ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  issgrp GIF version

Theorem issgrp 13153
Description: The predicate "is a semigroup". (Contributed by FL, 2-Nov-2009.) (Revised by AV, 6-Jan-2020.)
Hypotheses
Ref Expression
issgrp.b 𝐵 = (Base‘𝑀)
issgrp.o = (+g𝑀)
Assertion
Ref Expression
issgrp (𝑀 ∈ Smgrp ↔ (𝑀 ∈ Mgm ∧ ∀𝑥𝐵𝑦𝐵𝑧𝐵 ((𝑥 𝑦) 𝑧) = (𝑥 (𝑦 𝑧))))
Distinct variable groups:   𝑥,𝐵,𝑦,𝑧   𝑥,𝑀,𝑦,𝑧   𝑥, ,𝑦,𝑧

Proof of Theorem issgrp
Dummy variables 𝑏 𝑔 𝑜 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 basfn 12809 . . . . 5 Base Fn V
2 vex 2774 . . . . 5 𝑔 ∈ V
3 funfvex 5587 . . . . . 6 ((Fun Base ∧ 𝑔 ∈ dom Base) → (Base‘𝑔) ∈ V)
43funfni 5370 . . . . 5 ((Base Fn V ∧ 𝑔 ∈ V) → (Base‘𝑔) ∈ V)
51, 2, 4mp2an 426 . . . 4 (Base‘𝑔) ∈ V
65a1i 9 . . 3 (𝑔 = 𝑀 → (Base‘𝑔) ∈ V)
7 fveq2 5570 . . . 4 (𝑔 = 𝑀 → (Base‘𝑔) = (Base‘𝑀))
8 issgrp.b . . . 4 𝐵 = (Base‘𝑀)
97, 8eqtr4di 2255 . . 3 (𝑔 = 𝑀 → (Base‘𝑔) = 𝐵)
10 plusgslid 12863 . . . . . . 7 (+g = Slot (+g‘ndx) ∧ (+g‘ndx) ∈ ℕ)
1110slotex 12778 . . . . . 6 (𝑔 ∈ V → (+g𝑔) ∈ V)
1211elv 2775 . . . . 5 (+g𝑔) ∈ V
1312a1i 9 . . . 4 ((𝑔 = 𝑀𝑏 = 𝐵) → (+g𝑔) ∈ V)
14 fveq2 5570 . . . . . 6 (𝑔 = 𝑀 → (+g𝑔) = (+g𝑀))
1514adantr 276 . . . . 5 ((𝑔 = 𝑀𝑏 = 𝐵) → (+g𝑔) = (+g𝑀))
16 issgrp.o . . . . 5 = (+g𝑀)
1715, 16eqtr4di 2255 . . . 4 ((𝑔 = 𝑀𝑏 = 𝐵) → (+g𝑔) = )
18 simplr 528 . . . . 5 (((𝑔 = 𝑀𝑏 = 𝐵) ∧ 𝑜 = ) → 𝑏 = 𝐵)
19 id 19 . . . . . . . . . 10 (𝑜 = 𝑜 = )
20 oveq 5940 . . . . . . . . . 10 (𝑜 = → (𝑥𝑜𝑦) = (𝑥 𝑦))
21 eqidd 2205 . . . . . . . . . 10 (𝑜 = 𝑧 = 𝑧)
2219, 20, 21oveq123d 5955 . . . . . . . . 9 (𝑜 = → ((𝑥𝑜𝑦)𝑜𝑧) = ((𝑥 𝑦) 𝑧))
23 eqidd 2205 . . . . . . . . . 10 (𝑜 = 𝑥 = 𝑥)
24 oveq 5940 . . . . . . . . . 10 (𝑜 = → (𝑦𝑜𝑧) = (𝑦 𝑧))
2519, 23, 24oveq123d 5955 . . . . . . . . 9 (𝑜 = → (𝑥𝑜(𝑦𝑜𝑧)) = (𝑥 (𝑦 𝑧)))
2622, 25eqeq12d 2219 . . . . . . . 8 (𝑜 = → (((𝑥𝑜𝑦)𝑜𝑧) = (𝑥𝑜(𝑦𝑜𝑧)) ↔ ((𝑥 𝑦) 𝑧) = (𝑥 (𝑦 𝑧))))
2726adantl 277 . . . . . . 7 (((𝑔 = 𝑀𝑏 = 𝐵) ∧ 𝑜 = ) → (((𝑥𝑜𝑦)𝑜𝑧) = (𝑥𝑜(𝑦𝑜𝑧)) ↔ ((𝑥 𝑦) 𝑧) = (𝑥 (𝑦 𝑧))))
