 − 𝐼) mod 𝑃)))
117116oveq1d 5934 . . . . . . . . 9 (((𝑟 ∈ (1...(𝑃 − 1)) ∧ ((𝑁 · 𝑟) mod 𝑃) = 1) ∧ (𝑃 ∈ ℙ ∧ 𝑁 ∈ (1..^𝑃) ∧ 𝐼 ∈ (1..^𝑃))) → ((𝐼 + (((𝑃 · 𝑁) − ((𝑟 · 𝐼) · 𝑁)) mod 𝑃)) mod 𝑃) = ((𝐼 + ((0 − 𝐼) mod 𝑃)) mod 𝑃))
118 qsubcl 9706 . . . . . . . . . . 11 (((𝑃 · 𝑁) ∈ ℚ ∧ ((𝑟 · 𝐼) · 𝑁) ∈ ℚ) → ((𝑃 · 𝑁) − ((𝑟 · 𝐼) · 𝑁)) ∈ ℚ)
11980, 88, 118syl2anc 411 . . . . . . . . . 10 (((𝑟 ∈ (1...(𝑃 − 1)) ∧ ((𝑁 · 𝑟) mod 𝑃) = 1) ∧ (𝑃 ∈ ℙ ∧ 𝑁 ∈ (1..^𝑃) ∧ 𝐼 ∈ (1..^𝑃))) → ((𝑃 · 𝑁) − ((𝑟 · 𝐼) · 𝑁)) ∈ ℚ)
120 modqadd2mod 10448 . . . . . . . . . 10 (((((𝑃 · 𝑁) − ((𝑟 · 𝐼) · 𝑁)) ∈ ℚ ∧ 𝐼 ∈ ℚ) ∧ (𝑃 ∈ ℚ ∧ 0 < 𝑃)) → ((𝐼 + (((𝑃 · 𝑁) − ((𝑟 · 𝐼) · 𝑁)) mod 𝑃)) mod 𝑃) = ((𝐼 + ((𝑃 · 𝑁) − ((𝑟 · 𝐼) · 𝑁))) mod 𝑃))
121119, 20, 27, 28, 120syl22anc 1250 . . . . . . . . 9 (((𝑟 ∈ (1...(𝑃 − 1)) ∧ ((𝑁 · 𝑟) mod 𝑃) = 1) ∧ (𝑃 ∈ ℙ ∧ 𝑁 ∈ (1..^𝑃) ∧ 𝐼 ∈ (1..^𝑃))) → ((𝐼 + (((𝑃 · 𝑁) − ((𝑟 · 𝐼) · 𝑁)) mod 𝑃)) mod 𝑃) = ((𝐼 + ((𝑃 · 𝑁) − ((𝑟 · 𝐼) · 𝑁))) mod 𝑃))
122 0zd 9332 . . . . . . . . . . . . 13 (((𝑟 ∈ (1...(𝑃 − 1)) ∧ ((𝑁 · 𝑟) mod 𝑃) = 1) ∧ (𝑃 ∈ ℙ ∧ 𝑁 ∈ (1..^𝑃) ∧ 𝐼 ∈ (1..^𝑃))) → 0 ∈ ℤ)
123122, 18zsubcld 9447 . . . . . . . . . . . 12 (((𝑟 ∈ (1...(𝑃 − 1)) ∧ ((𝑁 · 𝑟) mod 𝑃) = 1) ∧ (𝑃 ∈ ℙ ∧ 𝑁 ∈ (1..^𝑃) ∧ 𝐼 ∈ (1..^𝑃))) → (0 − 𝐼) ∈ ℤ)
124 zq 9694 . . . . . . . . . . . 12 ((0 − 𝐼) ∈ ℤ → (0 − 𝐼) ∈ ℚ)
125123, 124syl 14 . . . . . . . . . . 11 (((𝑟 ∈ (1...(𝑃 − 1)) ∧ ((𝑁 · 𝑟) mod 𝑃) = 1) ∧ (𝑃 ∈ ℙ ∧ 𝑁 ∈ (1..^𝑃) ∧ 𝐼 ∈ (1..^𝑃))) → (0 − 𝐼) ∈ ℚ)
126 modqadd2mod 10448 . . . . . . . . . . 11 ((((0 − 𝐼) ∈ ℚ ∧ 𝐼 ∈ ℚ) ∧ (𝑃 ∈ ℚ ∧ 0 < 𝑃)) → ((𝐼 + ((0 − 𝐼) mod 𝑃)) mod 𝑃) = ((𝐼 + (0 − 𝐼)) mod 𝑃))
127125, 20, 27, 28, 126syl22anc 1250 . . . . . . . . . 10 (((𝑟 ∈ (1...(𝑃 − 1)) ∧ ((𝑁 · 𝑟) mod 𝑃) = 1) ∧ (𝑃 ∈ ℙ ∧ 𝑁 ∈ (1..^𝑃) ∧ 𝐼 ∈ (1..^𝑃))) → ((𝐼 + ((0 − 𝐼) mod 𝑃)) mod 𝑃) = ((𝐼 + (0 − 𝐼)) mod 𝑃))
128 0cnd 8014 . . . . . . . . . . . . . 14 (𝐼 ∈ (1..^𝑃) → 0 ∈ ℂ)
12936, 128pncan3d 8335 . . . . . . . . . . . . 13 (𝐼 ∈ (1..^𝑃) → (𝐼 + (0 − 𝐼)) = 0)
