ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  0ct GIF version

Theorem 0ct 7063
Description: The empty set is countable. Remark of [BauerSwan], p. 14:3 which also has the definition of countable used here. (Contributed by Jim Kingdon, 13-Mar-2023.)
Assertion
Ref Expression
0ct 𝑓 𝑓:ω–onto→(∅ ⊔ 1o)

Proof of Theorem 0ct
Dummy variables 𝑦 𝑧 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 0lt1o 6399 . . . . 5 ∅ ∈ 1o
2 djurcl 7008 . . . . 5 (∅ ∈ 1o → (inr‘∅) ∈ (∅ ⊔ 1o))
31, 2ax-mp 5 . . . 4 (inr‘∅) ∈ (∅ ⊔ 1o)
43fconst6 5381 . . 3 (ω × {(inr‘∅)}):ω⟶(∅ ⊔ 1o)
5 peano1 4565 . . . . 5 ∅ ∈ ω
6 rex0 3421 . . . . . . . . 9 ¬ ∃𝑤 ∈ ∅ 𝑦 = (inl‘𝑤)
7 djur 7025 . . . . . . . . . . 11 (𝑦 ∈ (∅ ⊔ 1o) ↔ (∃𝑤 ∈ ∅ 𝑦 = (inl‘𝑤) ∨ ∃𝑤 ∈ 1o 𝑦 = (inr‘𝑤)))
87biimpi 119 . . . . . . . . . 10 (𝑦 ∈ (∅ ⊔ 1o) → (∃𝑤 ∈ ∅ 𝑦 = (inl‘𝑤) ∨ ∃𝑤 ∈ 1o 𝑦 = (inr‘𝑤)))
98ord 714 . . . . . . . . 9 (𝑦 ∈ (∅ ⊔ 1o) → (¬ ∃𝑤 ∈ ∅ 𝑦 = (inl‘𝑤) → ∃𝑤 ∈ 1o 𝑦 = (inr‘𝑤)))
106, 9mpi 15 . . . . . . . 8 (𝑦 ∈ (∅ ⊔ 1o) → ∃𝑤 ∈ 1o 𝑦 = (inr‘𝑤))
11 df1o2 6388 . . . . . . . . 9 1o = {∅}
1211rexeqi 2664 . . . . . . . 8 (∃𝑤 ∈ 1o 𝑦 = (inr‘𝑤) ↔ ∃𝑤 ∈ {∅}𝑦 = (inr‘𝑤))
1310, 12sylib 121 . . . . . . 7 (𝑦 ∈ (∅ ⊔ 1o) → ∃𝑤 ∈ {∅}𝑦 = (inr‘𝑤))
14 0ex 4103 . . . . . . . 8 ∅ ∈ V
15 fveq2 5480 . . . . . . . . 9 (𝑤 = ∅ → (inr‘𝑤) = (inr‘∅))
1615eqeq2d 2176 . . . . . . . 8 (𝑤 = ∅ → (𝑦 = (inr‘𝑤) ↔ 𝑦 = (inr‘∅)))
1714, 16rexsn 3614 . . . . . . 7 (∃𝑤 ∈ {∅}𝑦 = (inr‘𝑤) ↔ 𝑦 = (inr‘∅))
1813, 17sylib 121 . . . . . 6 (𝑦 ∈ (∅ ⊔ 1o) → 𝑦 = (inr‘∅))
193elexi 2733 . . . . . . . 8 (inr‘∅) ∈ V
2019fvconst2 5695 . . . . . . 7 (∅ ∈ ω → ((ω × {(inr‘∅)})‘∅) = (inr‘∅))
215, 20ax-mp 5 . . . . . 6 ((ω × {(inr‘∅)})‘∅) = (inr‘∅)
2218, 21eqtr4di 2215 . . . . 5 (𝑦 ∈ (∅ ⊔ 1o) → 𝑦 = ((ω × {(inr‘∅)})‘∅))
23 fveq2 5480 . . . . . 6 (𝑧 = ∅ → ((ω × {(inr‘∅)})‘𝑧) = ((ω × {(inr‘∅)})‘∅))
2423rspceeqv 2843 . . . . 5 ((∅ ∈ ω ∧ 𝑦 = ((ω × {(inr‘∅)})‘∅)) → ∃𝑧 ∈ ω 𝑦 = ((ω × {(inr‘∅)})‘𝑧))
255, 22, 24sylancr 411 . . . 4 (𝑦 ∈ (∅ ⊔ 1o) → ∃𝑧 ∈ ω 𝑦 = ((ω × {(inr‘∅)})‘𝑧))
