| Step | Hyp | Ref
| Expression |
| 1 | | cc2.cc |
. . 3
⊢ (𝜑 →
CCHOICE) |
| 2 | | vex 2766 |
. . . . . . . 8
⊢ 𝑛 ∈ V |
| 3 | 2 | snex 4219 |
. . . . . . 7
⊢ {𝑛} ∈ V |
| 4 | | cc2.a |
. . . . . . . 8
⊢ (𝜑 → 𝐹 Fn ω) |
| 5 | | funfvex 5578 |
. . . . . . . . 9
⊢ ((Fun
𝐹 ∧ 𝑛 ∈ dom 𝐹) → (𝐹‘𝑛) ∈ V) |
| 6 | 5 | funfni 5361 |
. . . . . . . 8
⊢ ((𝐹 Fn ω ∧ 𝑛 ∈ ω) → (𝐹‘𝑛) ∈ V) |
| 7 | 4, 6 | sylan 283 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑛 ∈ ω) → (𝐹‘𝑛) ∈ V) |
| 8 | | xpexg 4778 |
. . . . . . 7
⊢ (({𝑛} ∈ V ∧ (𝐹‘𝑛) ∈ V) → ({𝑛} × (𝐹‘𝑛)) ∈ V) |
| 9 | 3, 7, 8 | sylancr 414 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑛 ∈ ω) → ({𝑛} × (𝐹‘𝑛)) ∈ V) |
| 10 | | cc2lem.a |
. . . . . 6
⊢ 𝐴 = (𝑛 ∈ ω ↦ ({𝑛} × (𝐹‘𝑛))) |
| 11 | 9, 10 | fmptd 5719 |
. . . . 5
⊢ (𝜑 → 𝐴:ω⟶V) |
| 12 | | sneq 3634 |
. . . . . . . . . 10
⊢ (𝑛 = 𝑘 → {𝑛} = {𝑘}) |
| 13 | | fveq2 5561 |
. . . . . . . . . 10
⊢ (𝑛 = 𝑘 → (𝐹‘𝑛) = (𝐹‘𝑘)) |
| 14 | 12, 13 | xpeq12d 4689 |
. . . . . . . . 9
⊢ (𝑛 = 𝑘 → ({𝑛} × (𝐹‘𝑛)) = ({𝑘} × (𝐹‘𝑘))) |
| 15 | | simprr 531 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑛 ∈ ω ∧ 𝑘 ∈ ω)) → 𝑘 ∈ ω) |
| 16 | | vex 2766 |
. . . . . . . . . . 11
⊢ 𝑘 ∈ V |
| 17 | 16 | snex 4219 |
. . . . . . . . . 10
⊢ {𝑘} ∈ V |
| 18 | 4 | adantr 276 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑛 ∈ ω ∧ 𝑘 ∈ ω)) → 𝐹 Fn ω) |
| 19 | | funfvex 5578 |
. . . . . . . . . . . 12
⊢ ((Fun
𝐹 ∧ 𝑘 ∈ dom 𝐹) → (𝐹‘𝑘) ∈ V) |
| 20 | 19 | funfni 5361 |
. . . . . . . . . . 11
⊢ ((𝐹 Fn ω ∧ 𝑘 ∈ ω) → (𝐹‘𝑘) ∈ V) |
| 21 | 18, 15, 20 | syl2anc 411 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑛 ∈ ω ∧ 𝑘 ∈ ω)) → (𝐹‘𝑘) ∈ V) |
| 22 | | xpexg 4778 |
. . . . . . . . . 10
⊢ (({𝑘} ∈ V ∧ (𝐹‘𝑘) ∈ V) → ({𝑘} × (𝐹‘𝑘)) ∈ V) |
| 23 | 17, 21, 22 | sylancr 414 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑛 ∈ ω ∧ 𝑘 ∈ ω)) → ({𝑘} × (𝐹‘𝑘)) ∈ V) |
| 24 | 10, 14, 15, 23 | fvmptd3 5658 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑛 ∈ ω ∧ 𝑘 ∈ ω)) → (𝐴‘𝑘) = ({𝑘} × (𝐹‘𝑘))) |
| 25 | 24 | eqeq2d 2208 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑛 ∈ ω ∧ 𝑘 ∈ ω)) → ((𝐴‘𝑛) = (𝐴‘𝑘) ↔ (𝐴‘𝑛) = ({𝑘} × (𝐹‘𝑘)))) |
| 26 | | simpr 110 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑛 ∈ ω) → 𝑛 ∈ ω) |
| 27 | 10 | fvmpt2 5648 |
. . . . . . . . . . 11
