Step | Hyp | Ref
| Expression |
1 | | cc2.cc |
. . 3
⊢ (𝜑 →
CCHOICE) |
2 | | vex 2729 |
. . . . . . . 8
⊢ 𝑛 ∈ V |
3 | 2 | snex 4164 |
. . . . . . 7
⊢ {𝑛} ∈ V |
4 | | cc2.a |
. . . . . . . 8
⊢ (𝜑 → 𝐹 Fn ω) |
5 | | funfvex 5503 |
. . . . . . . . 9
⊢ ((Fun
𝐹 ∧ 𝑛 ∈ dom 𝐹) → (𝐹‘𝑛) ∈ V) |
6 | 5 | funfni 5288 |
. . . . . . . 8
⊢ ((𝐹 Fn ω ∧ 𝑛 ∈ ω) → (𝐹‘𝑛) ∈ V) |
7 | 4, 6 | sylan 281 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑛 ∈ ω) → (𝐹‘𝑛) ∈ V) |
8 | | xpexg 4718 |
. . . . . . 7
⊢ (({𝑛} ∈ V ∧ (𝐹‘𝑛) ∈ V) → ({𝑛} × (𝐹‘𝑛)) ∈ V) |
9 | 3, 7, 8 | sylancr 411 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑛 ∈ ω) → ({𝑛} × (𝐹‘𝑛)) ∈ V) |
10 | | cc2lem.a |
. . . . . 6
⊢ 𝐴 = (𝑛 ∈ ω ↦ ({𝑛} × (𝐹‘𝑛))) |
11 | 9, 10 | fmptd 5639 |
. . . . 5
⊢ (𝜑 → 𝐴:ω⟶V) |
12 | | sneq 3587 |
. . . . . . . . . 10
⊢ (𝑛 = 𝑘 → {𝑛} = {𝑘}) |
13 | | fveq2 5486 |
. . . . . . . . . 10
⊢ (𝑛 = 𝑘 → (𝐹‘𝑛) = (𝐹‘𝑘)) |
14 | 12, 13 | xpeq12d 4629 |
. . . . . . . . 9
⊢ (𝑛 = 𝑘 → ({𝑛} × (𝐹‘𝑛)) = ({𝑘} × (𝐹‘𝑘))) |
15 | | simprr 522 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑛 ∈ ω ∧ 𝑘 ∈ ω)) → 𝑘 ∈ ω) |
16 | | vex 2729 |
. . . . . . . . . . 11
⊢ 𝑘 ∈ V |
17 | 16 | snex 4164 |
. . . . . . . . . 10
⊢ {𝑘} ∈ V |
18 | 4 | adantr 274 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑛 ∈ ω ∧ 𝑘 ∈ ω)) → 𝐹 Fn ω) |
19 | | funfvex 5503 |
. . . . . . . . . . . 12
⊢ ((Fun
𝐹 ∧ 𝑘 ∈ dom 𝐹) → (𝐹‘𝑘) ∈ V) |
20 | 19 | funfni 5288 |
. . . . . . . . . . 11
⊢ ((𝐹 Fn ω ∧ 𝑘 ∈ ω) → (𝐹‘𝑘) ∈ V) |
21 | 18, 15, 20 | syl2anc 409 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑛 ∈ ω ∧ 𝑘 ∈ ω)) → (𝐹‘𝑘) ∈ V) |
22 | | xpexg 4718 |
. . . . . . . . . 10
