| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ismgm | GIF version | ||
| Description: The predicate "is a magma". (Contributed by FL, 2-Nov-2009.) (Revised by AV, 6-Jan-2020.) |
| Ref | Expression |
|---|---|
| ismgm.b | ⊢ 𝐵 = (Base‘𝑀) |
| ismgm.o | ⊢ ⚬ = (+g‘𝑀) |
| Ref | Expression |
|---|---|
| ismgm | ⊢ (𝑀 ∈ 𝑉 → (𝑀 ∈ Mgm ↔ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥 ⚬ 𝑦) ∈ 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | basfn 13005 | . . . . 5 ⊢ Base Fn V | |
| 2 | vex 2779 | . . . . 5 ⊢ 𝑚 ∈ V | |
| 3 | funfvex 5616 | . . . . . 6 ⊢ ((Fun Base ∧ 𝑚 ∈ dom Base) → (Base‘𝑚) ∈ V) | |
| 4 | 3 | funfni 5395 | . . . . 5 ⊢ ((Base Fn V ∧ 𝑚 ∈ V) → (Base‘𝑚) ∈ V) |
| 5 | 1, 2, 4 | mp2an 426 | . . . 4 ⊢ (Base‘𝑚) ∈ V |
| 6 | 5 | a1i 9 | . . 3 ⊢ (𝑚 = 𝑀 → (Base‘𝑚) ∈ V) |
| 7 | fveq2 5599 | . . . 4 ⊢ (𝑚 = 𝑀 → (Base‘𝑚) = (Base‘𝑀)) | |
| 8 | ismgm.b | . . . 4 ⊢ 𝐵 = (Base‘𝑀) | |
| 9 | 7, 8 | eqtr4di 2258 | . . 3 ⊢ (𝑚 = 𝑀 → (Base‘𝑚) = 𝐵) |
| 10 | plusgslid 13059 | . . . . . . 7 ⊢ (+g = Slot (+g‘ndx) ∧ (+g‘ndx) ∈ ℕ) | |
| 11 | 10 | slotex 12974 | . . . . . 6 ⊢ (𝑚 ∈ V → (+g‘𝑚) ∈ V) |
| 12 | 11 | elv 2780 | . . . . 5 ⊢ (+g‘𝑚) ∈ V |
| 13 | 12 | a1i 9 | . . . 4 ⊢ ((𝑚 = 𝑀 ∧ 𝑏 = 𝐵) → (+g‘𝑚) ∈ V) |
| 14 | fveq2 5599 | . . . . . 6 ⊢ (𝑚 = 𝑀 → (+g‘𝑚) = (+g‘𝑀)) | |
| 15 | 14 | adantr 276 | . . . . 5 ⊢ ((𝑚 = 𝑀 ∧ 𝑏 = 𝐵) → (+g‘𝑚) = (+g‘𝑀)) |
| 16 | ismgm.o | . . . . 5 ⊢ ⚬ = (+g‘𝑀) | |
| 17 | 15, 16 | eqtr4di 2258 | . . . 4 ⊢ ((𝑚 = 𝑀 ∧ 𝑏 = 𝐵) → (+g‘𝑚) = ⚬ ) |
| 18 | simplr 528 | . . . . 5 ⊢ (((𝑚 = 𝑀 ∧ 𝑏 = 𝐵) ∧ 𝑜 = ⚬ ) → 𝑏 = 𝐵) | |
| 19 | oveq 5973 | . . . . . . . 8 ⊢ (𝑜 = ⚬ → (𝑥𝑜𝑦) = (𝑥 ⚬ 𝑦)) | |
| 20 | 19 | adantl 277 | . . . . . . 7 ⊢ (((𝑚 = 𝑀 ∧ 𝑏 = 𝐵) ∧ 𝑜 = ⚬ ) → (𝑥𝑜𝑦) = (𝑥 ⚬ 𝑦)) |
| 21 | 20, 18 | eleq12d 2278 | . . . . . 6 ⊢ (((𝑚 = 𝑀 ∧ 𝑏 = 𝐵) ∧ 𝑜 = ⚬ ) → ((𝑥𝑜𝑦) ∈ 𝑏 ↔ (𝑥 ⚬ 𝑦) ∈ 𝐵)) |
