| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ismgm | GIF version | ||
| Description: The predicate "is a magma". (Contributed by FL, 2-Nov-2009.) (Revised by AV, 6-Jan-2020.) |
| Ref | Expression |
|---|---|
| ismgm.b | ⊢ 𝐵 = (Base‘𝑀) |
| ismgm.o | ⊢ ⚬ = (+g‘𝑀) |
| Ref | Expression |
|---|---|
| ismgm | ⊢ (𝑀 ∈ 𝑉 → (𝑀 ∈ Mgm ↔ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥 ⚬ 𝑦) ∈ 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | basfn 12761 | . . . . 5 ⊢ Base Fn V | |
| 2 | vex 2766 | . . . . 5 ⊢ 𝑚 ∈ V | |
| 3 | funfvex 5578 | . . . . . 6 ⊢ ((Fun Base ∧ 𝑚 ∈ dom Base) → (Base‘𝑚) ∈ V) | |
| 4 | 3 | funfni 5361 | . . . . 5 ⊢ ((Base Fn V ∧ 𝑚 ∈ V) → (Base‘𝑚) ∈ V) |
| 5 | 1, 2, 4 | mp2an 426 | . . . 4 ⊢ (Base‘𝑚) ∈ V |
| 6 | 5 | a1i 9 | . . 3 ⊢ (𝑚 = 𝑀 → (Base‘𝑚) ∈ V) |
| 7 | fveq2 5561 | . . . 4 ⊢ (𝑚 = 𝑀 → (Base‘𝑚) = (Base‘𝑀)) | |
| 8 | ismgm.b | . . . 4 ⊢ 𝐵 = (Base‘𝑀) | |
| 9 | 7, 8 | eqtr4di 2247 | . . 3 ⊢ (𝑚 = 𝑀 → (Base‘𝑚) = 𝐵) |
| 10 | plusgslid 12815 | . . . . . . 7 ⊢ (+g = Slot (+g‘ndx) ∧ (+g‘ndx) ∈ ℕ) | |
| 11 | 10 | slotex 12730 | . . . . . 6 ⊢ (𝑚 ∈ V → (+g‘𝑚) ∈ V) |
| 12 | 11 | elv 2767 | . . . . 5 ⊢ (+g‘𝑚) ∈ V |
| 13 | 12 | a1i 9 | . . . 4 ⊢ ((𝑚 = 𝑀 ∧ 𝑏 = 𝐵) → (+g‘𝑚) ∈ V) |
| 14 | fveq2 5561 | . . . . . 6 ⊢ (𝑚 = 𝑀 → (+g‘𝑚) = (+g‘𝑀)) | |
| 15 | 14 | adantr 276 | . . . . 5 ⊢ ((𝑚 = 𝑀 ∧ 𝑏 = 𝐵) → (+g‘𝑚) = (+g‘𝑀)) |
| 16 | ismgm.o | . . . . 5 ⊢ ⚬ = (+g‘𝑀) | |
| 17 | 15, 16 | eqtr4di 2247 | . . . 4 ⊢ ((𝑚 = 𝑀 ∧ 𝑏 = 𝐵) → (+g‘𝑚) = ⚬ ) |
| 18 | simplr 528 | . . . . 5 ⊢ (((𝑚 = 𝑀 ∧ 𝑏 = 𝐵) ∧ 𝑜 = ⚬ ) → 𝑏 = 𝐵) | |
| 19 | oveq 5931 | . . . . . . . 8 ⊢ (𝑜 = ⚬ → (𝑥𝑜𝑦) = (𝑥 ⚬ 𝑦)) | |
| 20 | 19 | adantl 277 | . . . . . . 7 ⊢ (((𝑚 = 𝑀 ∧ 𝑏 = 𝐵) ∧ 𝑜 = ⚬ ) → (𝑥𝑜𝑦) = (𝑥 ⚬ 𝑦)) |
| 21 | 20, 18 | eleq12d 2267 | . . . . . 6 ⊢ (((𝑚 = 𝑀 ∧ 𝑏 = 𝐵) ∧ 𝑜 = ⚬ ) → ((𝑥𝑜𝑦) ∈ 𝑏 ↔ (𝑥 ⚬ 𝑦) ∈ 𝐵)) |