⊢ (({𝑘} ∈ V ∧ (𝐹‘𝑘) ∈ V) → ({𝑘} × (𝐹‘𝑘)) ∈ V) |
23 | 17, 21, 22 | sylancr 411 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑛 ∈ ω ∧ 𝑘 ∈ ω)) → ({𝑘} × (𝐹‘𝑘)) ∈ V) |
24 | 10, 14, 15, 23 | fvmptd3 5579 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑛 ∈ ω ∧ 𝑘 ∈ ω)) → (𝐴‘𝑘) = ({𝑘} × (𝐹‘𝑘))) |
25 | 24 | eqeq2d 2177 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑛 ∈ ω ∧ 𝑘 ∈ ω)) → ((𝐴‘𝑛) = (𝐴‘𝑘) ↔ (𝐴‘𝑛) = ({𝑘} × (𝐹‘𝑘)))) |
26 | | simpr 109 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑛 ∈ ω) → 𝑛 ∈ ω) |
27 | 10 | fvmpt2 5569 |
. . . . . . . . . . 11
⊢ ((𝑛 ∈ ω ∧ ({𝑛} × (𝐹‘𝑛)) ∈ V) → (𝐴‘𝑛) = ({𝑛} × (𝐹‘𝑛))) |
28 | 26, 9, 27 | syl2anc 409 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑛 ∈ ω) → (𝐴‘𝑛) = ({𝑛} × (𝐹‘𝑛))) |
29 | 28 | adantrr 471 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑛 ∈ ω ∧ 𝑘 ∈ ω)) → (𝐴‘𝑛) = ({𝑛} × (𝐹‘𝑛))) |
30 | 29 | eqeq1d 2174 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑛 ∈ ω ∧ 𝑘 ∈ ω)) → ((𝐴‘𝑛) = ({𝑘} × (𝐹‘𝑘)) ↔ ({𝑛} × (𝐹‘𝑛)) = ({𝑘} × (𝐹‘𝑘)))) |
31 | 2 | snm 3696 |
. . . . . . . . . 10
⊢
∃𝑤 𝑤 ∈ {𝑛} |
32 | | fveq2 5486 |
. . . . . . . . . . . . 13
⊢ (𝑥 = 𝑛 → (𝐹‘𝑥) = (𝐹‘𝑛)) |
33 | 32 | eleq2d 2236 |
. . . . . . . . . . . 12
⊢ (𝑥 = 𝑛 → (𝑤 ∈ (𝐹‘𝑥) ↔ 𝑤 ∈ (𝐹‘𝑛))) |
34 | 33 | exbidv 1813 |
. . . . . . . . . . 11
⊢ (𝑥 = 𝑛 → (∃𝑤 𝑤 ∈ (𝐹‘𝑥) ↔ ∃𝑤 𝑤 ∈ (𝐹‘𝑛))) |
35 | | cc2.m |
. . . . . . . . . . . 12
⊢ (𝜑 → ∀𝑥 ∈ ω ∃𝑤 𝑤 ∈ (𝐹‘𝑥)) |
36 | 35 | adantr 274 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑛 ∈ ω ∧ 𝑘 ∈ ω)) → ∀𝑥 ∈ ω ∃𝑤 𝑤 ∈ (𝐹‘𝑥)) |
37 | | simprl 521 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑛 ∈ ω ∧ 𝑘 ∈ ω)) → 𝑛 ∈ ω) |
