![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > ismgm | GIF version |
Description: The predicate "is a magma". (Contributed by FL, 2-Nov-2009.) (Revised by AV, 6-Jan-2020.) |
Ref | Expression |
---|---|
ismgm.b | ⊢ 𝐵 = (Base‘𝑀) |
ismgm.o | ⊢ ⚬ = (+g‘𝑀) |
Ref | Expression |
---|---|
ismgm | ⊢ (𝑀 ∈ 𝑉 → (𝑀 ∈ Mgm ↔ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥 ⚬ 𝑦) ∈ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | basfn 12676 | . . . . 5 ⊢ Base Fn V | |
2 | vex 2763 | . . . . 5 ⊢ 𝑚 ∈ V | |
3 | funfvex 5571 | . . . . . 6 ⊢ ((Fun Base ∧ 𝑚 ∈ dom Base) → (Base‘𝑚) ∈ V) | |
4 | 3 | funfni 5354 | . . . . 5 ⊢ ((Base Fn V ∧ 𝑚 ∈ V) → (Base‘𝑚) ∈ V) |
5 | 1, 2, 4 | mp2an 426 | . . . 4 ⊢ (Base‘𝑚) ∈ V |
6 | 5 | a1i 9 | . . 3 ⊢ (𝑚 = 𝑀 → (Base‘𝑚) ∈ V) |
7 | fveq2 5554 | . . . 4 ⊢ (𝑚 = 𝑀 → (Base‘𝑚) = (Base‘𝑀)) | |
8 | ismgm.b | . . . 4 ⊢ 𝐵 = (Base‘𝑀) | |
9 | 7, 8 | eqtr4di 2244 | . . 3 ⊢ (𝑚 = 𝑀 → (Base‘𝑚) = 𝐵) |
10 | plusgslid 12730 | . . . . . . 7 ⊢ (+g = Slot (+g‘ndx) ∧ (+g‘ndx) ∈ ℕ) | |
11 | 10 | slotex 12645 | . . . . . 6 ⊢ (𝑚 ∈ V → (+g‘𝑚) ∈ V) |
12 | 11 | elv 2764 | . . . . 5 ⊢ (+g‘𝑚) ∈ V |
13 | 12 | a1i 9 | . . . 4 ⊢ ((𝑚 = 𝑀 ∧ 𝑏 = 𝐵) → (+g‘𝑚) ∈ V) |
14 | fveq2 5554 | . . . . . 6 ⊢ (𝑚 = 𝑀 → (+g‘𝑚) = (+g‘𝑀)) | |
15 | 14 | adantr 276 | . . . . 5 ⊢ ((𝑚 = 𝑀 ∧ 𝑏 = 𝐵) → (+g‘𝑚) = (+g‘𝑀)) |
16 | ismgm.o | . . . . 5 ⊢ ⚬ = (+g‘𝑀) | |
17 | 15, 16 | eqtr4di 2244 | . . . 4 ⊢ ((𝑚 = 𝑀 ∧ 𝑏 = 𝐵) → (+g‘𝑚) = ⚬ ) |
18 | simplr 528 | . . . . 5 ⊢ (((𝑚 = 𝑀 ∧ 𝑏 = 𝐵) ∧ 𝑜 = ⚬ ) → 𝑏 = 𝐵) | |
19 | oveq 5924 | . . . . . . . 8 ⊢ (𝑜 = ⚬ → (𝑥𝑜𝑦) = (𝑥 ⚬ 𝑦)) | |
20 | 19 | adantl 277 | . . . . . . 7 ⊢ (((𝑚 = 𝑀 ∧ 𝑏 = 𝐵) ∧ 𝑜 = ⚬ ) → (𝑥𝑜𝑦) = (𝑥 ⚬ 𝑦)) |
21 | 20, 18 | eleq12d 2264 | . . . . . 6 ⊢ (((𝑚 = 𝑀 ∧ 𝑏 = 𝐵) ∧ 𝑜 = ⚬ ) → ((𝑥𝑜𝑦) ∈ 𝑏 ↔ (𝑥 ⚬ 𝑦) ∈ 𝐵)) |
