ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ismgm GIF version

Theorem ismgm 13304
Description: The predicate "is a magma". (Contributed by FL, 2-Nov-2009.) (Revised by AV, 6-Jan-2020.)
Hypotheses
Ref Expression
ismgm.b 𝐵 = (Base‘𝑀)
ismgm.o = (+g𝑀)
Assertion
Ref Expression
ismgm (𝑀𝑉 → (𝑀 ∈ Mgm ↔ ∀𝑥𝐵𝑦𝐵 (𝑥 𝑦) ∈ 𝐵))
Distinct variable groups:   𝑥,𝐵,𝑦   𝑥,𝑀,𝑦   𝑥, ,𝑦
Allowed substitution hints:   𝑉(𝑥,𝑦)

Proof of Theorem ismgm
Dummy variables 𝑏 𝑚 𝑜 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 basfn 13005 . . . . 5 Base Fn V
2 vex 2779 . . . . 5 𝑚 ∈ V
3 funfvex 5616 . . . . . 6 ((Fun Base ∧ 𝑚 ∈ dom Base) → (Base‘𝑚) ∈ V)
43funfni 5395 . . . . 5 ((Base Fn V ∧ 𝑚 ∈ V) → (Base‘𝑚) ∈ V)
51, 2, 4mp2an 426 . . . 4 (Base‘𝑚) ∈ V
65a1i 9 . . 3 (𝑚 = 𝑀 → (Base‘𝑚) ∈ V)
7 fveq2 5599 . . . 4 (𝑚 = 𝑀 → (Base‘𝑚) = (Base‘𝑀))
8 ismgm.b . . . 4 𝐵 = (Base‘𝑀)
97, 8eqtr4di 2258 . . 3 (𝑚 = 𝑀 → (Base‘𝑚) = 𝐵)
10 plusgslid 13059 . . . . . . 7 (+g = Slot (+g‘ndx) ∧ (+g‘ndx) ∈ ℕ)
1110slotex 12974 . . . . . 6 (𝑚 ∈ V → (+g𝑚) ∈ V)
1211elv 2780 . . . . 5 (+g𝑚) ∈ V
1312a1i 9 . . . 4 ((𝑚 = 𝑀𝑏 = 𝐵) → (+g𝑚) ∈ V)
14 fveq2 5599 . . . . . 6 (𝑚 = 𝑀 → (+g𝑚) = (+g𝑀))
1514adantr 276 . . . . 5 ((𝑚 = 𝑀𝑏 = 𝐵) → (+g𝑚) = (+g𝑀))
16 ismgm.o . . . . 5 = (+g𝑀)
1715, 16eqtr4di 2258 . . . 4 ((𝑚 = 𝑀𝑏 = 𝐵) → (+g𝑚) = )
18 simplr 528 . . . . 5 (((𝑚 = 𝑀𝑏 = 𝐵) ∧ 𝑜 = ) → 𝑏 = 𝐵)
19 oveq 5973 . . . . . . . 8 (𝑜 = → (𝑥𝑜𝑦) = (𝑥 𝑦))
2019adantl 277 . . . . . . 7 (((𝑚 = 𝑀𝑏 = 𝐵) ∧ 𝑜 = ) → (𝑥𝑜𝑦) = (𝑥 𝑦))
2120, 18eleq12d 2278 . . . . . 6 (((𝑚 = 𝑀𝑏 = 𝐵) ∧ 𝑜 = ) → ((𝑥𝑜𝑦) ∈ 𝑏 ↔ (𝑥 𝑦) ∈ 𝐵))
2218, 21raleqbidv 2721 . . . . 5 (((𝑚 = 𝑀𝑏 = 𝐵) ∧ 𝑜 = ) → (∀𝑦𝑏 (𝑥𝑜𝑦) ∈ 𝑏 ↔ ∀𝑦𝐵 (𝑥 𝑦) ∈ 𝐵))
2318, 22raleqbidv 2721 . . . 4 (((𝑚 = 𝑀𝑏 = 𝐵) ∧ 𝑜 = ) → (∀𝑥𝑏𝑦𝑏 (𝑥𝑜𝑦) ∈ 𝑏 ↔ ∀𝑥𝐵𝑦𝐵 (𝑥 𝑦) ∈ 𝐵))
2413, 17, 23sbcied2 3043 . . 3 ((𝑚 = 𝑀𝑏 = 𝐵) → ([(+g𝑚) / 𝑜]𝑥𝑏𝑦𝑏 (𝑥𝑜𝑦) ∈ 𝑏 ↔ ∀𝑥𝐵𝑦𝐵 (𝑥 𝑦) ∈ 𝐵))
256, 9, 24sbcied2 3043 . 2 (𝑚 = 𝑀 → ([(Base‘𝑚) / 𝑏][(+g𝑚) / 𝑜]𝑥𝑏𝑦𝑏 (𝑥𝑜𝑦) ∈ 𝑏 ↔ ∀𝑥𝐵𝑦𝐵 (𝑥 𝑦) ∈ 𝐵))
26 df-mgm 13303 . 2 Mgm = {𝑚[(Base‘𝑚) / 𝑏][(+g𝑚) / 𝑜]𝑥𝑏𝑦𝑏 (𝑥𝑜𝑦) ∈ 𝑏}
2725, 26elab2g 2927 1 (𝑀𝑉 → (𝑀 ∈ Mgm ↔ ∀𝑥𝐵𝑦𝐵 (𝑥 𝑦) ∈ 𝐵))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1373  wcel 2178  wral 2486  Vcvv 2776  [wsbc 3005   Fn wfn 5285  cfv 5290  (class class class)co 5967  Basecbs 12947  +gcplusg 13024  Mgmcmgm 13301
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-sep 4178  ax-pow 4234  ax-pr 4269  ax-un 4498  ax-cnex 8051  ax-resscn 8052  ax-1re 8054  ax-addrcl 8057
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ral 2491  df-rex 2492  df-v 2778  df-sbc 3006  df-un 3178  df-in 3180  df-ss 3187  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-int 3900  df-br 4060  df-opab 4122  df-mpt 4123  df-id 4358  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-rn 4704  df-res 4705  df-iota 5251  df-fun 5292  df-fn 5293  df-fv 5298  df-ov 5970  df-inn 9072  df-2 9130  df-ndx 12950  df-slot 12951  df-base 12953  df-plusg 13037  df-mgm 13303
This theorem is referenced by:  ismgmn0  13305  mgmcl  13306  mgm0  13316  issgrpv  13351  rnglidlmmgm  14373
  Copyright terms: Public domain W3C validator