Step | Hyp | Ref
| Expression |
1 | | basfn 12520 |
. . . . 5
β’ Base Fn
V |
2 | | vex 2741 |
. . . . 5
β’ π β V |
3 | | funfvex 5533 |
. . . . . 6
β’ ((Fun
Base β§ π β dom
Base) β (Baseβπ)
β V) |
4 | 3 | funfni 5317 |
. . . . 5
β’ ((Base Fn
V β§ π β V) β
(Baseβπ) β
V) |
5 | 1, 2, 4 | mp2an 426 |
. . . 4
β’
(Baseβπ)
β V |
6 | 5 | a1i 9 |
. . 3
β’ (π = π β (Baseβπ) β V) |
7 | | fveq2 5516 |
. . . 4
β’ (π = π β (Baseβπ) = (Baseβπ)) |
8 | | issgrp.b |
. . . 4
β’ π΅ = (Baseβπ) |
9 | 7, 8 | eqtr4di 2228 |
. . 3
β’ (π = π β (Baseβπ) = π΅) |
10 | | plusgslid 12571 |
. . . . . . 7
β’
(+g = Slot (+gβndx) β§
(+gβndx) β β) |
11 | 10 | slotex 12489 |
. . . . . 6
β’ (π β V β
(+gβπ)
β V) |
12 | 11 | elv 2742 |
. . . . 5
β’
(+gβπ) β V |
13 | 12 | a1i 9 |
. . . 4
β’ ((π = π β§ π = π΅) β (+gβπ) β V) |
14 | | fveq2 5516 |
. . . . . 6
β’ (π = π β (+gβπ) = (+gβπ)) |
15 | 14 | adantr 276 |
. . . . 5
β’ ((π = π β§ π = π΅) β (+gβπ) = (+gβπ)) |
16 | | issgrp.o |
. . . . 5
β’ β¬ =
(+gβπ) |
17 | 15, 16 | eqtr4di 2228 |
. . . 4
β’ ((π = π β§ π = π΅) β (+gβπ) = β¬ ) |
18 | | simplr 528 |
. . . . 5
β’ (((π = π β§ π = π΅) β§ π = β¬ ) β π = π΅) |
19 | | id 19 |
. . . . . . . . . 10
β’ (π = β¬ β π = β¬ ) |
20 | | oveq 5881 |
. . . . . . . . . 10
β’ (π = β¬ β (π₯ππ¦) = (π₯ β¬ π¦)) |
21 | | eqidd 2178 |
. . . . . . . . . 10
β’ (π = β¬ β π§ = π§) |
22 | 19, 20, 21 | oveq123d 5896 |
. . . . . . . . 9
β’ (π = β¬ β ((π₯ππ¦)ππ§) = ((π₯ β¬ π¦) β¬ π§)) |
23 | | eqidd 2178 |
. . . . . . . . . 10
β’ (π = β¬ β π₯ = π₯) |
24 | | oveq 5881 |
. . . . . . . . . 10
β’ (π = β¬ β (π¦ππ§) = (π¦ β¬ π§)) |
25 | 19, 23, 24 | oveq123d 5896 |
. . . . . . . . 9
β’ (π = β¬ β (π₯π(π¦ππ§)) = (π₯ β¬ (π¦ β¬ π§))) |
26 | 22, 25 | eqeq12d 2192 |
. . . . . . . 8
β’ (π = β¬ β (((π₯ππ¦)ππ§) = (π₯π(π¦ππ§)) β ((π₯ β¬ π¦) β¬ π§) = (π₯ β¬ (π¦ β¬ π§)))) |
27 | 26 | adantl 277 |
. . . . . . 7
β’ (((π = π β§ π = π΅) β§ π = β¬ ) β (((π₯ππ¦)ππ§) = (π₯π(π¦ππ§)) β ((π₯ β¬ π¦) β¬ π§) = (π₯ β¬ (π¦ β¬ π§)))) |
28 | 18, 27 | raleqbidv 2685 |
. . . . . 6
β’ (((π = π β§ π = π΅) β§ π = β¬ ) β
(βπ§ β π ((π₯ππ¦)ππ§) = (π₯π(π¦ππ§)) β βπ§ β π΅ ((π₯ β¬ π¦) β¬ π§) = (π₯ β¬ (π¦ β¬ π§)))) |
29 | 18, 28 | raleqbidv 2685 |
. . . . 5
β’ (((π = π β§ π = π΅) β§ π = β¬ ) β
(βπ¦ β π βπ§ β π ((π₯ππ¦)ππ§) = (π₯π(π¦ππ§)) β βπ¦ β π΅ βπ§ β π΅ ((π₯ β¬ π¦) β¬ π§) = (π₯ β¬ (π¦ β¬ π§)))) |
30 | 18, 29 | raleqbidv 2685 |
. . . 4
β’ (((π = π β§ π = π΅) β§ π = β¬ ) β
(βπ₯ β π βπ¦ β π βπ§ β π ((π₯ππ¦)ππ§) = (π₯π(π¦ππ§)) β βπ₯ β π΅ βπ¦ β π΅ βπ§ β π΅ ((π₯ β¬ π¦) β¬ π§) = (π₯ β¬ (π¦ β¬ π§)))) |
31 | 13, 17, 30 | sbcied2 3001 |
. . 3
β’ ((π = π β§ π = π΅) β ([(+gβπ) / π]βπ₯ β π βπ¦ β π βπ§ β π ((π₯ππ¦)ππ§) = (π₯π(π¦ππ§)) β βπ₯ β π΅ βπ¦ β π΅ βπ§ β π΅ ((π₯ β¬ π¦) β¬ π§) = (π₯ β¬ (π¦ β¬ π§)))) |
32 | 6, 9, 31 | sbcied2 3001 |
. 2
β’ (π = π β ([(Baseβπ) / π][(+gβπ) / π]βπ₯ β π βπ¦ β π βπ§ β π ((π₯ππ¦)ππ§) = (π₯π(π¦ππ§)) β βπ₯ β π΅ βπ¦ β π΅ βπ§ β π΅ ((π₯ β¬ π¦) β¬ π§) = (π₯ β¬ (π¦ β¬ π§)))) |
33 | | df-sgrp 12808 |
. 2
β’ Smgrp =
{π β Mgm β£
[(Baseβπ) /
π][(+gβπ) / π]βπ₯ β π βπ¦ β π βπ§ β π ((π₯ππ¦)ππ§) = (π₯π(π¦ππ§))} |
34 | 32, 33 | elrab2 2897 |
1
β’ (π β Smgrp β (π β Mgm β§ βπ₯ β π΅ βπ¦ β π΅ βπ§ β π΅ ((π₯ β¬ π¦) β¬ π§) = (π₯ β¬ (π¦ β¬ π§)))) |