2818, 27raleqbidv 2717 . . . . . 6 (((𝑔 = 𝑀𝑏 = 𝐵) ∧ 𝑜 = ) → (∀𝑧𝑏 ((𝑥𝑜𝑦)𝑜𝑧) = (𝑥𝑜(𝑦𝑜𝑧)) ↔ ∀𝑧𝐵 ((𝑥 𝑦) 𝑧) = (𝑥 (𝑦 𝑧))))
2918, 28raleqbidv 2717 . . . . 5 (((𝑔 = 𝑀𝑏 = 𝐵) ∧ 𝑜 = ) → (∀𝑦𝑏𝑧𝑏 ((𝑥𝑜𝑦)𝑜𝑧) = (𝑥𝑜(𝑦𝑜𝑧)) ↔ ∀𝑦𝐵𝑧𝐵 ((𝑥 𝑦) 𝑧) = (𝑥 (𝑦 𝑧))))
3018, 29raleqbidv 2717 . . . 4 (((𝑔 = 𝑀𝑏 = 𝐵) ∧ 𝑜 = ) → (∀𝑥𝑏𝑦𝑏𝑧𝑏 ((𝑥𝑜𝑦)𝑜𝑧) = (𝑥𝑜(𝑦𝑜𝑧)) ↔ ∀𝑥𝐵𝑦𝐵𝑧𝐵 ((𝑥 𝑦) 𝑧) = (𝑥 (𝑦 𝑧))))
3113, 17, 30sbcied2 3035 . . 3 ((𝑔 = 𝑀𝑏 = 𝐵) → ([(+g𝑔) / 𝑜]𝑥𝑏𝑦𝑏𝑧𝑏 ((𝑥𝑜𝑦)𝑜𝑧) = (𝑥𝑜(𝑦𝑜𝑧)) ↔ ∀𝑥𝐵𝑦𝐵𝑧𝐵 ((𝑥 𝑦) 𝑧) = (𝑥 (𝑦 𝑧))))
326, 9, 31sbcied2 3035 . 2 (𝑔 = 𝑀 → ([(Base‘𝑔) / 𝑏][(+g𝑔) / 𝑜]𝑥𝑏𝑦𝑏𝑧𝑏 ((𝑥𝑜𝑦)𝑜𝑧) = (𝑥𝑜(𝑦𝑜𝑧)) ↔ ∀𝑥𝐵𝑦𝐵𝑧𝐵 ((𝑥 𝑦) 𝑧) = (𝑥 (𝑦 𝑧))))
33 df-sgrp 13152 . 2 Smgrp = {𝑔 ∈ Mgm ∣ [(Base‘𝑔) / 𝑏][(+g𝑔) / 𝑜]𝑥𝑏𝑦𝑏𝑧𝑏 ((𝑥𝑜𝑦)𝑜𝑧) = (𝑥𝑜(𝑦𝑜𝑧))}
3432, 33elrab2 2931 1 (𝑀 ∈ Smgrp ↔ (𝑀 ∈ Mgm ∧ ∀𝑥𝐵𝑦𝐵𝑧𝐵 ((𝑥 𝑦) 𝑧) = (𝑥 (𝑦 𝑧))))
Colors of variables: wff set class
Syntax hints:  wa 104  wb 105   = wceq 1372  wcel 2175  wral 2483  Vcvv 2771  [wsbc 2997   Fn wfn 5263  cfv 5268  (class class class)co 5934  Basecbs 12751  +gcplusg 12828  Mgmcmgm 13104  Smgrpcsgrp 13151
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-13 2177  ax-14 2178  ax-ext 2186  ax-sep 4161  ax-pow 4217  ax-pr 4252  ax-un 4478  ax-cnex 7998  ax-resscn 7999  ax-1re 8001  ax-addrcl 8004
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1375  df-nf 1483  df-sb 1785  df-eu 2056  df-mo 2057  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ral 2488  df-rex 2489  df-rab 2492  df-v 2773  df-sbc 2998  df-un 3169  df-in 3171  df-ss 3178  df-pw 3617  df-sn 3638  df-pr 3639  df-op 3641  df-uni 3850  df-int 3885  df-br 4044  df-opab 4105  df-mpt 4106  df-id 4338  df-xp 4679  df-rel 4680  df-cnv 4681  df-co 4682  df-dm 4683  df-rn 4684  df-res 4685  df-iota 5229  df-fun 5270  df-fn 5271  df-fv 5276  df-ov 5937  df-inn 9019  df-2 9077  df-ndx 12754  df-slot 12755  df-base 12757  df-plusg 12841  df-sgrp 13152
This theorem is referenced by:  issgrpv  13154  issgrpn0  13155  isnsgrp  13156  sgrpmgm  13157  sgrpass  13158  sgrp0  13160  sgrp1  13161  rnglidlmsgrp  14177
  Copyright terms: Public domain W3C validator