ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  0ct GIF version

Theorem 0ct 7173
Description: The empty set is countable. Remark of [BauerSwan], p. 14:3 which also has the definition of countable used here. (Contributed by Jim Kingdon, 13-Mar-2023.)
Assertion
Ref Expression
0ct 𝑓 𝑓:ω–onto→(∅ ⊔ 1o)

Proof of Theorem 0ct
Dummy variables 𝑦 𝑧 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 0lt1o 6498 . . . . 5 ∅ ∈ 1o
2 djurcl 7118 . . . . 5 (∅ ∈ 1o → (inr‘∅) ∈ (∅ ⊔ 1o))
31, 2ax-mp 5 . . . 4 (inr‘∅) ∈ (∅ ⊔ 1o)
43fconst6 5457 . . 3 (ω × {(inr‘∅)}):ω⟶(∅ ⊔ 1o)
5 peano1 4630 . . . . 5 ∅ ∈ ω
6 rex0 3468 . . . . . . . . 9 ¬ ∃𝑤 ∈ ∅ 𝑦 = (inl‘𝑤)
7 djur 7135 . . . . . . . . . . 11 (𝑦 ∈ (∅ ⊔ 1o) ↔ (∃𝑤 ∈ ∅ 𝑦 = (inl‘𝑤) ∨ ∃𝑤 ∈ 1o 𝑦 = (inr‘𝑤)))
87biimpi 120 . . . . . . . . . 10 (𝑦 ∈ (∅ ⊔ 1o) → (∃𝑤 ∈ ∅ 𝑦 = (inl‘𝑤) ∨ ∃𝑤 ∈ 1o 𝑦 = (inr‘𝑤)))
98ord 725 . . . . . . . . 9 (𝑦 ∈ (∅ ⊔ 1o) → (¬ ∃𝑤 ∈ ∅ 𝑦 = (inl‘𝑤) → ∃𝑤 ∈ 1o 𝑦 = (inr‘𝑤)))
106, 9mpi 15 . . . . . . . 8 (𝑦 ∈ (∅ ⊔ 1o) → ∃𝑤 ∈ 1o 𝑦 = (inr‘𝑤))
11 df1o2 6487 . . . . . . . . 9 1o = {∅}
1211rexeqi 2698 . . . . . . . 8 (∃𝑤 ∈ 1o 𝑦 = (inr‘𝑤) ↔ ∃𝑤 ∈ {∅}𝑦 = (inr‘𝑤))
1310, 12sylib 122 . . . . . . 7 (𝑦 ∈ (∅ ⊔ 1o) → ∃𝑤 ∈ {∅}𝑦 = (inr‘𝑤))
14 0ex 4160 . . . . . . . 8 ∅ ∈ V
15 fveq2 5558 . . . . . . . . 9 (𝑤 = ∅ → (inr‘𝑤) = (inr‘∅))
1615eqeq2d 2208 . . . . . . . 8 (𝑤 = ∅ → (𝑦 = (inr‘𝑤) ↔ 𝑦 = (inr‘∅)))
1714, 16rexsn 3666 . . . . . . 7 (∃𝑤 ∈ {∅}𝑦 = (inr‘𝑤) ↔ 𝑦 = (inr‘∅))
1813, 17sylib 122 . . . . . 6 (𝑦 ∈ (∅ ⊔ 1o) → 𝑦 = (inr‘∅))
193elexi 2775 . . . . . . . 8 (inr‘∅) ∈ V
2019fvconst2 5778 . . . . . . 7 (∅ ∈ ω → ((ω × {(inr‘∅)})‘∅) = (inr‘∅))
215, 20ax-mp 5 . . . . . 6 ((ω × {(inr‘∅)})‘∅) = (inr‘∅)
2218, 21eqtr4di 2247 . . . . 5 (𝑦 ∈ (∅ ⊔ 1o) → 𝑦 = ((ω × {(inr‘∅)})‘∅))
23 fveq2 5558 . . . . . 6 (𝑧 = ∅ → ((ω × {(inr‘∅)})‘𝑧) = ((ω × {(inr‘∅)})‘∅))
2423rspceeqv 2886 . . . . 5 ((∅ ∈ ω ∧ 𝑦 = ((ω × {(inr‘∅)})‘∅)) → ∃𝑧 ∈ ω 𝑦 = ((ω × {(inr‘∅)})‘𝑧))
255, 22, 24sylancr 414 . . . 4 (𝑦 ∈ (∅ ⊔ 1o) → ∃𝑧 ∈ ω 𝑦 = ((ω × {(inr‘∅)})‘𝑧))
2625rgen 2550 . . 3 𝑦 ∈ (∅ ⊔ 1o)∃𝑧 ∈ ω 𝑦 = ((ω × {(inr‘∅)})‘𝑧)
27 dffo3 5709 . . 3 ((ω × {(inr‘∅)}):ω–onto→(∅ ⊔ 1o) ↔ ((ω × {(inr‘∅)}):ω⟶(∅ ⊔ 1o) ∧ ∀𝑦 ∈ (∅ ⊔ 1o)∃𝑧 ∈ ω 𝑦 = ((ω × {(inr‘∅)})‘𝑧)))
284, 26, 27mpbir2an 944 . 2 (ω × {(inr‘∅)}):ω–onto→(∅ ⊔ 1o)
29 omex 4629 . . . 4 ω ∈ V
3019snex 4218 . . . 4 {(inr‘∅)} ∈ V
3129, 30xpex 4778 . . 3 (ω × {(inr‘∅)}) ∈ V
32 foeq1 5476 . . 3 (𝑓 = (ω × {(inr‘∅)}) → (𝑓:ω–onto→(∅ ⊔ 1o) ↔ (ω × {(inr‘∅)}):ω–onto→(∅ ⊔ 1o)))
3331, 32spcev 2859 . 2 ((ω × {(inr‘∅)}):ω–onto→(∅ ⊔ 1o) → ∃𝑓 𝑓:ω–onto→(∅ ⊔ 1o))
3428, 33ax-mp 5 1 𝑓 𝑓:ω–onto→(∅ ⊔ 1o)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wo 709   = wceq 1364  wex 1506  wcel 2167  wral 2475  wrex 2476  c0 3450  {csn 3622  ωcom 4626   × cxp 4661  wf 5254  ontowfo 5256  cfv 5258  1oc1o 6467  cdju 7103  inlcinl 7111  inrcinr 7112
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-nul 4159  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-iinf 4624
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-v 2765  df-sbc 2990  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3451  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-int 3875  df-br 4034  df-opab 4095  df-mpt 4096  df-tr 4132  df-id 4328  df-iord 4401  df-on 4403  df-suc 4406  df-iom 4627  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-f1 5263  df-fo 5264  df-f1o 5265  df-fv 5266  df-1st 6198  df-2nd 6199  df-1o 6474  df-dju 7104  df-inl 7113  df-inr 7114
This theorem is referenced by:  enumct  7181
  Copyright terms: Public domain W3C validator