22 | 18, 21 | raleqbidv 2706 | . . . . 5 ⊢ (((𝑚 = 𝑀 ∧ 𝑏 = 𝐵) ∧ 𝑜 = ⚬ ) → (∀𝑦 ∈ 𝑏 (𝑥𝑜𝑦) ∈ 𝑏 ↔ ∀𝑦 ∈ 𝐵 (𝑥 ⚬ 𝑦) ∈ 𝐵)) |
23 | 18, 22 | raleqbidv 2706 | . . . 4 ⊢ (((𝑚 = 𝑀 ∧ 𝑏 = 𝐵) ∧ 𝑜 = ⚬ ) → (∀𝑥 ∈ 𝑏 ∀𝑦 ∈ 𝑏 (𝑥𝑜𝑦) ∈ 𝑏 ↔ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥 ⚬ 𝑦) ∈ 𝐵)) |
24 | 13, 17, 23 | sbcied2 3023 | . . 3 ⊢ ((𝑚 = 𝑀 ∧ 𝑏 = 𝐵) → ([(+g‘𝑚) / 𝑜]∀𝑥 ∈ 𝑏 ∀𝑦 ∈ 𝑏 (𝑥𝑜𝑦) ∈ 𝑏 ↔ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥 ⚬ 𝑦) ∈ 𝐵)) |
25 | 6, 9, 24 | sbcied2 3023 | . 2 ⊢ (𝑚 = 𝑀 → ([(Base‘𝑚) / 𝑏][(+g‘𝑚) / 𝑜]∀𝑥 ∈ 𝑏 ∀𝑦 ∈ 𝑏 (𝑥𝑜𝑦) ∈ 𝑏 ↔ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥 ⚬ 𝑦) ∈ 𝐵)) |
26 | df-mgm 12939 | . 2 ⊢ Mgm = {𝑚 ∣ [(Base‘𝑚) / 𝑏][(+g‘𝑚) / 𝑜]∀𝑥 ∈ 𝑏 ∀𝑦 ∈ 𝑏 (𝑥𝑜𝑦) ∈ 𝑏} | |
27 | 25, 26 | elab2g 2907 | 1 ⊢ (𝑀 ∈ 𝑉 → (𝑀 ∈ Mgm ↔ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥 ⚬ 𝑦) ∈ 𝐵)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 = wceq 1364 ∈ wcel 2164 ∀wral 2472 Vcvv 2760 [wsbc 2985 Fn wfn 5249 ‘cfv 5254 (class class class)co 5918 Basecbs 12618 +gcplusg 12695 Mgmcmgm 12937 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-sep 4147 ax-pow 4203 ax-pr 4238 ax-un 4464 ax-cnex 7963 ax-resscn 7964 ax-1re 7966 ax-addrcl 7969 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ral 2477 df-rex 2478 df-v 2762 df-sbc 2986 df-un 3157 df-in 3159 df-ss 3166 df-pw 3603 df-sn 3624 df-pr 3625 df-op 3627 df-uni 3836 df-int 3871 df-br 4030 df-opab 4091 df-mpt 4092 df-id 4324 df-xp 4665 df-rel 4666 df-cnv 4667 df-co 4668 df-dm 4669 df-rn 4670 df-res 4671 df-iota 5215 df-fun 5256 df-fn 5257 df-fv 5262 df-ov 5921 df-inn 8983 df-2 9041 df-ndx 12621 df-slot 12622 df-base 12624 df-plusg 12708 df-mgm 12939 |
This theorem is referenced by: ismgmn0 12941 mgmcl 12942 mgm0 12952 issgrpv 12987 rnglidlmmgm 13992 |
Copyright terms: Public domain | W3C validator |