1301293ad2ant3 1022 . . . . . . . . . . . 12 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (1..^𝑃) ∧ 𝐼 ∈ (1..^𝑃)) → (𝐼 + (0 − 𝐼)) = 0)
131130adantl 277 . . . . . . . . . . 11 (((𝑟 ∈ (1...(𝑃 − 1)) ∧ ((𝑁 · 𝑟) mod 𝑃) = 1) ∧ (𝑃 ∈ ℙ ∧ 𝑁 ∈ (1..^𝑃) ∧ 𝐼 ∈ (1..^𝑃))) → (𝐼 + (0 − 𝐼)) = 0)
132131oveq1d 5934 . . . . . . . . . 10 (((𝑟 ∈ (1...(𝑃 − 1)) ∧ ((𝑁 · 𝑟) mod 𝑃) = 1) ∧ (𝑃 ∈ ℙ ∧ 𝑁 ∈ (1..^𝑃) ∧ 𝐼 ∈ (1..^𝑃))) → ((𝐼 + (0 − 𝐼)) mod 𝑃) = (0 mod 𝑃))
1333, 26syl 14 . . . . . . . . . . . . 13 (𝑃 ∈ ℙ → 𝑃 ∈ ℚ)
134 q0mod 10429 . . . . . . . . . . . . 13 ((𝑃 ∈ ℚ ∧ 0 < 𝑃) → (0 mod 𝑃) = 0)
135133, 52, 134syl2anc 411 . . . . . . . . . . . 12 (𝑃 ∈ ℙ → (0 mod 𝑃) = 0)
1361353ad2ant1 1020 . . . . . . . . . . 11 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (1..^𝑃) ∧ 𝐼 ∈ (1..^𝑃)) → (0 mod 𝑃) = 0)
137136adantl 277 . . . . . . . . . 10 (((𝑟 ∈ (1...(𝑃 − 1)) ∧ ((𝑁 · 𝑟) mod 𝑃) = 1) ∧ (𝑃 ∈ ℙ ∧ 𝑁 ∈ (1..^𝑃) ∧ 𝐼 ∈ (1..^𝑃))) → (0 mod 𝑃) = 0)
138127, 132, 1373eqtrd 2230 . . . . . . . . 9 (((𝑟 ∈ (1...(𝑃 − 1)) ∧ ((𝑁 · 𝑟) mod 𝑃) = 1) ∧ (𝑃 ∈ ℙ ∧ 𝑁 ∈ (1..^𝑃) ∧ 𝐼 ∈ (1..^𝑃))) → ((𝐼 + ((0 − 𝐼) mod 𝑃)) mod 𝑃) = 0)
139117, 121, 1383eqtr3d 2234 . . . . . . . 8 (((𝑟 ∈ (1...(𝑃 − 1)) ∧ ((𝑁 · 𝑟) mod 𝑃) = 1) ∧ (𝑃 ∈ ℙ ∧ 𝑁 ∈ (1..^𝑃) ∧ 𝐼 ∈ (1..^𝑃))) → ((𝐼 + ((𝑃 · 𝑁) − ((𝑟 · 𝐼) · 𝑁))) mod 𝑃) = 0)
14030, 45, 1393eqtrd 2230 . . . . . . 7 (((𝑟 ∈ (1...(𝑃 − 1)) ∧ ((𝑁 · 𝑟) mod 𝑃) = 1) ∧ (𝑃 ∈ ℙ ∧ 𝑁 ∈ (1..^𝑃) ∧ 𝐼 ∈ (1..^𝑃))) → ((𝐼 + (((𝑃 − (𝑟 · 𝐼)) mod 𝑃) · 𝑁)) mod 𝑃) = 0)
141 oveq1 5926 . . . . . . . . . . 11 (𝑗 = ((𝑃 − (𝑟 · 𝐼)) mod 𝑃) → (𝑗 · 𝑁) = (((𝑃 − (𝑟 · 𝐼)) mod 𝑃) · 𝑁))
142141oveq2d 5935 . . . . . . . . . 10 (𝑗 = ((𝑃 − (𝑟 · 𝐼)) mod 𝑃) → (𝐼 + (𝑗 · 𝑁)) = (𝐼 + (((𝑃 − (𝑟 · 𝐼)) mod 𝑃) · 𝑁)))
143142oveq1d 5934 . . . . . . . . 9 (𝑗 = ((𝑃 − (𝑟 · 𝐼)) mod 𝑃) → ((𝐼 + (𝑗 · 𝑁)) mod 𝑃) = ((𝐼 + (((𝑃 − (𝑟 · 𝐼)) mod 𝑃) · 𝑁)) mod 𝑃))
144143eqeq1d 2202 . . . . . . . 8 (𝑗 = ((𝑃 − (𝑟 · 𝐼)) mod 𝑃) → (((𝐼 + (𝑗 · 𝑁)) mod 𝑃) = 0 ↔ ((𝐼 + (((𝑃 − (𝑟 · 𝐼)) mod 𝑃) · 𝑁)) mod 𝑃) = 0))
