ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  tpssi GIF version

Theorem tpssi 3800
Description: A triple of elements of a class is a subset of the class. (Contributed by Alexander van der Vekens, 1-Feb-2018.)
Assertion
Ref Expression
tpssi ((𝐴𝐷𝐵𝐷𝐶𝐷) → {𝐴, 𝐵, 𝐶} ⊆ 𝐷)

Proof of Theorem tpssi
StepHypRef Expression
1 df-tp 3641 . 2 {𝐴, 𝐵, 𝐶} = ({𝐴, 𝐵} ∪ {𝐶})
2 prssi 3791 . . . 4 ((𝐴𝐷𝐵𝐷) → {𝐴, 𝐵} ⊆ 𝐷)
323adant3 1020 . . 3 ((𝐴𝐷𝐵𝐷𝐶𝐷) → {𝐴, 𝐵} ⊆ 𝐷)
4 snssi 3777 . . . 4 (𝐶𝐷 → {𝐶} ⊆ 𝐷)
543ad2ant3 1023 . . 3 ((𝐴𝐷𝐵𝐷𝐶𝐷) → {𝐶} ⊆ 𝐷)
63, 5unssd 3349 . 2 ((𝐴𝐷𝐵𝐷𝐶𝐷) → ({𝐴, 𝐵} ∪ {𝐶}) ⊆ 𝐷)
71, 6eqsstrid 3239 1 ((𝐴𝐷𝐵𝐷𝐶𝐷) → {𝐴, 𝐵, 𝐶} ⊆ 𝐷)
Colors of variables: wff set class
Syntax hints:  wi 4  w3a 981  wcel 2176  cun 3164  wss 3166  {csn 3633  {cpr 3634  {ctp 3635
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-ext 2187
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1484  df-sb 1786  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-v 2774  df-un 3170  df-in 3172  df-ss 3179  df-sn 3639  df-pr 3640  df-tp 3641
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator