| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > elsn | GIF version | ||
| Description: There is exactly one element in a singleton. Exercise 2 of [TakeutiZaring] p. 15. (Contributed by NM, 13-Sep-1995.) |
| Ref | Expression |
|---|---|
| elsn.1 | ⊢ 𝐴 ∈ V |
| Ref | Expression |
|---|---|
| elsn | ⊢ (𝐴 ∈ {𝐵} ↔ 𝐴 = 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elsn.1 | . 2 ⊢ 𝐴 ∈ V | |
| 2 | elsng 3648 | . 2 ⊢ (𝐴 ∈ V → (𝐴 ∈ {𝐵} ↔ 𝐴 = 𝐵)) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝐴 ∈ {𝐵} ↔ 𝐴 = 𝐵) |
| Colors of variables: wff set class |
| Syntax hints: ↔ wb 105 = wceq 1373 ∈ wcel 2176 Vcvv 2772 {csn 3633 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-ext 2187 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-v 2774 df-sn 3639 |
| This theorem is referenced by: velsn 3650 sneqr 3801 onsucelsucexmid 4578 ordsoexmid 4610 opthprc 4726 dmsnm 5148 dmsnopg 5154 cnvcnvsn 5159 sniota 5262 fsn 5752 eusvobj2 5930 mapdm0 6750 djulclb 7157 pw1nel3 7343 sucpw1nel3 7345 opelreal 7940 |
| Copyright terms: Public domain | W3C validator |