145144rspcev 2865 . . . . . . 7 ((((𝑃 − (𝑟 · 𝐼)) mod 𝑃) ∈ (0..^𝑃) ∧ ((𝐼 + (((𝑃 − (𝑟 · 𝐼)) mod 𝑃) · 𝑁)) mod 𝑃) = 0) → ∃𝑗 ∈ (0..^𝑃)((𝐼 + (𝑗 · 𝑁)) mod 𝑃) = 0)
14617, 140, 145syl2anc 411 . . . . . 6 (((𝑟 ∈ (1...(𝑃 − 1)) ∧ ((𝑁 · 𝑟) mod 𝑃) = 1) ∧ (𝑃 ∈ ℙ ∧ 𝑁 ∈ (1..^𝑃) ∧ 𝐼 ∈ (1..^𝑃))) → ∃𝑗 ∈ (0..^𝑃)((𝐼 + (𝑗 · 𝑁)) mod 𝑃) = 0)
147146ex 115 . . . . 5 ((𝑟 ∈ (1...(𝑃 − 1)) ∧ ((𝑁 · 𝑟) mod 𝑃) = 1) → ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (1..^𝑃) ∧ 𝐼 ∈ (1..^𝑃)) → ∃𝑗 ∈ (0..^𝑃)((𝐼 + (𝑗 · 𝑁)) mod 𝑃) = 0))
148147rexlimiva 2606 . . . 4 (∃𝑟 ∈ (1...(𝑃 − 1))((𝑁 · 𝑟) mod 𝑃) = 1 → ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (1..^𝑃) ∧ 𝐼 ∈ (1..^𝑃)) → ∃𝑗 ∈ (0..^𝑃)((𝐼 + (𝑗 · 𝑁)) mod 𝑃) = 0))
1491, 2, 1483syl 17 . . 3 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (1..^𝑃)) → ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (1..^𝑃) ∧ 𝐼 ∈ (1..^𝑃)) → ∃𝑗 ∈ (0..^𝑃)((𝐼 + (𝑗 · 𝑁)) mod 𝑃) = 0))
1501493adant3 1019 . 2 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (1..^𝑃) ∧ 𝐼 ∈ (1..^𝑃)) → ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (1..^𝑃) ∧ 𝐼 ∈ (1..^𝑃)) → ∃𝑗 ∈ (0..^𝑃)((𝐼 + (𝑗 · 𝑁)) mod 𝑃) = 0))
151150pm2.43i 49 1 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (1..^𝑃) ∧ 𝐼 ∈ (1..^𝑃)) → ∃𝑗 ∈ (0..^𝑃)((𝐼 + (𝑗 · 𝑁)) mod 𝑃) = 0)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  w3a 980   = wceq 1364  wcel 2164  wrex 2473  ∃!wreu 2474   class class class wbr 4030  (class class class)co 5919  cc 7872  0cc0 7874  1c1 7875   + caddc 7877   · cmul 7879   < clt 8056  cle 8057  cmin 8192  cn 8984  cz 9320  cq 9687  ...cfz 10077  ..^cfzo 10211   mod cmo 10396  cprime 12248
