ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  0ct GIF version

Theorem 0ct 6992
Description: The empty set is countable. Remark of [BauerSwan], p. 14:3 which also has the definition of countable used here. (Contributed by Jim Kingdon, 13-Mar-2023.)
Assertion
Ref Expression
0ct 𝑓 𝑓:ω–onto→(∅ ⊔ 1o)

Proof of Theorem 0ct
Dummy variables 𝑦 𝑧 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 0lt1o 6337 . . . . 5 ∅ ∈ 1o
2 djurcl 6937 . . . . 5 (∅ ∈ 1o → (inr‘∅) ∈ (∅ ⊔ 1o))
31, 2ax-mp 5 . . . 4 (inr‘∅) ∈ (∅ ⊔ 1o)
43fconst6 5322 . . 3 (ω × {(inr‘∅)}):ω⟶(∅ ⊔ 1o)
5 peano1 4508 . . . . 5 ∅ ∈ ω
6 rex0 3380 . . . . . . . . 9 ¬ ∃𝑤 ∈ ∅ 𝑦 = (inl‘𝑤)
7 djur 6954 . . . . . . . . . . 11 (𝑦 ∈ (∅ ⊔ 1o) ↔ (∃𝑤 ∈ ∅ 𝑦 = (inl‘𝑤) ∨ ∃𝑤 ∈ 1o 𝑦 = (inr‘𝑤)))
87biimpi 119 . . . . . . . . . 10 (𝑦 ∈ (∅ ⊔ 1o) → (∃𝑤 ∈ ∅ 𝑦 = (inl‘𝑤) ∨ ∃𝑤 ∈ 1o 𝑦 = (inr‘𝑤)))
98ord 713 . . . . . . . . 9 (𝑦 ∈ (∅ ⊔ 1o) → (¬ ∃𝑤 ∈ ∅ 𝑦 = (inl‘𝑤) → ∃𝑤 ∈ 1o 𝑦 = (inr‘𝑤)))
106, 9mpi 15 . . . . . . . 8 (𝑦 ∈ (∅ ⊔ 1o) → ∃𝑤 ∈ 1o 𝑦 = (inr‘𝑤))
11 df1o2 6326 . . . . . . . . 9 1o = {∅}
1211rexeqi 2631 . . . . . . . 8 (∃𝑤 ∈ 1o 𝑦 = (inr‘𝑤) ↔ ∃𝑤 ∈ {∅}𝑦 = (inr‘𝑤))
1310, 12sylib 121 . . . . . . 7 (𝑦 ∈ (∅ ⊔ 1o) → ∃𝑤 ∈ {∅}𝑦 = (inr‘𝑤))
14 0ex 4055 . . . . . . . 8 ∅ ∈ V
15 fveq2 5421 . . . . . . . . 9 (𝑤 = ∅ → (inr‘𝑤) = (inr‘∅))
1615eqeq2d 2151 . . . . . . . 8 (𝑤 = ∅ → (𝑦 = (inr‘𝑤) ↔ 𝑦 = (inr‘∅)))
1714, 16rexsn 3568 . . . . . . 7 (∃𝑤 ∈ {∅}𝑦 = (inr‘𝑤) ↔ 𝑦 = (inr‘∅))
1813, 17sylib 121 . . . . . 6 (𝑦 ∈ (∅ ⊔ 1o) → 𝑦 = (inr‘∅))
193elexi 2698 . . . . . . . 8 (inr‘∅) ∈ V
2019fvconst2 5636 . . . . . . 7 (∅ ∈ ω → ((ω × {(inr‘∅)})‘∅) = (inr‘∅))
215, 20ax-mp 5 . . . . . 6 ((ω × {(inr‘∅)})‘∅) = (inr‘∅)
2218, 21syl6eqr 2190 . . . . 5 (𝑦 ∈ (∅ ⊔ 1o) → 𝑦 = ((ω × {(inr‘∅)})‘∅))
23 fveq2 5421 . . . . . 6 (𝑧 = ∅ → ((ω × {(inr‘∅)})‘𝑧) = ((ω × {(inr‘∅)})‘∅))
2423rspceeqv 2807 . . . . 5 ((∅ ∈ ω ∧ 𝑦 = ((ω × {(inr‘∅)})‘∅)) → ∃𝑧 ∈ ω 𝑦 = ((ω × {(inr‘∅)})‘𝑧))
255, 22, 24sylancr 410 . . . 4 (𝑦 ∈ (∅ ⊔ 1o) → ∃𝑧 ∈ ω 𝑦 = ((ω × {(inr‘∅)})‘𝑧))
2625rgen 2485 . . 3 𝑦 ∈ (∅ ⊔ 1o)∃𝑧 ∈ ω 𝑦 = ((ω × {(inr‘∅)})‘𝑧)
27 dffo3 5567 . . 3 ((ω × {(inr‘∅)}):ω–onto→(∅ ⊔ 1o) ↔ ((ω × {(inr‘∅)}):ω⟶(∅ ⊔ 1o) ∧ ∀𝑦 ∈ (∅ ⊔ 1o)∃𝑧 ∈ ω 𝑦 = ((ω × {(inr‘∅)})‘𝑧)))
284, 26, 27mpbir2an 926 . 2 (ω × {(inr‘∅)}):ω–onto→(∅ ⊔ 1o)
29 omex 4507 . . . 4 ω ∈ V
3019snex 4109 . . . 4 {(inr‘∅)} ∈ V
3129, 30xpex 4654 . . 3 (ω × {(inr‘∅)}) ∈ V
32 foeq1 5341 . . 3 (𝑓 = (ω × {(inr‘∅)}) → (𝑓:ω–onto→(∅ ⊔ 1o) ↔ (ω × {(inr‘∅)}):ω–onto→(∅ ⊔ 1o)))
3331, 32spcev 2780 . 2 ((ω × {(inr‘∅)}):ω–onto→(∅ ⊔ 1o) → ∃𝑓 𝑓:ω–onto→(∅ ⊔ 1o))
3428, 33ax-mp 5 1 𝑓 𝑓:ω–onto→(∅ ⊔ 1o)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wo 697   = wceq 1331  wex 1468  wcel 1480  wral 2416  wrex 2417  c0 3363  {csn 3527  ωcom 4504   × cxp 4537  wf 5119  ontowfo 5121  cfv 5123  1oc1o 6306  cdju 6922  inlcinl 6930  inrcinr 6931
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-sep 4046  ax-nul 4054  ax-pow 4098  ax-pr 4131  ax-un 4355  ax-iinf 4502
This theorem depends on definitions:  df-bi 116  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ral 2421  df-rex 2422  df-v 2688  df-sbc 2910  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-nul 3364  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-int 3772  df-br 3930  df-opab 3990  df-mpt 3991  df-tr 4027  df-id 4215  df-iord 4288  df-on 4290  df-suc 4293  df-iom 4505  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-rn 4550  df-res 4551  df-iota 5088  df-fun 5125  df-fn 5126  df-f 5127  df-f1 5128  df-fo 5129  df-f1o 5130  df-fv 5131  df-1st 6038  df-2nd 6039  df-1o 6313  df-dju 6923  df-inl 6932  df-inr 6933
This theorem is referenced by:  enumct  7000
  Copyright terms: Public domain W3C validator