| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > elsn | GIF version | ||
| Description: There is exactly one element in a singleton. Exercise 2 of [TakeutiZaring] p. 15. (Contributed by NM, 13-Sep-1995.) |
| Ref | Expression |
|---|---|
| elsn.1 | ⊢ 𝐴 ∈ V |
| Ref | Expression |
|---|---|
| elsn | ⊢ (𝐴 ∈ {𝐵} ↔ 𝐴 = 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elsn.1 | . 2 ⊢ 𝐴 ∈ V | |
| 2 | elsng 3638 | . 2 ⊢ (𝐴 ∈ V → (𝐴 ∈ {𝐵} ↔ 𝐴 = 𝐵)) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝐴 ∈ {𝐵} ↔ 𝐴 = 𝐵) |
| Colors of variables: wff set class |
| Syntax hints: ↔ wb 105 = wceq 1364 ∈ wcel 2167 Vcvv 2763 {csn 3623 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-v 2765 df-sn 3629 |
| This theorem is referenced by: velsn 3640 sneqr 3791 onsucelsucexmid 4567 ordsoexmid 4599 opthprc 4715 dmsnm 5136 dmsnopg 5142 cnvcnvsn 5147 sniota 5250 fsn 5737 eusvobj2 5911 mapdm0 6731 djulclb 7130 pw1nel3 7314 sucpw1nel3 7316 opelreal 7911 |
| Copyright terms: Public domain | W3C validator |