![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > elsn | GIF version |
Description: There is exactly one element in a singleton. Exercise 2 of [TakeutiZaring] p. 15. (Contributed by NM, 13-Sep-1995.) |
Ref | Expression |
---|---|
elsn.1 | ⊢ 𝐴 ∈ V |
Ref | Expression |
---|---|
elsn | ⊢ (𝐴 ∈ {𝐵} ↔ 𝐴 = 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elsn.1 | . 2 ⊢ 𝐴 ∈ V | |
2 | elsng 3606 | . 2 ⊢ (𝐴 ∈ V → (𝐴 ∈ {𝐵} ↔ 𝐴 = 𝐵)) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝐴 ∈ {𝐵} ↔ 𝐴 = 𝐵) |
Colors of variables: wff set class |
Syntax hints: ↔ wb 105 = wceq 1353 ∈ wcel 2148 Vcvv 2737 {csn 3591 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-ext 2159 |
This theorem depends on definitions: df-bi 117 df-tru 1356 df-nf 1461 df-sb 1763 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-v 2739 df-sn 3597 |
This theorem is referenced by: velsn 3608 sneqr 3758 onsucelsucexmid 4525 ordsoexmid 4557 opthprc 4673 dmsnm 5089 dmsnopg 5095 cnvcnvsn 5100 sniota 5202 fsn 5683 eusvobj2 5854 mapdm0 6656 djulclb 7047 pw1nel3 7223 sucpw1nel3 7225 opelreal 7804 |
Copyright terms: Public domain | W3C validator |