Step | Hyp | Ref
| Expression |
1 | | 0lt1o 6441 |
. . . . 5
β’ β
β 1o |
2 | | djurcl 7051 |
. . . . 5
β’ (β
β 1o β (inrββ
) β (β
β
1o)) |
3 | 1, 2 | ax-mp 5 |
. . . 4
β’
(inrββ
) β (β
β
1o) |
4 | 3 | fconst6 5416 |
. . 3
β’ (Ο
Γ {(inrββ
)}):ΟβΆ(β
β
1o) |
5 | | peano1 4594 |
. . . . 5
β’ β
β Ο |
6 | | rex0 3441 |
. . . . . . . . 9
β’ Β¬
βπ€ β β
π¦ = (inlβπ€) |
7 | | djur 7068 |
. . . . . . . . . . 11
β’ (π¦ β (β
β
1o) β (βπ€ β β
π¦ = (inlβπ€) β¨ βπ€ β 1o π¦ = (inrβπ€))) |
8 | 7 | biimpi 120 |
. . . . . . . . . 10
β’ (π¦ β (β
β
1o) β (βπ€ β β
π¦ = (inlβπ€) β¨ βπ€ β 1o π¦ = (inrβπ€))) |
9 | 8 | ord 724 |
. . . . . . . . 9
β’ (π¦ β (β
β
1o) β (Β¬ βπ€ β β
π¦ = (inlβπ€) β βπ€ β 1o π¦ = (inrβπ€))) |
10 | 6, 9 | mpi 15 |
. . . . . . . 8
β’ (π¦ β (β
β
1o) β βπ€ β 1o π¦ = (inrβπ€)) |
11 | | df1o2 6430 |
. . . . . . . . 9
β’
1o = {β
} |
12 | 11 | rexeqi 2678 |
. . . . . . . 8
β’
(βπ€ β
1o π¦ =
(inrβπ€) β
βπ€ β
{β
}π¦ =
(inrβπ€)) |
13 | 10, 12 | sylib 122 |
. . . . . . 7
β’ (π¦ β (β
β
1o) β βπ€ β {β
}π¦ = (inrβπ€)) |
14 | | 0ex 4131 |
. . . . . . . 8
β’ β
β V |
15 | | fveq2 5516 |
. . . . . . . . 9
β’ (π€ = β
β
(inrβπ€) =
(inrββ
)) |
16 | 15 | eqeq2d 2189 |
. . . . . . . 8
β’ (π€ = β
β (π¦ = (inrβπ€) β π¦ = (inrββ
))) |
17 | 14, 16 | rexsn 3637 |
. . . . . . 7
β’
(βπ€ β
{β
}π¦ =
(inrβπ€) β π¦ =
(inrββ
)) |
18 | 13, 17 | sylib 122 |
. . . . . 6
β’ (π¦ β (β
β
1o) β π¦ =
(inrββ
)) |
19 | 3 | elexi 2750 |
. . . . . . . 8
β’
(inrββ
) β V |
20 | 19 | fvconst2 5733 |
. . . . . . 7
β’ (β
β Ο β ((Ο Γ {(inrββ
)})ββ
) =
(inrββ
)) |
21 | 5, 20 | ax-mp 5 |
. . . . . 6
β’ ((Ο
Γ {(inrββ
)})ββ
) =
(inrββ
) |
22 | 18, 21 | eqtr4di 2228 |
. . . . 5
β’ (π¦ β (β
β
1o) β π¦ =
((Ο Γ {(inrββ
)})ββ
)) |
23 | | fveq2 5516 |
. . . . . 6
β’ (π§ = β
β ((Ο
Γ {(inrββ
)})βπ§) = ((Ο Γ
{(inrββ
)})ββ
)) |
24 | 23 | rspceeqv 2860 |
. . . . 5
β’ ((β
β Ο β§ π¦ =
((Ο Γ {(inrββ
)})ββ
)) β βπ§ β Ο π¦ = ((Ο Γ
{(inrββ
)})βπ§)) |
25 | 5, 22, 24 | sylancr 414 |
. . . 4
β’ (π¦ β (β
β
1o) β βπ§ β Ο π¦ = ((Ο Γ
{(inrββ
)})βπ§)) |
26 | 25 | rgen 2530 |
. . 3
β’
βπ¦ β
(β
β 1o)βπ§ β Ο π¦ = ((Ο Γ
{(inrββ
)})βπ§) |
27 | | dffo3 5664 |
. . 3
β’ ((Ο
Γ {(inrββ
)}):Οβontoβ(β
β 1o) β
((Ο Γ {(inrββ
)}):ΟβΆ(β
β
1o) β§ βπ¦ β (β
β
1o)βπ§
β Ο π¦ =
((Ο Γ {(inrββ
)})βπ§))) |
28 | 4, 26, 27 | mpbir2an 942 |
. 2
β’ (Ο
Γ {(inrββ
)}):Οβontoβ(β
β
1o) |
29 | | omex 4593 |
. . . 4
β’ Ο
β V |
30 | 19 | snex 4186 |
. . . 4
β’
{(inrββ
)} β V |
31 | 29, 30 | xpex 4742 |
. . 3
β’ (Ο
Γ {(inrββ
)}) β V |
32 | | foeq1 5435 |
. . 3
β’ (π = (Ο Γ
{(inrββ
)}) β (π:Οβontoβ(β
β 1o) β
(Ο Γ {(inrββ
)}):Οβontoβ(β
β
1o))) |
33 | 31, 32 | spcev 2833 |
. 2
β’ ((Ο
Γ {(inrββ
)}):Οβontoβ(β
β 1o) β
βπ π:Οβontoβ(β
β
1o)) |
34 | 28, 33 | ax-mp 5 |
1
β’
βπ π:Οβontoβ(β
β
1o) |