| 22 | 18, 21 | raleqbidv 2721 | . . . . 5 ⊢ (((𝑚 = 𝑀 ∧ 𝑏 = 𝐵) ∧ 𝑜 = ⚬ ) → (∀𝑦 ∈ 𝑏 (𝑥𝑜𝑦) ∈ 𝑏 ↔ ∀𝑦 ∈ 𝐵 (𝑥 ⚬ 𝑦) ∈ 𝐵)) |
| 23 | 18, 22 | raleqbidv 2721 | . . . 4 ⊢ (((𝑚 = 𝑀 ∧ 𝑏 = 𝐵) ∧ 𝑜 = ⚬ ) → (∀𝑥 ∈ 𝑏 ∀𝑦 ∈ 𝑏 (𝑥𝑜𝑦) ∈ 𝑏 ↔ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥 ⚬ 𝑦) ∈ 𝐵)) |
| 24 | 13, 17, 23 | sbcied2 3043 | . . 3 ⊢ ((𝑚 = 𝑀 ∧ 𝑏 = 𝐵) → ([(+g‘𝑚) / 𝑜]∀𝑥 ∈ 𝑏 ∀𝑦 ∈ 𝑏 (𝑥𝑜𝑦) ∈ 𝑏 ↔ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥 ⚬ 𝑦) ∈ 𝐵)) |
| 25 | 6, 9, 24 | sbcied2 3043 | . 2 ⊢ (𝑚 = 𝑀 → ([(Base‘𝑚) / 𝑏][(+g‘𝑚) / 𝑜]∀𝑥 ∈ 𝑏 ∀𝑦 ∈ 𝑏 (𝑥𝑜𝑦) ∈ 𝑏 ↔ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥 ⚬ 𝑦) ∈ 𝐵)) |
| 26 | df-mgm 13303 | . 2 ⊢ Mgm = {𝑚 ∣ [(Base‘𝑚) / 𝑏][(+g‘𝑚) / 𝑜]∀𝑥 ∈ 𝑏 ∀𝑦 ∈ 𝑏 (𝑥𝑜𝑦) ∈ 𝑏} | |
| 27 | 25, 26 | elab2g 2927 | 1 ⊢ (𝑀 ∈ 𝑉 → (𝑀 ∈ Mgm ↔ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥 ⚬ 𝑦) ∈ 𝐵)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 = wceq 1373 ∈ wcel 2178 ∀wral 2486 Vcvv 2776 [wsbc 3005 Fn wfn 5285 ‘cfv 5290 (class class class)co 5967 Basecbs 12947 +gcplusg 13024 Mgmcmgm 13301 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2180 ax-14 2181 ax-ext 2189 ax-sep 4178 ax-pow 4234 ax-pr 4269 ax-un 4498 ax-cnex 8051 ax-resscn 8052 ax-1re 8054 ax-addrcl 8057 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ral 2491 df-rex 2492 df-v 2778 df-sbc 3006 df-un 3178 df-in 3180 df-ss 3187 df-pw 3628 df-sn 3649 df-pr 3650 df-op 3652 df-uni 3865 df-int 3900 df-br 4060 df-opab 4122 df-mpt 4123 df-id 4358 df-xp 4699 df-rel 4700 df-cnv 4701 df-co 4702 df-dm 4703 df-rn 4704 df-res 4705 df-iota 5251 df-fun 5292 df-fn 5293 df-fv 5298 df-ov 5970 df-inn 9072 df-2 9130 df-ndx 12950 df-slot 12951 df-base 12953 df-plusg 13037 df-mgm 13303 |
| This theorem is referenced by: ismgmn0 13305 mgmcl 13306 mgm0 13316 issgrpv 13351 rnglidlmmgm 14373 |
| Copyright terms: Public domain | W3C validator |