| Step | Hyp | Ref
 | Expression | 
| 1 |   | 0lt1o 6498 | 
. . . . 5
⊢ ∅
∈ 1o | 
| 2 |   | djurcl 7118 | 
. . . . 5
⊢ (∅
∈ 1o → (inr‘∅) ∈ (∅ ⊔
1o)) | 
| 3 | 1, 2 | ax-mp 5 | 
. . . 4
⊢
(inr‘∅) ∈ (∅ ⊔
1o) | 
| 4 | 3 | fconst6 5457 | 
. . 3
⊢ (ω
× {(inr‘∅)}):ω⟶(∅ ⊔
1o) | 
| 5 |   | peano1 4630 | 
. . . . 5
⊢ ∅
∈ ω | 
| 6 |   | rex0 3468 | 
. . . . . . . . 9
⊢  ¬
∃𝑤 ∈ ∅
𝑦 = (inl‘𝑤) | 
| 7 |   | djur 7135 | 
. . . . . . . . . . 11
⊢ (𝑦 ∈ (∅ ⊔
1o) ↔ (∃𝑤 ∈ ∅ 𝑦 = (inl‘𝑤) ∨ ∃𝑤 ∈ 1o 𝑦 = (inr‘𝑤))) | 
| 8 | 7 | biimpi 120 | 
. . . . . . . . . 10
⊢ (𝑦 ∈ (∅ ⊔
1o) → (∃𝑤 ∈ ∅ 𝑦 = (inl‘𝑤) ∨ ∃𝑤 ∈ 1o 𝑦 = (inr‘𝑤))) | 
| 9 | 8 | ord 725 | 
. . . . . . . . 9
⊢ (𝑦 ∈ (∅ ⊔
1o) → (¬ ∃𝑤 ∈ ∅ 𝑦 = (inl‘𝑤) → ∃𝑤 ∈ 1o 𝑦 = (inr‘𝑤))) | 
| 10 | 6, 9 | mpi 15 | 
. . . . . . . 8
⊢ (𝑦 ∈ (∅ ⊔
1o) → ∃𝑤 ∈ 1o 𝑦 = (inr‘𝑤)) | 
| 11 |   | df1o2 6487 | 
. . . . . . . . 9
⊢
1o = {∅} | 
| 12 | 11 | rexeqi 2698 | 
. . . . . . . 8
⊢
(∃𝑤 ∈
1o 𝑦 =
(inr‘𝑤) ↔
∃𝑤 ∈
{∅}𝑦 =
(inr‘𝑤)) | 
| 13 | 10, 12 | sylib 122 | 
. . . . . . 7
⊢ (𝑦 ∈ (∅ ⊔
1o) → ∃𝑤 ∈ {∅}𝑦 = (inr‘𝑤)) | 
| 14 |   | 0ex 4160 | 
. . . . . . . 8
⊢ ∅
∈ V | 
| 15 |   | fveq2 5558 | 
. . . . . . . . 9
⊢ (𝑤 = ∅ →
(inr‘𝑤) =
(inr‘∅)) | 
| 16 | 15 | eqeq2d 2208 | 
. . . . . . . 8
⊢ (𝑤 = ∅ → (𝑦 = (inr‘𝑤) ↔ 𝑦 = (inr‘∅))) | 
| 17 | 14, 16 | rexsn 3666 | 
. . . . . . 7
⊢
(∃𝑤 ∈
{∅}𝑦 =
(inr‘𝑤) ↔ 𝑦 =
(inr‘∅)) | 
| 18 | 13, 17 | sylib 122 | 
. . . . . 6
⊢ (𝑦 ∈ (∅ ⊔
1o) → 𝑦 =
(inr‘∅)) | 
| 19 | 3 | elexi 2775 | 
. . . . . . . 8
⊢
(inr‘∅) ∈ V | 
| 20 | 19 | fvconst2 5778 | 
. . . . . . 7
⊢ (∅
∈ ω → ((ω × {(inr‘∅)})‘∅) =
(inr‘∅)) | 
| 21 | 5, 20 | ax-mp 5 | 
. . . . . 6
⊢ ((ω
× {(inr‘∅)})‘∅) =
(inr‘∅) | 
| 22 | 18, 21 | eqtr4di 2247 | 
. . . . 5
⊢ (𝑦 ∈ (∅ ⊔
1o) → 𝑦 =
((ω × {(inr‘∅)})‘∅)) | 
| 23 |   | fveq2 5558 | 
. . . . . 6
⊢ (𝑧 = ∅ → ((ω
× {(inr‘∅)})‘𝑧) = ((ω ×
{(inr‘∅)})‘∅)) | 
| 24 | 23 | rspceeqv 2886 | 
. . . . 5
⊢ ((∅
∈ ω ∧ 𝑦 =
((ω × {(inr‘∅)})‘∅)) → ∃𝑧 ∈ ω 𝑦 = ((ω ×
{(inr‘∅)})‘𝑧)) | 
| 25 | 5, 22, 24 | sylancr 414 | 
. . . 4
⊢ (𝑦 ∈ (∅ ⊔
1o) → ∃𝑧 ∈ ω 𝑦 = ((ω ×
{(inr‘∅)})‘𝑧)) | 
| 26 | 25 | rgen 2550 | 
. . 3
⊢
∀𝑦 ∈
(∅ ⊔ 1o)∃𝑧 ∈ ω 𝑦 = ((ω ×
{(inr‘∅)})‘𝑧) | 
| 27 |   | dffo3 5709 | 
. . 3
⊢ ((ω
× {(inr‘∅)}):ω–onto→(∅ ⊔ 1o) ↔
((ω × {(inr‘∅)}):ω⟶(∅ ⊔
1o) ∧ ∀𝑦 ∈ (∅ ⊔
1o)∃𝑧
∈ ω 𝑦 =
((ω × {(inr‘∅)})‘𝑧))) | 
| 28 | 4, 26, 27 | mpbir2an 944 | 
. 2
⊢ (ω
× {(inr‘∅)}):ω–onto→(∅ ⊔
1o) | 
| 29 |   | omex 4629 | 
. . . 4
⊢ ω
∈ V | 
| 30 | 19 | snex 4218 | 
. . . 4
⊢
{(inr‘∅)} ∈ V | 
| 31 | 29, 30 | xpex 4778 | 
. . 3
⊢ (ω
× {(inr‘∅)}) ∈ V | 
| 32 |   | foeq1 5476 | 
. . 3
⊢ (𝑓 = (ω ×
{(inr‘∅)}) → (𝑓:ω–onto→(∅ ⊔ 1o) ↔
(ω × {(inr‘∅)}):ω–onto→(∅ ⊔
1o))) | 
| 33 | 31, 32 | spcev 2859 | 
. 2
⊢ ((ω
× {(inr‘∅)}):ω–onto→(∅ ⊔ 1o) →
∃𝑓 𝑓:ω–onto→(∅ ⊔
1o)) | 
| 34 | 28, 33 | ax-mp 5 | 
1
⊢
∃𝑓 𝑓:ω–onto→(∅ ⊔
1o) |