38 | 34, 36, 37 | rspcdva 2835 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑛 ∈ ω ∧ 𝑘 ∈ ω)) → ∃𝑤 𝑤 ∈ (𝐹‘𝑛)) |
39 | | xp11m 5042 |
. . . . . . . . . 10
⊢
((∃𝑤 𝑤 ∈ {𝑛} ∧ ∃𝑤 𝑤 ∈ (𝐹‘𝑛)) → (({𝑛} × (𝐹‘𝑛)) = ({𝑘} × (𝐹‘𝑘)) ↔ ({𝑛} = {𝑘} ∧ (𝐹‘𝑛) = (𝐹‘𝑘)))) |
40 | 31, 38, 39 | sylancr 411 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑛 ∈ ω ∧ 𝑘 ∈ ω)) → (({𝑛} × (𝐹‘𝑛)) = ({𝑘} × (𝐹‘𝑘)) ↔ ({𝑛} = {𝑘} ∧ (𝐹‘𝑛) = (𝐹‘𝑘)))) |
41 | 2 | sneqr 3740 |
. . . . . . . . . 10
⊢ ({𝑛} = {𝑘} → 𝑛 = 𝑘) |
42 | 41 | adantr 274 |
. . . . . . . . 9
⊢ (({𝑛} = {𝑘} ∧ (𝐹‘𝑛) = (𝐹‘𝑘)) → 𝑛 = 𝑘) |
43 | 40, 42 | syl6bi 162 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑛 ∈ ω ∧ 𝑘 ∈ ω)) → (({𝑛} × (𝐹‘𝑛)) = ({𝑘} × (𝐹‘𝑘)) → 𝑛 = 𝑘)) |
44 | 30, 43 | sylbid 149 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑛 ∈ ω ∧ 𝑘 ∈ ω)) → ((𝐴‘𝑛) = ({𝑘} × (𝐹‘𝑘)) → 𝑛 = 𝑘)) |
45 | 25, 44 | sylbid 149 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑛 ∈ ω ∧ 𝑘 ∈ ω)) → ((𝐴‘𝑛) = (𝐴‘𝑘) → 𝑛 = 𝑘)) |
46 | 45 | ralrimivva 2548 |
. . . . 5
⊢ (𝜑 → ∀𝑛 ∈ ω ∀𝑘 ∈ ω ((𝐴‘𝑛) = (𝐴‘𝑘) → 𝑛 = 𝑘)) |
47 | | dff13 5736 |
. . . . 5
⊢ (𝐴:ω–1-1→V ↔ (𝐴:ω⟶V ∧ ∀𝑛 ∈ ω ∀𝑘 ∈ ω ((𝐴‘𝑛) = (𝐴‘𝑘) → 𝑛 = 𝑘))) |
48 | 11, 46, 47 | sylanbrc 414 |
. . . 4
⊢ (𝜑 → 𝐴:ω–1-1→V) |
49 | | f1f1orn 5443 |
. . . . 5
⊢ (𝐴:ω–1-1→V → 𝐴:ω–1-1-onto→ran
𝐴) |
50 | | omex 4570 |
. . . . . 6
⊢ ω
∈ V |
51 | 50 | f1oen 6725 |
. . . . 5
⊢ (𝐴:ω–1-1-onto→ran
𝐴 → ω ≈
ran 𝐴) |
52 | | ensym 6747 |
. . . . 5
⊢ (ω
≈ ran 𝐴 → ran
𝐴 ≈
ω) |
53 | 49, 51, 52 | 3syl 17 |
. . . 4
⊢ (𝐴:ω–1-1→V → ran 𝐴 ≈ ω) |
54 | 48, 53 | syl 14 |
. . 3
⊢ (𝜑 → ran 𝐴 ≈ ω) |
55 | 9 | ralrimiva 2539 |
. . . . . . . . 9
⊢ (𝜑 → ∀𝑛 ∈ ω ({𝑛} × (𝐹‘𝑛)) ∈ V) |
56 | 10 | fnmpt 5314 |
