ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  issgrp GIF version

Theorem issgrp 13310
Description: The predicate "is a semigroup". (Contributed by FL, 2-Nov-2009.) (Revised by AV, 6-Jan-2020.)
Hypotheses
Ref Expression
issgrp.b 𝐵 = (Base‘𝑀)
issgrp.o = (+g𝑀)
Assertion
Ref Expression
issgrp (𝑀 ∈ Smgrp ↔ (𝑀 ∈ Mgm ∧ ∀𝑥𝐵𝑦𝐵𝑧𝐵 ((𝑥 𝑦) 𝑧) = (𝑥 (𝑦 𝑧))))
Distinct variable groups:   𝑥,𝐵,𝑦,𝑧   𝑥,𝑀,𝑦,𝑧   𝑥, ,𝑦,𝑧

Proof of Theorem issgrp
Dummy variables 𝑏 𝑔 𝑜 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 basfn 12965 . . . . 5 Base Fn V
2 vex 2776 . . . . 5 𝑔 ∈ V
3 funfvex 5606 . . . . . 6 ((Fun Base ∧ 𝑔 ∈ dom Base) → (Base‘𝑔) ∈ V)
43funfni 5385 . . . . 5 ((Base Fn V ∧ 𝑔 ∈ V) → (Base‘𝑔) ∈ V)
51, 2, 4mp2an 426 . . . 4 (Base‘𝑔) ∈ V
65a1i 9 . . 3 (𝑔 = 𝑀 → (Base‘𝑔) ∈ V)
7 fveq2 5589 . . . 4 (𝑔 = 𝑀 → (Base‘𝑔) = (Base‘𝑀))
8 issgrp.b . . . 4 𝐵 = (Base‘𝑀)
97, 8eqtr4di 2257 . . 3 (𝑔 = 𝑀 → (Base‘𝑔) = 𝐵)
10 plusgslid 13019 . . . . . . 7 (+g = Slot (+g‘ndx) ∧ (+g‘ndx) ∈ ℕ)
1110slotex 12934 . . . . . 6 (𝑔 ∈ V → (+g𝑔) ∈ V)
1211elv 2777 . . . . 5 (+g𝑔) ∈ V
1312a1i 9 . . . 4 ((𝑔 = 𝑀𝑏 = 𝐵) → (+g𝑔) ∈ V)
14 fveq2 5589 . . . . . 6 (𝑔 = 𝑀 → (+g𝑔) = (+g𝑀))
1514adantr 276 . . . . 5 ((𝑔 = 𝑀𝑏 = 𝐵) → (+g𝑔) = (+g𝑀))
16 issgrp.o . . . . 5 = (+g𝑀)
1715, 16eqtr4di 2257 . . . 4 ((𝑔 = 𝑀𝑏 = 𝐵) → (+g𝑔) = )
18 simplr 528 . . . . 5 (((𝑔 = 𝑀𝑏 = 𝐵) ∧ 𝑜 = ) → 𝑏 = 𝐵)
19 id 19 . . . . . . . . . 10 (𝑜 = 𝑜 = )
20 oveq 5963 . . . . . . . . . 10 (𝑜 = → (𝑥𝑜𝑦) = (𝑥 𝑦))
21 eqidd 2207 . . . . . . . . . 10 (𝑜 = 𝑧 = 𝑧)
2219, 20, 21oveq123d 5978 . . . . . . . . 9 (𝑜 = → ((𝑥𝑜𝑦)𝑜𝑧) = ((𝑥 𝑦) 𝑧))
23 eqidd 2207 . . . . . . . . . 10 (𝑜 = 𝑥 = 𝑥)
24 oveq 5963 . . . . . . . . . 10 (𝑜 = → (𝑦𝑜𝑧) = (𝑦 𝑧))
2519, 23, 24oveq123d 5978 . . . . . . . . 9 (𝑜 = → (𝑥𝑜(𝑦𝑜𝑧)) = (𝑥 (𝑦 𝑧)))
2622, 25eqeq12d 2221 . . . . . . . 8 (𝑜 = → (((𝑥𝑜𝑦)𝑜𝑧) = (𝑥𝑜(𝑦𝑜𝑧)) ↔ ((𝑥 𝑦) 𝑧) = (𝑥 (𝑦 𝑧))))
2726adantl 277 . . . . . . 7 (((𝑔 = 𝑀𝑏 = 𝐵) ∧ 𝑜 = ) → (((𝑥𝑜𝑦)𝑜𝑧) = (𝑥𝑜(𝑦𝑜𝑧)) ↔ ((𝑥 𝑦) 𝑧) = (𝑥 (𝑦 𝑧))))
