ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  issgrp GIF version

Theorem issgrp 12809
Description: The predicate "is a semigroup". (Contributed by FL, 2-Nov-2009.) (Revised by AV, 6-Jan-2020.)
Hypotheses
Ref Expression
issgrp.b 𝐡 = (Baseβ€˜π‘€)
issgrp.o ⚬ = (+gβ€˜π‘€)
Assertion
Ref Expression
issgrp (𝑀 ∈ Smgrp ↔ (𝑀 ∈ Mgm ∧ βˆ€π‘₯ ∈ 𝐡 βˆ€π‘¦ ∈ 𝐡 βˆ€π‘§ ∈ 𝐡 ((π‘₯ ⚬ 𝑦) ⚬ 𝑧) = (π‘₯ ⚬ (𝑦 ⚬ 𝑧))))
Distinct variable groups:   π‘₯,𝐡,𝑦,𝑧   π‘₯,𝑀,𝑦,𝑧   π‘₯, ⚬ ,𝑦,𝑧

Proof of Theorem issgrp
Dummy variables 𝑏 𝑔 π‘œ are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 basfn 12520 . . . . 5 Base Fn V
2 vex 2741 . . . . 5 𝑔 ∈ V
3 funfvex 5533 . . . . . 6 ((Fun Base ∧ 𝑔 ∈ dom Base) β†’ (Baseβ€˜π‘”) ∈ V)
43funfni 5317 . . . . 5 ((Base Fn V ∧ 𝑔 ∈ V) β†’ (Baseβ€˜π‘”) ∈ V)
51, 2, 4mp2an 426 . . . 4 (Baseβ€˜π‘”) ∈ V
65a1i 9 . . 3 (𝑔 = 𝑀 β†’ (Baseβ€˜π‘”) ∈ V)
7 fveq2 5516 . . . 4 (𝑔 = 𝑀 β†’ (Baseβ€˜π‘”) = (Baseβ€˜π‘€))
8 issgrp.b . . . 4 𝐡 = (Baseβ€˜π‘€)
97, 8eqtr4di 2228 . . 3 (𝑔 = 𝑀 β†’ (Baseβ€˜π‘”) = 𝐡)
10 plusgslid 12571 . . . . . . 7 (+g = Slot (+gβ€˜ndx) ∧ (+gβ€˜ndx) ∈ β„•)
1110slotex 12489 . . . . . 6 (𝑔 ∈ V β†’ (+gβ€˜π‘”) ∈ V)
1211elv 2742 . . . . 5 (+gβ€˜π‘”) ∈ V
1312a1i 9 . . . 4 ((𝑔 = 𝑀 ∧ 𝑏 = 𝐡) β†’ (+gβ€˜π‘”) ∈ V)
14 fveq2 5516 . . . . . 6 (𝑔 = 𝑀 β†’ (+gβ€˜π‘”) = (+gβ€˜π‘€))
1514adantr 276 . . . . 5 ((𝑔 = 𝑀 ∧ 𝑏 = 𝐡) β†’ (+gβ€˜π‘”) = (+gβ€˜π‘€))
16 issgrp.o . . . . 5 ⚬ = (+gβ€˜π‘€)
1715, 16eqtr4di 2228 . . . 4 ((𝑔 = 𝑀 ∧ 𝑏 = 𝐡) β†’ (+gβ€˜π‘”) = ⚬ )
18 simplr 528 . . . . 5 (((𝑔 = 𝑀 ∧ 𝑏 = 𝐡) ∧ π‘œ = ⚬ ) β†’ 𝑏 = 𝐡)
19 id 19 . . . . . . . . . 10 (π‘œ = ⚬ β†’ π‘œ = ⚬ )