. . . . . . . . 9
⊢
(∀𝑛 ∈
ω ({𝑛} × (𝐹‘𝑛)) ∈ V → 𝐴 Fn ω) |
57 | 55, 56 | syl 14 |
. . . . . . . 8
⊢ (𝜑 → 𝐴 Fn ω) |
58 | 57 | adantr 274 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑧 ∈ ran 𝐴) → 𝐴 Fn ω) |
59 | | fnfun 5285 |
. . . . . . 7
⊢ (𝐴 Fn ω → Fun 𝐴) |
60 | 58, 59 | syl 14 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑧 ∈ ran 𝐴) → Fun 𝐴) |
61 | | simpr 109 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑧 ∈ ran 𝐴) → 𝑧 ∈ ran 𝐴) |
62 | | elrnrexdm 5624 |
. . . . . 6
⊢ (Fun
𝐴 → (𝑧 ∈ ran 𝐴 → ∃𝑛 ∈ dom 𝐴 𝑧 = (𝐴‘𝑛))) |
63 | 60, 61, 62 | sylc 62 |
. . . . 5
⊢ ((𝜑 ∧ 𝑧 ∈ ran 𝐴) → ∃𝑛 ∈ dom 𝐴 𝑧 = (𝐴‘𝑛)) |
64 | | simpll 519 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑧 ∈ ran 𝐴) ∧ (𝑛 ∈ dom 𝐴 ∧ 𝑧 = (𝐴‘𝑛))) → 𝜑) |
65 | | simprl 521 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑧 ∈ ran 𝐴) ∧ (𝑛 ∈ dom 𝐴 ∧ 𝑧 = (𝐴‘𝑛))) → 𝑛 ∈ dom 𝐴) |
66 | | fndm 5287 |
. . . . . . . . 9
⊢ (𝐴 Fn ω → dom 𝐴 = ω) |
67 | 64, 57, 66 | 3syl 17 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑧 ∈ ran 𝐴) ∧ (𝑛 ∈ dom 𝐴 ∧ 𝑧 = (𝐴‘𝑛))) → dom 𝐴 = ω) |
68 | 65, 67 | eleqtrd 2245 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑧 ∈ ran 𝐴) ∧ (𝑛 ∈ dom 𝐴 ∧ 𝑧 = (𝐴‘𝑛))) → 𝑛 ∈ ω) |
69 | 35 | adantr 274 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑛 ∈ ω) → ∀𝑥 ∈ ω ∃𝑤 𝑤 ∈ (𝐹‘𝑥)) |
70 | 34, 69, 26 | rspcdva 2835 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑛 ∈ ω) → ∃𝑤 𝑤 ∈ (𝐹‘𝑛)) |
71 | | eleq1 2229 |
. . . . . . . . . . 11
⊢ (𝑤 = 𝑎 → (𝑤 ∈ (𝐹‘𝑛) ↔ 𝑎 ∈ (𝐹‘𝑛))) |
72 | 71 | cbvexv 1906 |
. . . . . . . . . 10
⊢
(∃𝑤 𝑤 ∈ (𝐹‘𝑛) ↔ ∃𝑎 𝑎 ∈ (𝐹‘𝑛)) |
73 | 70, 72 | sylib 121 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑛 ∈ ω) → ∃𝑎 𝑎 ∈ (𝐹‘𝑛)) |