| 22 | 18, 21 | raleqbidv 2709 | . . . . 5 ⊢ (((𝑚 = 𝑀 ∧ 𝑏 = 𝐵) ∧ 𝑜 = ⚬ ) → (∀𝑦 ∈ 𝑏 (𝑥𝑜𝑦) ∈ 𝑏 ↔ ∀𝑦 ∈ 𝐵 (𝑥 ⚬ 𝑦) ∈ 𝐵)) |
| 23 | 18, 22 | raleqbidv 2709 | . . . 4 ⊢ (((𝑚 = 𝑀 ∧ 𝑏 = 𝐵) ∧ 𝑜 = ⚬ ) → (∀𝑥 ∈ 𝑏 ∀𝑦 ∈ 𝑏 (𝑥𝑜𝑦) ∈ 𝑏 ↔ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥 ⚬ 𝑦) ∈ 𝐵)) |
| 24 | 13, 17, 23 | sbcied2 3027 | . . 3 ⊢ ((𝑚 = 𝑀 ∧ 𝑏 = 𝐵) → ([(+g‘𝑚) / 𝑜]∀𝑥 ∈ 𝑏 ∀𝑦 ∈ 𝑏 (𝑥𝑜𝑦) ∈ 𝑏 ↔ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥 ⚬ 𝑦) ∈ 𝐵)) |
| 25 | 6, 9, 24 | sbcied2 3027 | . 2 ⊢ (𝑚 = 𝑀 → ([(Base‘𝑚) / 𝑏][(+g‘𝑚) / 𝑜]∀𝑥 ∈ 𝑏 ∀𝑦 ∈ 𝑏 (𝑥𝑜𝑦) ∈ 𝑏 ↔ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥 ⚬ 𝑦) ∈ 𝐵)) |
| 26 | df-mgm 13058 | . 2 ⊢ Mgm = {𝑚 ∣ [(Base‘𝑚) / 𝑏][(+g‘𝑚) / 𝑜]∀𝑥 ∈ 𝑏 ∀𝑦 ∈ 𝑏 (𝑥𝑜𝑦) ∈ 𝑏} | |
| 27 | 25, 26 | elab2g 2911 | 1 ⊢ (𝑀 ∈ 𝑉 → (𝑀 ∈ Mgm ↔ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥 ⚬ 𝑦) ∈ 𝐵)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 = wceq 1364 ∈ wcel 2167 ∀wral 2475 Vcvv 2763 [wsbc 2989 Fn wfn 5254 ‘cfv 5259 (class class class)co 5925 Basecbs 12703 +gcplusg 12780 Mgmcmgm 13056 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4152 ax-pow 4208 ax-pr 4243 ax-un 4469 ax-cnex 7987 ax-resscn 7988 ax-1re 7990 ax-addrcl 7993 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-v 2765 df-sbc 2990 df-un 3161 df-in 3163 df-ss 3170 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-int 3876 df-br 4035 df-opab 4096 df-mpt 4097 df-id 4329 df-xp 4670 df-rel 4671 df-cnv 4672 df-co 4673 df-dm 4674 df-rn 4675 df-res 4676 df-iota 5220 df-fun 5261 df-fn 5262 df-fv 5267 df-ov 5928 df-inn 9008 df-2 9066 df-ndx 12706 df-slot 12707 df-base 12709 df-plusg 12793 df-mgm 13058 |
| This theorem is referenced by: ismgmn0 13060 mgmcl 13061 mgm0 13071 issgrpv 13106 rnglidlmmgm 14128 |
| Copyright terms: Public domain | W3C validator |