2818, 27raleqbidv 2719 . . . . . 6 (((𝑔 = 𝑀𝑏 = 𝐵) ∧ 𝑜 = ) → (∀𝑧𝑏 ((𝑥𝑜𝑦)𝑜𝑧) = (𝑥𝑜(𝑦𝑜𝑧)) ↔ ∀𝑧𝐵 ((𝑥 𝑦) 𝑧) = (𝑥 (𝑦 𝑧))))
2918, 28raleqbidv 2719 . . . . 5 (((𝑔 = 𝑀𝑏 = 𝐵) ∧ 𝑜 = ) → (∀𝑦𝑏𝑧𝑏 ((𝑥𝑜𝑦)𝑜𝑧) = (𝑥𝑜(𝑦𝑜𝑧)) ↔ ∀𝑦𝐵𝑧𝐵 ((𝑥 𝑦) 𝑧) = (𝑥 (𝑦 𝑧))))
3018, 29raleqbidv 2719 . . . 4 (((𝑔 = 𝑀𝑏 = 𝐵) ∧ 𝑜 = ) → (∀𝑥𝑏𝑦𝑏𝑧𝑏 ((𝑥𝑜𝑦)𝑜𝑧) = (𝑥𝑜(𝑦𝑜𝑧)) ↔ ∀𝑥𝐵𝑦𝐵𝑧𝐵 ((𝑥 𝑦) 𝑧) = (𝑥 (𝑦 𝑧))))
3113, 17, 30sbcied2 3040 . . 3 ((𝑔 = 𝑀𝑏 = 𝐵) → ([(+g𝑔) / 𝑜]𝑥𝑏𝑦𝑏𝑧𝑏 ((𝑥𝑜𝑦)𝑜𝑧) = (𝑥𝑜(𝑦𝑜𝑧)) ↔ ∀𝑥𝐵𝑦𝐵𝑧𝐵 ((𝑥 𝑦) 𝑧) = (𝑥 (𝑦 𝑧))))
326, 9, 31sbcied2 3040 . 2 (𝑔 = 𝑀 → ([(Base‘𝑔) / 𝑏][(+g𝑔) / 𝑜]𝑥𝑏𝑦𝑏𝑧𝑏 ((𝑥𝑜𝑦)𝑜𝑧) = (𝑥𝑜(𝑦𝑜𝑧)) ↔ ∀𝑥𝐵𝑦𝐵𝑧𝐵 ((𝑥 𝑦) 𝑧) = (𝑥 (𝑦 𝑧))))
33 df-sgrp 13309 . 2 Smgrp = {𝑔 ∈ Mgm ∣ [(Base‘𝑔) / 𝑏][(+g𝑔) / 𝑜]𝑥𝑏𝑦𝑏𝑧𝑏 ((𝑥𝑜𝑦)𝑜𝑧) = (𝑥𝑜(𝑦𝑜𝑧))}
3432, 33elrab2 2936 1 (𝑀 ∈ Smgrp ↔ (𝑀 ∈ Mgm ∧ ∀𝑥𝐵𝑦𝐵𝑧𝐵 ((𝑥 𝑦) 𝑧) = (𝑥 (𝑦 𝑧))))
Colors of variables: wff set class
Syntax hints:  wa 104  wb 105   = wceq 1373  wcel 2177  wral 2485  Vcvv 2773  [wsbc 3002   Fn wfn 5275  cfv 5280  (class class class)co 5957  Basecbs 12907  +gcplusg 12984  Mgmcmgm 13261  Smgrpcsgrp 13308
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-sep 4170  ax-pow 4226  ax-pr 4261  ax-un 4488  ax-cnex 8036  ax-resscn 8037  ax-1re 8039  ax-addrcl 8042
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ral 2490  df-rex 2491  df-rab 2494  df-v 2775  df-sbc 3003  df-un 3174  df-in 3176  df-ss 3183  df-pw 3623  df-sn 3644  df-pr 3645  df-op 3647  df-uni 3857  df-int 3892  df-br 4052  df-opab 4114  df-mpt 4115  df-id 4348  df-xp 4689  df-rel 4690  df-cnv 4691  df-co 4692  df-dm 4693  df-rn 4694  df-res 4695  df-iota 5241  df-fun 5282  df-fn 5283  df-fv 5288  df-ov 5960  df-inn 9057  df-2 9115  df-ndx 12910  df-slot 12911  df-base 12913  df-plusg 12997  df-sgrp 13309
This theorem is referenced by:  issgrpv  13311  issgrpn0  13312  isnsgrp  13313  sgrpmgm  13314  sgrpass  13315  sgrp0  13317  sgrp1  13318  rnglidlmsgrp  14334
  Copyright terms: Public domain W3C validator