74 | | vsnid 3608 |
. . . . . . . . . . 11
⊢ 𝑛 ∈ {𝑛} |
75 | | simpr 109 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑛 ∈ ω) ∧ 𝑎 ∈ (𝐹‘𝑛)) → 𝑎 ∈ (𝐹‘𝑛)) |
76 | | opelxpi 4636 |
. . . . . . . . . . 11
⊢ ((𝑛 ∈ {𝑛} ∧ 𝑎 ∈ (𝐹‘𝑛)) → 〈𝑛, 𝑎〉 ∈ ({𝑛} × (𝐹‘𝑛))) |
77 | 74, 75, 76 | sylancr 411 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑛 ∈ ω) ∧ 𝑎 ∈ (𝐹‘𝑛)) → 〈𝑛, 𝑎〉 ∈ ({𝑛} × (𝐹‘𝑛))) |
78 | | eleq1 2229 |
. . . . . . . . . . 11
⊢ (𝑤 = 〈𝑛, 𝑎〉 → (𝑤 ∈ ({𝑛} × (𝐹‘𝑛)) ↔ 〈𝑛, 𝑎〉 ∈ ({𝑛} × (𝐹‘𝑛)))) |
79 | 78 | spcegv 2814 |
. . . . . . . . . 10
⊢
(〈𝑛, 𝑎〉 ∈ ({𝑛} × (𝐹‘𝑛)) → (〈𝑛, 𝑎〉 ∈ ({𝑛} × (𝐹‘𝑛)) → ∃𝑤 𝑤 ∈ ({𝑛} × (𝐹‘𝑛)))) |
80 | 77, 77, 79 | sylc 62 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑛 ∈ ω) ∧ 𝑎 ∈ (𝐹‘𝑛)) → ∃𝑤 𝑤 ∈ ({𝑛} × (𝐹‘𝑛))) |
81 | 73, 80 | exlimddv 1886 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑛 ∈ ω) → ∃𝑤 𝑤 ∈ ({𝑛} × (𝐹‘𝑛))) |
82 | 28 | eleq2d 2236 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑛 ∈ ω) → (𝑤 ∈ (𝐴‘𝑛) ↔ 𝑤 ∈ ({𝑛} × (𝐹‘𝑛)))) |
83 | 82 | exbidv 1813 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑛 ∈ ω) → (∃𝑤 𝑤 ∈ (𝐴‘𝑛) ↔ ∃𝑤 𝑤 ∈ ({𝑛} × (𝐹‘𝑛)))) |
84 | 81, 83 | mpbird 166 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑛 ∈ ω) → ∃𝑤 𝑤 ∈ (𝐴‘𝑛)) |
85 | 64, 68, 84 | syl2anc 409 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑧 ∈ ran 𝐴) ∧ (𝑛 ∈ dom 𝐴 ∧ 𝑧 = (𝐴‘𝑛))) → ∃𝑤 𝑤 ∈ (𝐴‘𝑛)) |
86 | | simprr 522 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑧 ∈ ran 𝐴) ∧ (𝑛 ∈ dom 𝐴 ∧ 𝑧 = (𝐴‘𝑛))) → 𝑧 = (𝐴‘𝑛)) |
87 | 86 | eleq2d 2236 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑧 ∈ ran 𝐴) ∧ (𝑛 ∈ dom 𝐴 ∧ 𝑧 = (𝐴‘𝑛))) → (𝑤 ∈ 𝑧 ↔ 𝑤 ∈ (𝐴‘𝑛))) |
