ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  tpssi GIF version

Theorem tpssi 3739
Description: A triple of elements of a class is a subset of the class. (Contributed by Alexander van der Vekens, 1-Feb-2018.)
Assertion
Ref Expression
tpssi ((𝐴𝐷𝐵𝐷𝐶𝐷) → {𝐴, 𝐵, 𝐶} ⊆ 𝐷)

Proof of Theorem tpssi
StepHypRef Expression
1 df-tp 3584 . 2 {𝐴, 𝐵, 𝐶} = ({𝐴, 𝐵} ∪ {𝐶})
2 prssi 3731 . . . 4 ((𝐴𝐷𝐵𝐷) → {𝐴, 𝐵} ⊆ 𝐷)
323adant3 1007 . . 3 ((𝐴𝐷𝐵𝐷𝐶𝐷) → {𝐴, 𝐵} ⊆ 𝐷)
4 snssi 3717 . . . 4 (𝐶𝐷 → {𝐶} ⊆ 𝐷)
543ad2ant3 1010 . . 3 ((𝐴𝐷𝐵𝐷𝐶𝐷) → {𝐶} ⊆ 𝐷)
63, 5unssd 3298 . 2 ((𝐴𝐷𝐵𝐷𝐶𝐷) → ({𝐴, 𝐵} ∪ {𝐶}) ⊆ 𝐷)
71, 6eqsstrid 3188 1 ((𝐴𝐷𝐵𝐷𝐶𝐷) → {𝐴, 𝐵, 𝐶} ⊆ 𝐷)
Colors of variables: wff set class
Syntax hints:  wi 4  w3a 968  wcel 2136  cun 3114  wss 3116  {csn 3576  {cpr 3577  {ctp 3578
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-v 2728  df-un 3120  df-in 3122  df-ss 3129  df-sn 3582  df-pr 3583  df-tp 3584
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator