ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ismgm GIF version

Theorem ismgm 12588
Description: The predicate "is a magma". (Contributed by FL, 2-Nov-2009.) (Revised by AV, 6-Jan-2020.)
Hypotheses
Ref Expression
ismgm.b 𝐵 = (Base‘𝑀)
ismgm.o = (+g𝑀)
Assertion
Ref Expression
ismgm (𝑀𝑉 → (𝑀 ∈ Mgm ↔ ∀𝑥𝐵𝑦𝐵 (𝑥 𝑦) ∈ 𝐵))
Distinct variable groups:   𝑥,𝐵,𝑦   𝑥,𝑀,𝑦   𝑥, ,𝑦
Allowed substitution hints:   𝑉(𝑥,𝑦)

Proof of Theorem ismgm
Dummy variables 𝑏 𝑚 𝑜 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 basfn 12451 . . . . 5 Base Fn V
2 vex 2729 . . . . 5 𝑚 ∈ V
3 funfvex 5503 . . . . . 6 ((Fun Base ∧ 𝑚 ∈ dom Base) → (Base‘𝑚) ∈ V)
43funfni 5288 . . . . 5 ((Base Fn V ∧ 𝑚 ∈ V) → (Base‘𝑚) ∈ V)
51, 2, 4mp2an 423 . . . 4 (Base‘𝑚) ∈ V
65a1i 9 . . 3 (𝑚 = 𝑀 → (Base‘𝑚) ∈ V)
7 fveq2 5486 . . . 4 (𝑚 = 𝑀 → (Base‘𝑚) = (Base‘𝑀))
8 ismgm.b . . . 4 𝐵 = (Base‘𝑀)
97, 8eqtr4di 2217 . . 3 (𝑚 = 𝑀 → (Base‘𝑚) = 𝐵)
10 plusgslid 12490 . . . . . . 7 (+g = Slot (+g‘ndx) ∧ (+g‘ndx) ∈ ℕ)
1110slotex 12421 . . . . . 6 (𝑚 ∈ V → (+g𝑚) ∈ V)
1211elv 2730 . . . . 5 (+g𝑚) ∈ V
1312a1i 9 . . . 4 ((𝑚 = 𝑀𝑏 = 𝐵) → (+g𝑚) ∈ V)
14 fveq2 5486 . . . . . 6 (𝑚 = 𝑀 → (+g𝑚) = (+g𝑀))
1514adantr 274 . . . . 5 ((𝑚 = 𝑀𝑏 = 𝐵) → (+g𝑚) = (+g𝑀))
16 ismgm.o . . . . 5 = (+g𝑀)
1715, 16eqtr4di 2217 . . . 4 ((𝑚 = 𝑀𝑏 = 𝐵) → (+g𝑚) = )
18 simplr 520 . . . . 5 (((𝑚 = 𝑀𝑏 = 𝐵) ∧ 𝑜 = ) → 𝑏 = 𝐵)
19 oveq 5848 . . . . . . . 8 (𝑜 = → (𝑥𝑜𝑦) = (𝑥 𝑦))
2019adantl 275 . . . . . . 7 (((𝑚 = 𝑀𝑏 = 𝐵) ∧ 𝑜 = ) → (𝑥𝑜𝑦) = (𝑥 𝑦))
2120, 18eleq12d 2237 . . . . . 6 (((𝑚 = 𝑀𝑏 = 𝐵) ∧ 𝑜 = ) → ((𝑥𝑜𝑦) ∈ 𝑏 ↔ (𝑥 𝑦) ∈ 𝐵))
2218, 21raleqbidv 2673 . . . . 5 (((𝑚 = 𝑀𝑏 = 𝐵) ∧ 𝑜 = ) → (∀𝑦𝑏 (𝑥𝑜𝑦) ∈ 𝑏 ↔ ∀𝑦𝐵 (𝑥 𝑦) ∈ 𝐵))
2318, 22raleqbidv 2673 . . . 4 (((𝑚 = 𝑀𝑏 = 𝐵) ∧ 𝑜 = ) → (∀𝑥𝑏𝑦𝑏 (𝑥𝑜𝑦) ∈ 𝑏 ↔ ∀𝑥𝐵𝑦𝐵 (𝑥 𝑦) ∈ 𝐵))
2413, 17, 23sbcied2 2988 . . 3 ((𝑚 = 𝑀𝑏 = 𝐵) → ([(+g𝑚) / 𝑜]𝑥𝑏𝑦𝑏 (𝑥𝑜𝑦) ∈ 𝑏 ↔ ∀𝑥𝐵𝑦𝐵 (𝑥 𝑦) ∈ 𝐵))
256, 9, 24sbcied2 2988 . 2 (𝑚 = 𝑀 → ([(Base‘𝑚) / 𝑏][(+g𝑚) / 𝑜]𝑥𝑏𝑦𝑏 (𝑥𝑜𝑦) ∈ 𝑏 ↔ ∀𝑥𝐵𝑦𝐵 (𝑥 𝑦) ∈ 𝐵))
26 df-mgm 12587 . 2 Mgm = {𝑚[(Base‘𝑚) / 𝑏][(+g𝑚) / 𝑜]𝑥𝑏𝑦𝑏 (𝑥𝑜𝑦) ∈ 𝑏}
2725, 26elab2g 2873 1 (𝑀𝑉 → (𝑀 ∈ Mgm ↔ ∀𝑥𝐵𝑦𝐵 (𝑥 𝑦) ∈ 𝐵))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104   = wceq 1343  wcel 2136  wral 2444  Vcvv 2726  [wsbc 2951   Fn wfn 5183  cfv 5188  (class class class)co 5842  Basecbs 12394  +gcplusg 12457  Mgmcmgm 12585
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-cnex 7844  ax-resscn 7845  ax-1re 7847  ax-addrcl 7850
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ral 2449  df-rex 2450  df-v 2728  df-sbc 2952  df-un 3120  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-int 3825  df-br 3983  df-opab 4044  df-mpt 4045  df-id 4271  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-iota 5153  df-fun 5190  df-fn 5191  df-fv 5196  df-ov 5845  df-inn 8858  df-2 8916  df-ndx 12397  df-slot 12398  df-base 12400  df-plusg 12470  df-mgm 12587
This theorem is referenced by:  ismgmn0  12589  mgmcl  12590  mgm0  12600
  Copyright terms: Public domain W3C validator