88 | 87 | exbidv 1813 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑧 ∈ ran 𝐴) ∧ (𝑛 ∈ dom 𝐴 ∧ 𝑧 = (𝐴‘𝑛))) → (∃𝑤 𝑤 ∈ 𝑧 ↔ ∃𝑤 𝑤 ∈ (𝐴‘𝑛))) |
89 | 85, 88 | mpbird 166 |
. . . . 5
⊢ (((𝜑 ∧ 𝑧 ∈ ran 𝐴) ∧ (𝑛 ∈ dom 𝐴 ∧ 𝑧 = (𝐴‘𝑛))) → ∃𝑤 𝑤 ∈ 𝑧) |
90 | 63, 89 | rexlimddv 2588 |
. . . 4
⊢ ((𝜑 ∧ 𝑧 ∈ ran 𝐴) → ∃𝑤 𝑤 ∈ 𝑧) |
91 | 90 | ralrimiva 2539 |
. . 3
⊢ (𝜑 → ∀𝑧 ∈ ran 𝐴∃𝑤 𝑤 ∈ 𝑧) |
92 | 1, 54, 91 | ccfunen 7205 |
. 2
⊢ (𝜑 → ∃𝑓(𝑓 Fn ran 𝐴 ∧ ∀𝑧 ∈ ran 𝐴(𝑓‘𝑧) ∈ 𝑧)) |
93 | | vex 2729 |
. . . . . . . 8
⊢ 𝑓 ∈ V |
94 | | funfvex 5503 |
. . . . . . . . . 10
⊢ ((Fun
𝐴 ∧ 𝑛 ∈ dom 𝐴) → (𝐴‘𝑛) ∈ V) |
95 | 94 | funfni 5288 |
. . . . . . . . 9
⊢ ((𝐴 Fn ω ∧ 𝑛 ∈ ω) → (𝐴‘𝑛) ∈ V) |
96 | 57, 95 | sylan 281 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑛 ∈ ω) → (𝐴‘𝑛) ∈ V) |
97 | | fvexg 5505 |
. . . . . . . 8
⊢ ((𝑓 ∈ V ∧ (𝐴‘𝑛) ∈ V) → (𝑓‘(𝐴‘𝑛)) ∈ V) |
98 | 93, 96, 97 | sylancr 411 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑛 ∈ ω) → (𝑓‘(𝐴‘𝑛)) ∈ V) |
99 | | 2ndexg 6136 |
. . . . . . 7
⊢ ((𝑓‘(𝐴‘𝑛)) ∈ V → (2nd
‘(𝑓‘(𝐴‘𝑛))) ∈ V) |
100 | 98, 99 | syl 14 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑛 ∈ ω) → (2nd
‘(𝑓‘(𝐴‘𝑛))) ∈ V) |
101 | 100 | ralrimiva 2539 |
. . . . 5
⊢ (𝜑 → ∀𝑛 ∈ ω (2nd ‘(𝑓‘(𝐴‘𝑛))) ∈ V) |
102 | | cc2lem.g |
. . . . . 6
⊢ 𝐺 = (𝑛 ∈ ω ↦ (2nd
‘(𝑓‘(𝐴‘𝑛)))) |
103 | 102 | fnmpt 5314 |
. . . . 5
⊢
(∀𝑛 ∈
ω (2nd ‘(𝑓‘(𝐴‘𝑛))) ∈ V → 𝐺 Fn ω) |
104 | 101, 103 | syl 14 |
. . . 4
⊢ (𝜑 → 𝐺 Fn ω) |
105 | 104 | adantr 274 |
. . 3
⊢ ((𝜑 ∧ (𝑓 Fn ran 𝐴 ∧ ∀𝑧 ∈ ran 𝐴(𝑓‘𝑧) ∈ 𝑧)) → 𝐺 Fn ω) |
106 | | simpr 109 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑓 Fn ran 𝐴 ∧ ∀𝑧 ∈ ran 𝐴(𝑓‘𝑧) ∈ 𝑧)) ∧ 𝑛 ∈ ω) → 𝑛 ∈ ω) |
