ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  tpssi GIF version

Theorem tpssi 3654
Description: A triple of elements of a class is a subset of the class. (Contributed by Alexander van der Vekens, 1-Feb-2018.)
Assertion
Ref Expression
tpssi ((𝐴𝐷𝐵𝐷𝐶𝐷) → {𝐴, 𝐵, 𝐶} ⊆ 𝐷)

Proof of Theorem tpssi
StepHypRef Expression
1 df-tp 3503 . 2 {𝐴, 𝐵, 𝐶} = ({𝐴, 𝐵} ∪ {𝐶})
2 prssi 3646 . . . 4 ((𝐴𝐷𝐵𝐷) → {𝐴, 𝐵} ⊆ 𝐷)
323adant3 984 . . 3 ((𝐴𝐷𝐵𝐷𝐶𝐷) → {𝐴, 𝐵} ⊆ 𝐷)
4 snssi 3632 . . . 4 (𝐶𝐷 → {𝐶} ⊆ 𝐷)
543ad2ant3 987 . . 3 ((𝐴𝐷𝐵𝐷𝐶𝐷) → {𝐶} ⊆ 𝐷)
63, 5unssd 3220 . 2 ((𝐴𝐷𝐵𝐷𝐶𝐷) → ({𝐴, 𝐵} ∪ {𝐶}) ⊆ 𝐷)
71, 6eqsstrid 3111 1 ((𝐴𝐷𝐵𝐷𝐶𝐷) → {𝐴, 𝐵, 𝐶} ⊆ 𝐷)
Colors of variables: wff set class
Syntax hints:  wi 4  w3a 945  wcel 1463  cun 3037  wss 3039  {csn 3495  {cpr 3496  {ctp 3497
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 681  ax-5 1406  ax-7 1407  ax-gen 1408  ax-ie1 1452  ax-ie2 1453  ax-8 1465  ax-10 1466  ax-11 1467  ax-i12 1468  ax-bndl 1469  ax-4 1470  ax-17 1489  ax-i9 1493  ax-ial 1497  ax-i5r 1498  ax-ext 2097
This theorem depends on definitions:  df-bi 116  df-3an 947  df-tru 1317  df-nf 1420  df-sb 1719  df-clab 2102  df-cleq 2108  df-clel 2111  df-nfc 2245  df-v 2660  df-un 3043  df-in 3045  df-ss 3052  df-sn 3501  df-pr 3502  df-tp 3503
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator