ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ismgm GIF version

Theorem ismgm 13059
Description: The predicate "is a magma". (Contributed by FL, 2-Nov-2009.) (Revised by AV, 6-Jan-2020.)
Hypotheses
Ref Expression
ismgm.b 𝐵 = (Base‘𝑀)
ismgm.o = (+g𝑀)
Assertion
Ref Expression
ismgm (𝑀𝑉 → (𝑀 ∈ Mgm ↔ ∀𝑥𝐵𝑦𝐵 (𝑥 𝑦) ∈ 𝐵))
Distinct variable groups:   𝑥,𝐵,𝑦   𝑥,𝑀,𝑦   𝑥, ,𝑦
Allowed substitution hints:   𝑉(𝑥,𝑦)

Proof of Theorem ismgm
Dummy variables 𝑏 𝑚 𝑜 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 basfn 12761 . . . . 5 Base Fn V
2 vex 2766 . . . . 5 𝑚 ∈ V
3 funfvex 5578 . . . . . 6 ((Fun Base ∧ 𝑚 ∈ dom Base) → (Base‘𝑚) ∈ V)
43funfni 5361 . . . . 5 ((Base Fn V ∧ 𝑚 ∈ V) → (Base‘𝑚) ∈ V)
51, 2, 4mp2an 426 . . . 4 (Base‘𝑚) ∈ V
65a1i 9 . . 3 (𝑚 = 𝑀 → (Base‘𝑚) ∈ V)
7 fveq2 5561 . . . 4 (𝑚 = 𝑀 → (Base‘𝑚) = (Base‘𝑀))
8 ismgm.b . . . 4 𝐵 = (Base‘𝑀)
97, 8eqtr4di 2247 . . 3 (𝑚 = 𝑀 → (Base‘𝑚) = 𝐵)
10 plusgslid 12815 . . . . . . 7 (+g = Slot (+g‘ndx) ∧ (+g‘ndx) ∈ ℕ)
1110slotex 12730 . . . . . 6 (𝑚 ∈ V → (+g𝑚) ∈ V)
1211elv 2767 . . . . 5 (+g𝑚) ∈ V
1312a1i 9 . . . 4 ((𝑚 = 𝑀𝑏 = 𝐵) → (+g𝑚) ∈ V)
14 fveq2 5561 . . . . . 6 (𝑚 = 𝑀 → (+g𝑚) = (+g𝑀))
1514adantr 276 . . . . 5 ((𝑚 = 𝑀𝑏 = 𝐵) → (+g𝑚) = (+g𝑀))
16 ismgm.o . . . . 5 = (+g𝑀)
1715, 16eqtr4di 2247 . . . 4 ((𝑚 = 𝑀𝑏 = 𝐵) → (+g𝑚) = )
18 simplr 528 . . . . 5 (((𝑚 = 𝑀𝑏 = 𝐵) ∧ 𝑜 = ) → 𝑏 = 𝐵)
19 oveq 5931 . . . . . . . 8 (𝑜 = → (𝑥𝑜𝑦) = (𝑥 𝑦))
2019adantl 277 . . . . . . 7 (((𝑚 = 𝑀𝑏 = 𝐵) ∧ 𝑜 = ) → (𝑥𝑜𝑦) = (𝑥 𝑦))
2120, 18eleq12d 2267 . . . . . 6 (((𝑚 = 𝑀𝑏 = 𝐵) ∧ 𝑜 = ) → ((𝑥𝑜𝑦) ∈ 𝑏 ↔ (𝑥 𝑦) ∈ 𝐵))
2218, 21raleqbidv 2709 . . . . 5 (((𝑚 = 𝑀𝑏 = 𝐵) ∧ 𝑜 = ) → (∀𝑦𝑏 (𝑥𝑜𝑦) ∈ 𝑏 ↔ ∀𝑦𝐵 (𝑥 𝑦) ∈ 𝐵))
2318, 22raleqbidv 2709 . . . 4 (((𝑚 = 𝑀𝑏 = 𝐵) ∧ 𝑜 = ) → (∀𝑥𝑏𝑦𝑏 (𝑥𝑜𝑦) ∈ 𝑏 ↔ ∀𝑥𝐵𝑦𝐵 (𝑥 𝑦) ∈ 𝐵))
2413, 17, 23sbcied2 3027 . . 3 ((𝑚 = 𝑀𝑏 = 𝐵) → ([(+g𝑚) / 𝑜]𝑥𝑏𝑦𝑏 (𝑥𝑜𝑦) ∈ 𝑏 ↔ ∀𝑥𝐵𝑦𝐵 (𝑥 𝑦) ∈ 𝐵))
256, 9, 24sbcied2 3027 . 2 (𝑚 = 𝑀 → ([(Base‘𝑚) / 𝑏][(+g𝑚) / 𝑜]𝑥𝑏𝑦𝑏 (𝑥𝑜𝑦) ∈ 𝑏 ↔ ∀𝑥𝐵𝑦𝐵 (𝑥 𝑦) ∈ 𝐵))
26 df-mgm 13058 . 2 Mgm = {𝑚[(Base‘𝑚) / 𝑏][(+g𝑚) / 𝑜]𝑥𝑏𝑦𝑏 (𝑥𝑜𝑦) ∈ 𝑏}
2725, 26elab2g 2911 1 (𝑀𝑉 → (𝑀 ∈ Mgm ↔ ∀𝑥𝐵𝑦𝐵 (𝑥 𝑦) ∈ 𝐵))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1364  wcel 2167  wral 2475  Vcvv 2763  [wsbc 2989   Fn wfn 5254  cfv 5259  (class class class)co 5925  Basecbs 12703  +gcplusg 12780  Mgmcmgm 13056
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4152  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-cnex 7987  ax-resscn 7988  ax-1re 7990  ax-addrcl 7993
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-v 2765  df-sbc 2990  df-un 3161  df-in 3163  df-ss 3170  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-br 4035  df-opab 4096  df-mpt 4097  df-id 4329  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-iota 5220  df-fun 5261  df-fn 5262  df-fv 5267  df-ov 5928  df-inn 9008  df-2 9066  df-ndx 12706  df-slot 12707  df-base 12709  df-plusg 12793  df-mgm 13058
This theorem is referenced by:  ismgmn0  13060  mgmcl  13061  mgm0  13071  issgrpv  13106  rnglidlmmgm  14128
  Copyright terms: Public domain W3C validator