20 oveq 5881 . . . . . . . . . 10 (π‘œ = ⚬ β†’ (π‘₯π‘œπ‘¦) = (π‘₯ ⚬ 𝑦))
21 eqidd 2178 . . . . . . . . . 10 (π‘œ = ⚬ β†’ 𝑧 = 𝑧)
2219, 20, 21oveq123d 5896 . . . . . . . . 9 (π‘œ = ⚬ β†’ ((π‘₯π‘œπ‘¦)π‘œπ‘§) = ((π‘₯ ⚬ 𝑦) ⚬ 𝑧))
23 eqidd 2178 . . . . . . . . . 10 (π‘œ = ⚬ β†’ π‘₯ = π‘₯)
24 oveq 5881 . . . . . . . . . 10 (π‘œ = ⚬ β†’ (π‘¦π‘œπ‘§) = (𝑦 ⚬ 𝑧))
2519, 23, 24oveq123d 5896 . . . . . . . . 9 (π‘œ = ⚬ β†’ (π‘₯π‘œ(π‘¦π‘œπ‘§)) = (π‘₯ ⚬ (𝑦 ⚬ 𝑧)))
2622, 25eqeq12d 2192 . . . . . . . 8 (π‘œ = ⚬ β†’ (((π‘₯π‘œπ‘¦)π‘œπ‘§) = (π‘₯π‘œ(π‘¦π‘œπ‘§)) ↔ ((π‘₯ ⚬ 𝑦) ⚬ 𝑧) = (π‘₯ ⚬ (𝑦 ⚬ 𝑧))))
2726adantl 277 . . . . . . 7 (((𝑔 = 𝑀 ∧ 𝑏 = 𝐡) ∧ π‘œ = ⚬ ) β†’ (((π‘₯π‘œπ‘¦)π‘œπ‘§) = (π‘₯π‘œ(π‘¦π‘œπ‘§)) ↔ ((π‘₯ ⚬ 𝑦) ⚬ 𝑧) = (π‘₯ ⚬ (𝑦 ⚬ 𝑧))))
2818, 27raleqbidv 2685 . . . . . 6 (((𝑔 = 𝑀 ∧ 𝑏 = 𝐡) ∧ π‘œ = ⚬ ) β†’ (βˆ€π‘§ ∈ 𝑏 ((π‘₯π‘œπ‘¦)π‘œπ‘§) = (π‘₯π‘œ(π‘¦π‘œπ‘§)) ↔ βˆ€π‘§ ∈ 𝐡 ((π‘₯ ⚬ 𝑦) ⚬ 𝑧) = (π‘₯ ⚬ (𝑦 ⚬ 𝑧))))
2918, 28raleqbidv 2685 . . . . 5 (((𝑔 = 𝑀 ∧ 𝑏 = 𝐡) ∧ π‘œ = ⚬ ) β†’ (βˆ€π‘¦ ∈ 𝑏 βˆ€π‘§ ∈ 𝑏 ((π‘₯π‘œπ‘¦)π‘œπ‘§) = (π‘₯π‘œ(π‘¦π‘œπ‘§)) ↔ βˆ€π‘¦ ∈ 𝐡 βˆ€π‘§ ∈ 𝐡 ((π‘₯ ⚬ 𝑦) ⚬ 𝑧) = (π‘₯ ⚬ (𝑦 ⚬ 𝑧))))
3018, 29raleqbidv 2685 . . . 4 (((𝑔 = 𝑀 ∧ 𝑏 = 𝐡) ∧ π‘œ = ⚬ ) β†’ (βˆ€π‘₯ ∈ 𝑏 βˆ€π‘¦ ∈ 𝑏 βˆ€π‘§ ∈ 𝑏 ((π‘₯π‘œπ‘¦)π‘œπ‘§) = (π‘₯π‘œ(π‘¦π‘œπ‘§)) ↔ βˆ€π‘₯ ∈ 𝐡 βˆ€π‘¦ ∈ 𝐡 βˆ€π‘§ ∈ 𝐡 ((π‘₯ ⚬ 𝑦) ⚬ 𝑧) = (π‘₯ ⚬ (𝑦 ⚬ 𝑧))))
3113, 17, 30sbcied2 3001 . . 3 ((𝑔 = 𝑀 ∧ 𝑏 = 𝐡) β†’ ([(+gβ€˜π‘”) / π‘œ]βˆ€π‘₯ ∈ 𝑏 βˆ€π‘¦ ∈ 𝑏 βˆ€π‘§ ∈ 𝑏 ((π‘₯π‘œπ‘¦)π‘œπ‘§) = (π‘₯π‘œ(π‘¦π‘œπ‘§)) ↔ βˆ€π‘₯ ∈ 𝐡 βˆ€π‘¦ ∈ 𝐡 βˆ€π‘§ ∈ 𝐡 ((π‘₯ ⚬ 𝑦) ⚬ 𝑧) = (π‘₯ ⚬ (𝑦 ⚬ 𝑧))))
