ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ismgm GIF version

Theorem ismgm 12611
Description: The predicate "is a magma". (Contributed by FL, 2-Nov-2009.) (Revised by AV, 6-Jan-2020.)
Hypotheses
Ref Expression
ismgm.b 𝐵 = (Base‘𝑀)
ismgm.o = (+g𝑀)
Assertion
Ref Expression
ismgm (𝑀𝑉 → (𝑀 ∈ Mgm ↔ ∀𝑥𝐵𝑦𝐵 (𝑥 𝑦) ∈ 𝐵))
Distinct variable groups:   𝑥,𝐵,𝑦   𝑥,𝑀,𝑦   𝑥, ,𝑦
Allowed substitution hints:   𝑉(𝑥,𝑦)

Proof of Theorem ismgm
Dummy variables 𝑏 𝑚 𝑜 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 basfn 12473 . . . . 5 Base Fn V
2 vex 2733 . . . . 5 𝑚 ∈ V
3 funfvex 5513 . . . . . 6 ((Fun Base ∧ 𝑚 ∈ dom Base) → (Base‘𝑚) ∈ V)
43funfni 5298 . . . . 5 ((Base Fn V ∧ 𝑚 ∈ V) → (Base‘𝑚) ∈ V)
51, 2, 4mp2an 424 . . . 4 (Base‘𝑚) ∈ V
65a1i 9 . . 3 (𝑚 = 𝑀 → (Base‘𝑚) ∈ V)
7 fveq2 5496 . . . 4 (𝑚 = 𝑀 → (Base‘𝑚) = (Base‘𝑀))
8 ismgm.b . . . 4 𝐵 = (Base‘𝑀)
97, 8eqtr4di 2221 . . 3 (𝑚 = 𝑀 → (Base‘𝑚) = 𝐵)
10 plusgslid 12513 . . . . . . 7 (+g = Slot (+g‘ndx) ∧ (+g‘ndx) ∈ ℕ)
1110slotex 12443 . . . . . 6 (𝑚 ∈ V → (+g𝑚) ∈ V)
1211elv 2734 . . . . 5 (+g𝑚) ∈ V
1312a1i 9 . . . 4 ((𝑚 = 𝑀𝑏 = 𝐵) → (+g𝑚) ∈ V)
14 fveq2 5496 . . . . . 6 (𝑚 = 𝑀 → (+g𝑚) = (+g𝑀))
1514adantr 274 . . . . 5 ((𝑚 = 𝑀𝑏 = 𝐵) → (+g𝑚) = (+g𝑀))
16 ismgm.o . . . . 5 = (+g𝑀)
1715, 16eqtr4di 2221 . . . 4 ((𝑚 = 𝑀𝑏 = 𝐵) → (+g𝑚) = )
18 simplr 525 . . . . 5 (((𝑚 = 𝑀𝑏 = 𝐵) ∧ 𝑜 = ) → 𝑏 = 𝐵)
19 oveq 5859 . . . . . . . 8 (𝑜 = → (𝑥𝑜𝑦) = (𝑥 𝑦))
2019adantl 275 . . . . . . 7 (((𝑚 = 𝑀𝑏 = 𝐵) ∧ 𝑜 = ) → (𝑥𝑜𝑦) = (𝑥 𝑦))
2120, 18eleq12d 2241 . . . . . 6 (((𝑚 = 𝑀𝑏 = 𝐵) ∧ 𝑜 = ) → ((𝑥𝑜𝑦) ∈ 𝑏 ↔ (𝑥 𝑦) ∈ 𝐵))
2218, 21raleqbidv 2677 . . . . 5 (((𝑚 = 𝑀𝑏 = 𝐵) ∧ 𝑜 = ) → (∀𝑦𝑏 (𝑥𝑜𝑦) ∈ 𝑏 ↔ ∀𝑦𝐵 (𝑥 𝑦) ∈ 𝐵))
2318, 22raleqbidv 2677 . . . 4 (((𝑚 = 𝑀𝑏 = 𝐵) ∧ 𝑜 = ) → (∀𝑥𝑏𝑦𝑏 (𝑥𝑜𝑦) ∈ 𝑏 ↔ ∀𝑥𝐵𝑦𝐵 (𝑥 𝑦) ∈ 𝐵))
2413, 17, 23sbcied2 2992 . . 3 ((𝑚 = 𝑀𝑏 = 𝐵) → ([(+g𝑚) / 𝑜]𝑥𝑏𝑦𝑏 (𝑥𝑜𝑦) ∈ 𝑏 ↔ ∀𝑥𝐵𝑦𝐵 (𝑥 𝑦) ∈ 𝐵))
256, 9, 24sbcied2 2992 . 2 (𝑚 = 𝑀 → ([(Base‘𝑚) / 𝑏][(+g𝑚) / 𝑜]𝑥𝑏𝑦𝑏 (𝑥𝑜𝑦) ∈ 𝑏 ↔ ∀𝑥𝐵𝑦𝐵 (𝑥 𝑦) ∈ 𝐵))
26 df-mgm 12610 . 2 Mgm = {𝑚[(Base‘𝑚) / 𝑏][(+g𝑚) / 𝑜]𝑥𝑏𝑦𝑏 (𝑥𝑜𝑦) ∈ 𝑏}
2725, 26elab2g 2877 1 (𝑀𝑉 → (𝑀 ∈ Mgm ↔ ∀𝑥𝐵𝑦𝐵 (𝑥 𝑦) ∈ 𝐵))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104   = wceq 1348  wcel 2141  wral 2448  Vcvv 2730  [wsbc 2955   Fn wfn 5193  cfv 5198  (class class class)co 5853  Basecbs 12416  +gcplusg 12480  Mgmcmgm 12608
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-sep 4107  ax-pow 4160  ax-pr 4194  ax-un 4418  ax-cnex 7865  ax-resscn 7866  ax-1re 7868  ax-addrcl 7871
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ral 2453  df-rex 2454  df-v 2732  df-sbc 2956  df-un 3125  df-in 3127  df-ss 3134  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-int 3832  df-br 3990  df-opab 4051  df-mpt 4052  df-id 4278  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-res 4623  df-iota 5160  df-fun 5200  df-fn 5201  df-fv 5206  df-ov 5856  df-inn 8879  df-2 8937  df-ndx 12419  df-slot 12420  df-base 12422  df-plusg 12493  df-mgm 12610
This theorem is referenced by:  ismgmn0  12612  mgmcl  12613  mgm0  12623  issgrpv  12645
  Copyright terms: Public domain W3C validator