107 | | fveq2 5486 |
. . . . . . . . . 10
⊢ (𝑧 = (𝐴‘𝑛) → (𝑓‘𝑧) = (𝑓‘(𝐴‘𝑛))) |
108 | | id 19 |
. . . . . . . . . 10
⊢ (𝑧 = (𝐴‘𝑛) → 𝑧 = (𝐴‘𝑛)) |
109 | 107, 108 | eleq12d 2237 |
. . . . . . . . 9
⊢ (𝑧 = (𝐴‘𝑛) → ((𝑓‘𝑧) ∈ 𝑧 ↔ (𝑓‘(𝐴‘𝑛)) ∈ (𝐴‘𝑛))) |
110 | | simplrr 526 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑓 Fn ran 𝐴 ∧ ∀𝑧 ∈ ran 𝐴(𝑓‘𝑧) ∈ 𝑧)) ∧ 𝑛 ∈ ω) → ∀𝑧 ∈ ran 𝐴(𝑓‘𝑧) ∈ 𝑧) |
111 | | fnfvelrn 5617 |
. . . . . . . . . . 11
⊢ ((𝐴 Fn ω ∧ 𝑛 ∈ ω) → (𝐴‘𝑛) ∈ ran 𝐴) |
112 | 57, 111 | sylan 281 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑛 ∈ ω) → (𝐴‘𝑛) ∈ ran 𝐴) |
113 | 112 | adantlr 469 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑓 Fn ran 𝐴 ∧ ∀𝑧 ∈ ran 𝐴(𝑓‘𝑧) ∈ 𝑧)) ∧ 𝑛 ∈ ω) → (𝐴‘𝑛) ∈ ran 𝐴) |
114 | 109, 110,
113 | rspcdva 2835 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑓 Fn ran 𝐴 ∧ ∀𝑧 ∈ ran 𝐴(𝑓‘𝑧) ∈ 𝑧)) ∧ 𝑛 ∈ ω) → (𝑓‘(𝐴‘𝑛)) ∈ (𝐴‘𝑛)) |
115 | 28 | eleq2d 2236 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑛 ∈ ω) → ((𝑓‘(𝐴‘𝑛)) ∈ (𝐴‘𝑛) ↔ (𝑓‘(𝐴‘𝑛)) ∈ ({𝑛} × (𝐹‘𝑛)))) |
116 | 115 | adantlr 469 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑓 Fn ran 𝐴 ∧ ∀𝑧 ∈ ran 𝐴(𝑓‘𝑧) ∈ 𝑧)) ∧ 𝑛 ∈ ω) → ((𝑓‘(𝐴‘𝑛)) ∈ (𝐴‘𝑛) ↔ (𝑓‘(𝐴‘𝑛)) ∈ ({𝑛} × (𝐹‘𝑛)))) |
117 | 114, 116 | mpbid 146 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑓 Fn ran 𝐴 ∧ ∀𝑧 ∈ ran 𝐴(𝑓‘𝑧) ∈ 𝑧)) ∧ 𝑛 ∈ ω) → (𝑓‘(𝐴‘𝑛)) ∈ ({𝑛} × (𝐹‘𝑛))) |
118 | | xp2nd 6134 |
. . . . . . 7
⊢ ((𝑓‘(𝐴‘𝑛)) ∈ ({𝑛} × (𝐹‘𝑛)) → (2nd ‘(𝑓‘(𝐴‘𝑛))) ∈ (𝐹‘𝑛)) |
119 | 117, 118 | syl 14 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑓 Fn ran 𝐴 ∧ ∀𝑧 ∈ ran 𝐴(𝑓‘𝑧) ∈ 𝑧)) ∧ 𝑛 ∈ ω) → (2nd
‘(𝑓‘(𝐴‘𝑛))) ∈ (𝐹‘𝑛)) |
120 | 102 | fvmpt2 5569 |