⊢ ((𝑛 ∈ ω ∧ ({𝑛} × (𝐹‘𝑛)) ∈ V) → (𝐴‘𝑛) = ({𝑛} × (𝐹‘𝑛))) |
| 28 | 26, 9, 27 | syl2anc 411 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑛 ∈ ω) → (𝐴‘𝑛) = ({𝑛} × (𝐹‘𝑛))) |
| 29 | 28 | adantrr 479 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑛 ∈ ω ∧ 𝑘 ∈ ω)) → (𝐴‘𝑛) = ({𝑛} × (𝐹‘𝑛))) |
| 30 | 29 | eqeq1d 2205 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑛 ∈ ω ∧ 𝑘 ∈ ω)) → ((𝐴‘𝑛) = ({𝑘} × (𝐹‘𝑘)) ↔ ({𝑛} × (𝐹‘𝑛)) = ({𝑘} × (𝐹‘𝑘)))) |
| 31 | 2 | snm 3743 |
. . . . . . . . . 10
⊢
∃𝑤 𝑤 ∈ {𝑛} |
| 32 | | fveq2 5561 |
. . . . . . . . . . . . 13
⊢ (𝑥 = 𝑛 → (𝐹‘𝑥) = (𝐹‘𝑛)) |
| 33 | 32 | eleq2d 2266 |
. . . . . . . . . . . 12
⊢ (𝑥 = 𝑛 → (𝑤 ∈ (𝐹‘𝑥) ↔ 𝑤 ∈ (𝐹‘𝑛))) |
| 34 | 33 | exbidv 1839 |
. . . . . . . . . . 11
⊢ (𝑥 = 𝑛 → (∃𝑤 𝑤 ∈ (𝐹‘𝑥) ↔ ∃𝑤 𝑤 ∈ (𝐹‘𝑛))) |
| 35 | | cc2.m |
. . . . . . . . . . . 12
⊢ (𝜑 → ∀𝑥 ∈ ω ∃𝑤 𝑤 ∈ (𝐹‘𝑥)) |
| 36 | 35 | adantr 276 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑛 ∈ ω ∧ 𝑘 ∈ ω)) → ∀𝑥 ∈ ω ∃𝑤 𝑤 ∈ (𝐹‘𝑥)) |
| 37 | | simprl 529 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑛 ∈ ω ∧ 𝑘 ∈ ω)) → 𝑛 ∈ ω) |
| 38 | 34, 36, 37 | rspcdva 2873 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑛 ∈ ω ∧ 𝑘 ∈ ω)) → ∃𝑤 𝑤 ∈ (𝐹‘𝑛)) |
| 39 | | xp11m 5109 |
. . . . . . . . . 10
⊢
((∃𝑤 𝑤 ∈ {𝑛} ∧ ∃𝑤 𝑤 ∈ (𝐹‘𝑛)) → (({𝑛} × (𝐹‘𝑛)) = ({𝑘} × (𝐹‘𝑘)) ↔ ({𝑛} = {𝑘} ∧ (𝐹‘𝑛) = (𝐹‘𝑘)))) |
| 40 | 31, 38, 39 | sylancr 414 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑛 ∈ ω ∧ 𝑘 ∈ ω)) → (({𝑛} × (𝐹‘𝑛)) = ({𝑘} × (𝐹‘𝑘)) ↔ ({𝑛} = {𝑘} ∧ (𝐹‘𝑛) = (𝐹‘𝑘)))) |
| 41 | 2 | sneqr 3791 |
. . . . . . . . . 10
⊢ ({𝑛} = {𝑘} → 𝑛 = 𝑘) |
| 42 | 41 | adantr 276 |
. . . . . . . . 9
⊢ (({𝑛} = {𝑘} ∧ (𝐹‘𝑛) = (𝐹‘𝑘)) → 𝑛 = 𝑘) |
| 43 | 40, 42 | biimtrdi 163 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑛 ∈ ω ∧ 𝑘 ∈ ω)) → (({𝑛} × (𝐹‘𝑛)) = ({𝑘} × (𝐹‘𝑘)) → 𝑛 = 𝑘)) |
| 44 | 30, 43 | sylbid 150 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑛 ∈ ω ∧ 𝑘 ∈ ω)) → ((𝐴‘𝑛) = ({𝑘} × (𝐹‘𝑘)) → 𝑛 = 𝑘)) |
| 45 | 25, 44 | sylbid 150 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑛 ∈ ω ∧ 𝑘 ∈ ω)) → ((𝐴‘𝑛) = (𝐴‘𝑘) → 𝑛 = 𝑘)) |
| 46 | 45 | ralrimivva 2579 |
. . . . 5
⊢ (𝜑 → ∀𝑛 ∈ ω ∀𝑘 ∈ ω ((𝐴‘𝑛) = (𝐴‘𝑘) → 𝑛 = 𝑘)) |
| 47 | | dff13 5818 |
. . . . 5
⊢ (𝐴:ω–1-1→V ↔ (𝐴:ω⟶V ∧ ∀𝑛 ∈ ω ∀𝑘 ∈ ω ((𝐴‘𝑛) = (𝐴‘𝑘) → 𝑛 = 𝑘))) |