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4145  ax-sep 4148  ax-nul 4156  ax-pow 4204  ax-pr 4239  ax-un 4465  ax-setind 4570  ax-iinf 4621  ax-cnex 7965  ax-resscn 7966  ax-1cn 7967  ax-1re 7968  ax-icn 7969  ax-addcl 7970  ax-addrcl 7971  ax-mulcl 7972  ax-mulrcl 7973  ax-addcom 7974  ax-mulcom 7975  ax-addass 7976  ax-mulass 7977  ax-distr 7978  ax-i2m1 7979  ax-0lt1 7980  ax-1rid 7981  ax-0id 7982  ax-rnegex 7983  ax-precex 7984  ax-cnre 7985  ax-pre-ltirr 7986  ax-pre-ltwlin 7987  ax-pre-lttrn 7988  ax-pre-apti 7989  ax-pre-ltadd 7990  ax-pre-mulgt0 7991  ax-pre-mulext 7992  ax-arch 7993  ax-caucvg 7994
This theorem depends on definitions:  df-bi 117  df-stab 832  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rmo 2480  df-rab 2481  df-v 2762  df-sbc 2987  df-csb 3082  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-nul 3448  df-if 3559  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-int 3872  df-iun 3915  df-br 4031  df-opab 4092  df-mpt 4093  df-tr 4129  df-id 4325  df-po 4328  df-iso 4329  df-iord 4398  df-on 4400  df-ilim 4401  df-suc 4403  df-iom 4624  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-rn 4671  df-res 4672  df-ima 4673  df-iota 5216  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-isom 5264  df-riota 5874  df-ov 5922  df-oprab 5923  df-mpo 5924  df-1st 6195  df-2nd 6196  df-recs 6360  df-irdg 6425  df-frec 6446  df-1o 6471  df-2o 6472  df-oadd 6475  df-er 6589  df-en 6797  df-dom 6798  df-fin 6799  df-sup 7045  df-pnf 8058  df-mnf 8059  df-xr 8060  df-ltxr 8061  df-le 8062  df-sub 8194  df-neg 8195  df-reap 8596  df-ap 8603  df-div 8694  df-inn 8985  df-2 9043  df-3 9044  df-4 9045  df-n0 9244  df-z 9321  df-uz 9596  df-q 9688  df-rp 9723  df-fz 10078  df-fzo 10212  df-fl 10342  df-mod 10397  df-seqfrec 10522  df-exp 10613  df-ihash 10850  df-cj 10989  df-re 10990  df-im 10991  df-rsqrt 11145  df-abs 11146  df-clim 11425  df-proddc 11697  df-dvds 11934  df-gcd 12083  df-prm 12249  df-phi 12352
This theorem is referenced by:  nnnn0modprm0  12396
  Copyright terms: Public domain W3C validator