326, 9, 31sbcied2 3001 . 2 (𝑔 = 𝑀 β†’ ([(Baseβ€˜π‘”) / 𝑏][(+gβ€˜π‘”) / π‘œ]βˆ€π‘₯ ∈ 𝑏 βˆ€π‘¦ ∈ 𝑏 βˆ€π‘§ ∈ 𝑏 ((π‘₯π‘œπ‘¦)π‘œπ‘§) = (π‘₯π‘œ(π‘¦π‘œπ‘§)) ↔ βˆ€π‘₯ ∈ 𝐡 βˆ€π‘¦ ∈ 𝐡 βˆ€π‘§ ∈ 𝐡 ((π‘₯ ⚬ 𝑦) ⚬ 𝑧) = (π‘₯ ⚬ (𝑦 ⚬ 𝑧))))
33 df-sgrp 12808 . 2 Smgrp = {𝑔 ∈ Mgm ∣ [(Baseβ€˜π‘”) / 𝑏][(+gβ€˜π‘”) / π‘œ]βˆ€π‘₯ ∈ 𝑏 βˆ€π‘¦ ∈ 𝑏 βˆ€π‘§ ∈ 𝑏 ((π‘₯π‘œπ‘¦)π‘œπ‘§) = (π‘₯π‘œ(π‘¦π‘œπ‘§))}
3432, 33elrab2 2897 1 (𝑀 ∈ Smgrp ↔ (𝑀 ∈ Mgm ∧ βˆ€π‘₯ ∈ 𝐡 βˆ€π‘¦ ∈ 𝐡 βˆ€π‘§ ∈ 𝐡 ((π‘₯ ⚬ 𝑦) ⚬ 𝑧) = (π‘₯ ⚬ (𝑦 ⚬ 𝑧))))
Colors of variables: wff set class
Syntax hints:   ∧ wa 104   ↔ wb 105   = wceq 1353   ∈ wcel 2148  βˆ€wral 2455  Vcvv 2738  [wsbc 2963   Fn wfn 5212  β€˜cfv 5217  (class class class)co 5875  Basecbs 12462  +gcplusg 12536  Mgmcmgm 12773  Smgrpcsgrp 12807
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4122  ax-pow 4175  ax-pr 4210  ax-un 4434  ax-cnex 7902  ax-resscn 7903  ax-1re 7905  ax-addrcl 7908
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460  df-rex 2461  df-rab 2464  df-v 2740  df-sbc 2964  df-un 3134  df-in 3136  df-ss 3143  df-pw 3578  df-sn 3599  df-pr 3600  df-op 3602  df-uni 3811  df-int 3846  df-br 4005  df-opab 4066  df-mpt 4067  df-id 4294  df-xp 4633  df-rel 4634  df-cnv 4635  df-co 4636  df-dm 4637  df-rn 4638  df-res 4639  df-iota 5179  df-fun 5219  df-fn 5220  df-fv 5225  df-ov 5878  df-inn 8920  df-2 8978  df-ndx 12465  df-slot 12466  df-base 12468  df-plusg 12549  df-sgrp 12808
This theorem is referenced by:  issgrpv  12810  issgrpn0  12811  isnsgrp  12812  sgrpmgm  12813  sgrpass  12814  sgrp0  12815  sgrp1  12816
  Copyright terms: Public domain W3C validator