2625rgen 2517 . . 3 𝑦 ∈ (∅ ⊔ 1o)∃𝑧 ∈ ω 𝑦 = ((ω × {(inr‘∅)})‘𝑧)
27 dffo3 5626 . . 3 ((ω × {(inr‘∅)}):ω–onto→(∅ ⊔ 1o) ↔ ((ω × {(inr‘∅)}):ω⟶(∅ ⊔ 1o) ∧ ∀𝑦 ∈ (∅ ⊔ 1o)∃𝑧 ∈ ω 𝑦 = ((ω × {(inr‘∅)})‘𝑧)))
284, 26, 27mpbir2an 931 . 2 (ω × {(inr‘∅)}):ω–onto→(∅ ⊔ 1o)
29 omex 4564 . . . 4 ω ∈ V
3019snex 4158 . . . 4 {(inr‘∅)} ∈ V
3129, 30xpex 4713 . . 3 (ω × {(inr‘∅)}) ∈ V
32 foeq1 5400 . . 3 (𝑓 = (ω × {(inr‘∅)}) → (𝑓:ω–onto→(∅ ⊔ 1o) ↔ (ω × {(inr‘∅)}):ω–onto→(∅ ⊔ 1o)))
3331, 32spcev 2816 . 2 ((ω × {(inr‘∅)}):ω–onto→(∅ ⊔ 1o) → ∃𝑓 𝑓:ω–onto→(∅ ⊔ 1o))
3428, 33ax-mp 5 1 𝑓 𝑓:ω–onto→(∅ ⊔ 1o)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wo 698   = wceq 1342  wex 1479  wcel 2135  wral 2442  wrex 2443  c0 3404  {csn 3570  ωcom 4561   × cxp 4596  wf 5178  ontowfo 5180  cfv 5182  1oc1o 6368  cdju 6993  inlcinl 7001  inrcinr 7002
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1434  ax-7 1435  ax-gen 1436  ax-ie1 1480  ax-ie2 1481  ax-8 1491  ax-10 1492  ax-11 1493  ax-i12 1494  ax-bndl 1496  ax-4 1497  ax-17 1513  ax-i9 1517  ax-ial 1521  ax-i5r 1522  ax-13 2137  ax-14 2138  ax-ext 2146  ax-sep 4094  ax-nul 4102  ax-pow 4147  ax-pr 4181  ax-un 4405  ax-iinf 4559
This theorem depends on definitions:  df-bi 116  df-3an 969  df-tru 1345  df-fal 1348  df-nf 1448  df-sb 1750  df-eu 2016  df-mo 2017  df-clab 2151  df-cleq 2157  df-clel 2160  df-nfc 2295  df-ral 2447  df-rex 2448  df-v 2723  df-sbc 2947  df-dif 3113  df-un 3115  df-in 3117  df-ss 3124  df-nul 3405  df-pw 3555  df-sn 3576  df-pr 3577  df-op 3579  df-uni 3784  df-int 3819  df-br 3977  df-opab 4038  df-mpt 4039  df-tr 4075  df-id 4265  df-iord 4338  df-on 4340  df-suc 4343  df-iom 4562  df-xp 4604  df-rel 4605  df-cnv 4606  df-co 4607  df-dm 4608  df-rn 4609  df-res 4610  df-iota 5147  df-fun 5184  df-fn 5185  df-f 5186  df-f1 5187  df-fo 5188  df-f1o 5189  df-fv 5190  df-1st 6100  df-2nd 6101  df-1o 6375  df-dju 6994  df-inl 7003  df-inr 7004
This theorem is referenced by:  enumct  7071
  Copyright terms: Public domain W3C validator