Step | Hyp | Ref
| Expression |
1 | | basfn 12451 |
. . . . 5
⊢ Base Fn
V |
2 | | vex 2729 |
. . . . 5
⊢ 𝑚 ∈ V |
3 | | funfvex 5503 |
. . . . . 6
⊢ ((Fun
Base ∧ 𝑚 ∈ dom
Base) → (Base‘𝑚)
∈ V) |
4 | 3 | funfni 5288 |
. . . . 5
⊢ ((Base Fn
V ∧ 𝑚 ∈ V) →
(Base‘𝑚) ∈
V) |
5 | 1, 2, 4 | mp2an 423 |
. . . 4
⊢
(Base‘𝑚)
∈ V |
6 | 5 | a1i 9 |
. . 3
⊢ (𝑚 = 𝑀 → (Base‘𝑚) ∈ V) |
7 | | fveq2 5486 |
. . . 4
⊢ (𝑚 = 𝑀 → (Base‘𝑚) = (Base‘𝑀)) |
8 | | ismgm.b |
. . . 4
⊢ 𝐵 = (Base‘𝑀) |
9 | 7, 8 | eqtr4di 2217 |
. . 3
⊢ (𝑚 = 𝑀 → (Base‘𝑚) = 𝐵) |
10 | | plusgslid 12490 |
. . . . . . 7
⊢
(+g = Slot (+g‘ndx) ∧
(+g‘ndx) ∈ ℕ) |
11 | 10 | slotex 12421 |
. . . . . 6
⊢ (𝑚 ∈ V →
(+g‘𝑚)
∈ V) |
12 | 11 | elv 2730 |
. . . . 5
⊢
(+g‘𝑚) ∈ V |
13 | 12 | a1i 9 |
. . . 4
⊢ ((𝑚 = 𝑀 ∧ 𝑏 = 𝐵) → (+g‘𝑚) ∈ V) |
14 | | fveq2 5486 |
. . . . . 6
⊢ (𝑚 = 𝑀 → (+g‘𝑚) = (+g‘𝑀)) |
15 | 14 | adantr 274 |
. . . . 5
⊢ ((𝑚 = 𝑀 ∧ 𝑏 = 𝐵) → (+g‘𝑚) = (+g‘𝑀)) |
16 | | ismgm.o |
. . . . 5
⊢ ⚬ =
(+g‘𝑀) |
17 | 15, 16 | eqtr4di 2217 |
. . . 4
⊢ ((𝑚 = 𝑀 ∧ 𝑏 = 𝐵) → (+g‘𝑚) = ⚬ ) |
18 | | simplr 520 |
. . . . 5
⊢ (((𝑚 = 𝑀 ∧ 𝑏 = 𝐵) ∧ 𝑜 = ⚬ ) → 𝑏 = 𝐵) |
19 | | oveq 5848 |
. . . . . . . 8
⊢ (𝑜 = ⚬ → (𝑥𝑜𝑦) = (𝑥 ⚬ 𝑦)) |
20 | 19 | adantl 275 |
. . . . . . 7
⊢ (((𝑚 = 𝑀 ∧ 𝑏 = 𝐵) ∧ 𝑜 = ⚬ ) → (𝑥𝑜𝑦) = (𝑥 ⚬ 𝑦)) |
21 | 20, 18 | eleq12d 2237 |
. . . . . 6
⊢ (((𝑚 = 𝑀 ∧ 𝑏 = 𝐵) ∧ 𝑜 = ⚬ ) → ((𝑥𝑜𝑦) ∈ 𝑏 ↔ (𝑥 ⚬ 𝑦) ∈ 𝐵)) |
22 | 18, 21 | raleqbidv 2673 |
. . . . 5
⊢ (((𝑚 = 𝑀 ∧ 𝑏 = 𝐵) ∧ 𝑜 = ⚬ ) →
(∀𝑦 ∈ 𝑏 (𝑥𝑜𝑦) ∈ 𝑏 ↔ ∀𝑦 ∈ 𝐵 (𝑥 ⚬ 𝑦) ∈ 𝐵)) |
23 | 18, 22 | raleqbidv 2673 |
. . . 4
⊢ (((𝑚 = 𝑀 ∧ 𝑏 = 𝐵) ∧ 𝑜 = ⚬ ) →
(∀𝑥 ∈ 𝑏 ∀𝑦 ∈ 𝑏 (𝑥𝑜𝑦) ∈ 𝑏 ↔ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥 ⚬ 𝑦) ∈ 𝐵)) |
24 | 13, 17, 23 | sbcied2 2988 |
. . 3
⊢ ((𝑚 = 𝑀 ∧ 𝑏 = 𝐵) → ([(+g‘𝑚) / 𝑜]∀𝑥 ∈ 𝑏 ∀𝑦 ∈ 𝑏 (𝑥𝑜𝑦) ∈ 𝑏 ↔ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥 ⚬ 𝑦) ∈ 𝐵)) |
25 | 6, 9, 24 | sbcied2 2988 |
. 2
⊢ (𝑚 = 𝑀 → ([(Base‘𝑚) / 𝑏][(+g‘𝑚) / 𝑜]∀𝑥 ∈ 𝑏 ∀𝑦 ∈ 𝑏 (𝑥𝑜𝑦) ∈ 𝑏 ↔ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥 ⚬ 𝑦) ∈ 𝐵)) |
26 | | df-mgm 12587 |
. 2
⊢ Mgm =
{𝑚 ∣
[(Base‘𝑚) /
𝑏][(+g‘𝑚) / 𝑜]∀𝑥 ∈ 𝑏 ∀𝑦 ∈ 𝑏 (𝑥𝑜𝑦) ∈ 𝑏} |
27 | 25, 26 | elab2g 2873 |
1
⊢ (𝑀 ∈ 𝑉 → (𝑀 ∈ Mgm ↔ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥 ⚬ 𝑦) ∈ 𝐵)) |