. . . . . 6
⊢ ((𝑛 ∈ ω ∧
(2nd ‘(𝑓‘(𝐴‘𝑛))) ∈ (𝐹‘𝑛)) → (𝐺‘𝑛) = (2nd ‘(𝑓‘(𝐴‘𝑛)))) |
121 | 106, 119,
120 | syl2anc 409 |
. . . . 5
⊢ (((𝜑 ∧ (𝑓 Fn ran 𝐴 ∧ ∀𝑧 ∈ ran 𝐴(𝑓‘𝑧) ∈ 𝑧)) ∧ 𝑛 ∈ ω) → (𝐺‘𝑛) = (2nd ‘(𝑓‘(𝐴‘𝑛)))) |
122 | 121, 119 | eqeltrd 2243 |
. . . 4
⊢ (((𝜑 ∧ (𝑓 Fn ran 𝐴 ∧ ∀𝑧 ∈ ran 𝐴(𝑓‘𝑧) ∈ 𝑧)) ∧ 𝑛 ∈ ω) → (𝐺‘𝑛) ∈ (𝐹‘𝑛)) |
123 | 122 | ralrimiva 2539 |
. . 3
⊢ ((𝜑 ∧ (𝑓 Fn ran 𝐴 ∧ ∀𝑧 ∈ ran 𝐴(𝑓‘𝑧) ∈ 𝑧)) → ∀𝑛 ∈ ω (𝐺‘𝑛) ∈ (𝐹‘𝑛)) |
124 | 50 | a1i 9 |
. . . . . 6
⊢ (𝜑 → ω ∈
V) |
125 | | fnex 5707 |
. . . . . 6
⊢ ((𝐺 Fn ω ∧ ω ∈
V) → 𝐺 ∈
V) |
126 | 104, 124,
125 | syl2anc 409 |
. . . . 5
⊢ (𝜑 → 𝐺 ∈ V) |
127 | | fneq1 5276 |
. . . . . . 7
⊢ (𝑔 = 𝐺 → (𝑔 Fn ω ↔ 𝐺 Fn ω)) |
128 | | fveq1 5485 |
. . . . . . . . 9
⊢ (𝑔 = 𝐺 → (𝑔‘𝑛) = (𝐺‘𝑛)) |
129 | 128 | eleq1d 2235 |
. . . . . . . 8
⊢ (𝑔 = 𝐺 → ((𝑔‘𝑛) ∈ (𝐹‘𝑛) ↔ (𝐺‘𝑛) ∈ (𝐹‘𝑛))) |
130 | 129 | ralbidv 2466 |
. . . . . . 7
⊢ (𝑔 = 𝐺 → (∀𝑛 ∈ ω (𝑔‘𝑛) ∈ (𝐹‘𝑛) ↔ ∀𝑛 ∈ ω (𝐺‘𝑛) ∈ (𝐹‘𝑛))) |
131 | 127, 130 | anbi12d 465 |
. . . . . 6
⊢ (𝑔 = 𝐺 → ((𝑔 Fn ω ∧ ∀𝑛 ∈ ω (𝑔‘𝑛) ∈ (𝐹‘𝑛)) ↔ (𝐺 Fn ω ∧ ∀𝑛 ∈ ω (𝐺‘𝑛) ∈ (𝐹‘𝑛)))) |
132 | 131 | spcegv 2814 |
. . . . 5
⊢ (𝐺 ∈ V → ((𝐺 Fn ω ∧ ∀𝑛 ∈ ω (𝐺‘𝑛) ∈ (𝐹‘𝑛)) → ∃𝑔(𝑔 Fn ω ∧ ∀𝑛 ∈ ω (𝑔‘𝑛) ∈ (𝐹‘𝑛)))) |
133 | 126, 132 | syl 14 |
. . . 4
⊢ (𝜑 → ((𝐺 Fn ω ∧ ∀𝑛 ∈ ω (𝐺‘𝑛) ∈ (𝐹‘𝑛)) → ∃𝑔(𝑔 Fn ω ∧ ∀𝑛 ∈ ω (𝑔‘𝑛) ∈ (𝐹‘𝑛)))) |
134 | 133 | adantr 274 |
. . 3
⊢ ((𝜑 ∧ (𝑓 Fn ran 𝐴 ∧ ∀𝑧 ∈ ran 𝐴(𝑓‘𝑧) ∈ 𝑧)) → ((𝐺 Fn ω ∧ ∀𝑛 ∈ ω (𝐺‘𝑛) ∈ (𝐹‘𝑛)) → ∃𝑔(𝑔 Fn ω ∧ ∀𝑛 ∈ ω (𝑔‘𝑛) ∈ (𝐹‘𝑛)))) |
135 | 105, 123,
134 | mp2and 430 |
. 2
⊢ ((𝜑 ∧ (𝑓 Fn ran 𝐴 ∧ ∀𝑧 ∈ ran 𝐴(𝑓‘𝑧) ∈ 𝑧)) → ∃𝑔(𝑔 Fn ω ∧ ∀𝑛 ∈ ω (𝑔‘𝑛) ∈ (𝐹‘𝑛))) |
136 | 92, 135 | exlimddv 1886 |
1
⊢ (𝜑 → ∃𝑔(𝑔 Fn ω ∧ ∀𝑛 ∈ ω (𝑔‘𝑛) ∈ (𝐹‘𝑛))) |