Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > ismgm | GIF version |
Description: The predicate "is a magma". (Contributed by FL, 2-Nov-2009.) (Revised by AV, 6-Jan-2020.) |
Ref | Expression |
---|---|
ismgm.b | ⊢ 𝐵 = (Base‘𝑀) |
ismgm.o | ⊢ ⚬ = (+g‘𝑀) |
Ref | Expression |
---|---|
ismgm | ⊢ (𝑀 ∈ 𝑉 → (𝑀 ∈ Mgm ↔ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥 ⚬ 𝑦) ∈ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | basfn 12473 | . . . . 5 ⊢ Base Fn V | |
2 | vex 2733 | . . . . 5 ⊢ 𝑚 ∈ V | |
3 | funfvex 5513 | . . . . . 6 ⊢ ((Fun Base ∧ 𝑚 ∈ dom Base) → (Base‘𝑚) ∈ V) | |
4 | 3 | funfni 5298 | . . . . 5 ⊢ ((Base Fn V ∧ 𝑚 ∈ V) → (Base‘𝑚) ∈ V) |
5 | 1, 2, 4 | mp2an 424 | . . . 4 ⊢ (Base‘𝑚) ∈ V |
6 | 5 | a1i 9 | . . 3 ⊢ (𝑚 = 𝑀 → (Base‘𝑚) ∈ V) |
7 | fveq2 5496 | . . . 4 ⊢ (𝑚 = 𝑀 → (Base‘𝑚) = (Base‘𝑀)) | |
8 | ismgm.b | . . . 4 ⊢ 𝐵 = (Base‘𝑀) | |
9 | 7, 8 | eqtr4di 2221 | . . 3 ⊢ (𝑚 = 𝑀 → (Base‘𝑚) = 𝐵) |
10 | plusgslid 12513 | . . . . . . 7 ⊢ (+g = Slot (+g‘ndx) ∧ (+g‘ndx) ∈ ℕ) | |
11 | 10 | slotex 12443 | . . . . . 6 ⊢ (𝑚 ∈ V → (+g‘𝑚) ∈ V) |
12 | 11 | elv 2734 | . . . . 5 ⊢ (+g‘𝑚) ∈ V |
13 | 12 | a1i 9 | . . . 4 ⊢ ((𝑚 = 𝑀 ∧ 𝑏 = 𝐵) → (+g‘𝑚) ∈ V) |
14 | fveq2 5496 | . . . . . 6 ⊢ (𝑚 = 𝑀 → (+g‘𝑚) = (+g‘𝑀)) | |
15 | 14 | adantr 274 | . . . . 5 ⊢ ((𝑚 = 𝑀 ∧ 𝑏 = 𝐵) → (+g‘𝑚) = (+g‘𝑀)) |
16 | ismgm.o | . . . . 5 ⊢ ⚬ = (+g‘𝑀) | |
17 | 15, 16 | eqtr4di 2221 | . . . 4 ⊢ ((𝑚 = 𝑀 ∧ 𝑏 = 𝐵) → (+g‘𝑚) = ⚬ ) |
18 | simplr 525 | . . . . 5 ⊢ (((𝑚 = 𝑀 ∧ 𝑏 = 𝐵) ∧ 𝑜 = ⚬ ) → 𝑏 = 𝐵) | |
19 | oveq 5859 | . . . . . . . 8 ⊢ (𝑜 = ⚬ → (𝑥𝑜𝑦) = (𝑥 ⚬ 𝑦)) | |
20 | 19 | adantl 275 | . . . . . . 7 ⊢ (((𝑚 = 𝑀 ∧ 𝑏 = 𝐵) ∧ 𝑜 = ⚬ ) → (𝑥𝑜𝑦) = (𝑥 ⚬ 𝑦)) |
21 | 20, 18 | eleq12d 2241 | . . . . . 6 ⊢ (((𝑚 = 𝑀 ∧ 𝑏 = 𝐵) ∧ 𝑜 = ⚬ ) → ((𝑥𝑜𝑦) ∈ 𝑏 ↔ (𝑥 ⚬ 𝑦) ∈ 𝐵)) |
22 | 18, 21 | raleqbidv 2677 | . . . . 5 ⊢ (((𝑚 = 𝑀 ∧ 𝑏 = 𝐵) ∧ 𝑜 = ⚬ ) → (∀𝑦 ∈ 𝑏 (𝑥𝑜𝑦) ∈ 𝑏 ↔ ∀𝑦 ∈ 𝐵 (𝑥 ⚬ 𝑦) ∈ 𝐵)) |
23 | 18, 22 | raleqbidv 2677 | . . . 4 ⊢ (((𝑚 = 𝑀 ∧ 𝑏 = 𝐵) ∧ 𝑜 = ⚬ ) → (∀𝑥 ∈ 𝑏 ∀𝑦 ∈ 𝑏 (𝑥𝑜𝑦) ∈ 𝑏 ↔ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥 ⚬ 𝑦) ∈ 𝐵)) |
24 | 13, 17, 23 | sbcied2 2992 | . . 3 ⊢ ((𝑚 = 𝑀 ∧ 𝑏 = 𝐵) → ([(+g‘𝑚) / 𝑜]∀𝑥 ∈ 𝑏 ∀𝑦 ∈ 𝑏 (𝑥𝑜𝑦) ∈ 𝑏 ↔ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥 ⚬ 𝑦) ∈ 𝐵)) |
25 | 6, 9, 24 | sbcied2 2992 | . 2 ⊢ (𝑚 = 𝑀 → ([(Base‘𝑚) / 𝑏][(+g‘𝑚) / 𝑜]∀𝑥 ∈ 𝑏 ∀𝑦 ∈ 𝑏 (𝑥𝑜𝑦) ∈ 𝑏 ↔ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥 ⚬ 𝑦) ∈ 𝐵)) |
26 | df-mgm 12610 | . 2 ⊢ Mgm = {𝑚 ∣ [(Base‘𝑚) / 𝑏][(+g‘𝑚) / 𝑜]∀𝑥 ∈ 𝑏 ∀𝑦 ∈ 𝑏 (𝑥𝑜𝑦) ∈ 𝑏} | |
27 | 25, 26 | elab2g 2877 | 1 ⊢ (𝑀 ∈ 𝑉 → (𝑀 ∈ Mgm ↔ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥 ⚬ 𝑦) ∈ 𝐵)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ↔ wb 104 = wceq 1348 ∈ wcel 2141 ∀wral 2448 Vcvv 2730 [wsbc 2955 Fn wfn 5193 ‘cfv 5198 (class class class)co 5853 Basecbs 12416 +gcplusg 12480 Mgmcmgm 12608 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-sep 4107 ax-pow 4160 ax-pr 4194 ax-un 4418 ax-cnex 7865 ax-resscn 7866 ax-1re 7868 ax-addrcl 7871 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ral 2453 df-rex 2454 df-v 2732 df-sbc 2956 df-un 3125 df-in 3127 df-ss 3134 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-int 3832 df-br 3990 df-opab 4051 df-mpt 4052 df-id 4278 df-xp 4617 df-rel 4618 df-cnv 4619 df-co 4620 df-dm 4621 df-rn 4622 df-res 4623 df-iota 5160 df-fun 5200 df-fn 5201 df-fv 5206 df-ov 5856 df-inn 8879 df-2 8937 df-ndx 12419 df-slot 12420 df-base 12422 df-plusg 12493 df-mgm 12610 |
This theorem is referenced by: ismgmn0 12612 mgmcl 12613 mgm0 12623 issgrpv 12645 |
Copyright terms: Public domain | W3C validator |