| 48 | 11, 46, 47 | sylanbrc 417 |
. . . 4
⊢ (𝜑 → 𝐴:ω–1-1→V) |
| 49 | | f1f1orn 5518 |
. . . . 5
⊢ (𝐴:ω–1-1→V → 𝐴:ω–1-1-onto→ran
𝐴) |
| 50 | | omex 4630 |
. . . . . 6
⊢ ω
∈ V |
| 51 | 50 | f1oen 6827 |
. . . . 5
⊢ (𝐴:ω–1-1-onto→ran
𝐴 → ω ≈
ran 𝐴) |
| 52 | | ensym 6849 |
. . . . 5
⊢ (ω
≈ ran 𝐴 → ran
𝐴 ≈
ω) |
| 53 | 49, 51, 52 | 3syl 17 |
. . . 4
⊢ (𝐴:ω–1-1→V → ran 𝐴 ≈ ω) |
| 54 | 48, 53 | syl 14 |
. . 3
⊢ (𝜑 → ran 𝐴 ≈ ω) |
| 55 | 9 | ralrimiva 2570 |
. . . . . . . . 9
⊢ (𝜑 → ∀𝑛 ∈ ω ({𝑛} × (𝐹‘𝑛)) ∈ V) |
| 56 | 10 | fnmpt 5387 |
. . . . . . . . 9
⊢
(∀𝑛 ∈
ω ({𝑛} × (𝐹‘𝑛)) ∈ V → 𝐴 Fn ω) |
| 57 | 55, 56 | syl 14 |
. . . . . . . 8
⊢ (𝜑 → 𝐴 Fn ω) |
| 58 | 57 | adantr 276 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑧 ∈ ran 𝐴) → 𝐴 Fn ω) |
| 59 | | fnfun 5356 |
. . . . . . 7
⊢ (𝐴 Fn ω → Fun 𝐴) |
| 60 | 58, 59 | syl 14 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑧 ∈ ran 𝐴) → Fun 𝐴) |
| 61 | | simpr 110 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑧 ∈ ran 𝐴) → 𝑧 ∈ ran 𝐴) |
| 62 | | elrnrexdm 5704 |
. . . . . 6
⊢ (Fun
𝐴 → (𝑧 ∈ ran 𝐴 → ∃𝑛 ∈ dom 𝐴 𝑧 = (𝐴‘𝑛))) |
| 63 | 60, 61, 62 | sylc 62 |
. . . . 5
⊢ ((𝜑 ∧ 𝑧 ∈ ran 𝐴) → ∃𝑛 ∈ dom 𝐴 𝑧 = (𝐴‘𝑛)) |
| 64 | | simpll 527 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑧 ∈ ran 𝐴) ∧ (𝑛 ∈ dom 𝐴 ∧ 𝑧 = (𝐴‘𝑛))) → 𝜑) |
| 65 | | simprl 529 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑧 ∈ ran 𝐴) ∧ (𝑛 ∈ dom 𝐴 ∧ 𝑧 = (𝐴‘𝑛))) → 𝑛 ∈ dom 𝐴) |
| 66 | | fndm 5358 |
. . . . . . . . 9
⊢ (𝐴 Fn ω → dom 𝐴 = ω) |
| 67 | 64, 57, 66 | 3syl 17 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑧 ∈ ran 𝐴) ∧ (𝑛 ∈ dom 𝐴 ∧ 𝑧 = (𝐴‘𝑛))) → dom 𝐴 = ω) |
| 68 | 65, 67 | eleqtrd 2275 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑧 ∈ ran 𝐴) ∧ (𝑛 ∈ dom 𝐴 ∧ 𝑧 = (𝐴‘𝑛))) → 𝑛 ∈ ω) |
| 69 | 35 | adantr 276 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑛 ∈ ω) → ∀𝑥 ∈ ω ∃𝑤 𝑤 ∈ (𝐹‘𝑥)) |
| 70 | 34, 69, 26 | rspcdva 2873 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑛 ∈ ω) → ∃𝑤 𝑤 ∈ (𝐹‘𝑛)) |
| 71 | | eleq1 2259 |
. . . . . . . . . . 11
⊢ (𝑤 = 𝑎 → (𝑤 ∈ (𝐹‘𝑛) ↔ 𝑎 ∈ (𝐹‘𝑛))) |
| 72 | 71 | cbvexv 1933 |
. . . . . . . . . 10
⊢
(∃𝑤 𝑤 ∈ (𝐹‘𝑛) ↔ ∃𝑎 𝑎 ∈ (𝐹‘𝑛)) |
| 73 | 70, 72 | sylib 122 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑛 ∈ ω) → ∃𝑎 𝑎 ∈ (𝐹‘𝑛)) |
| 74 | | vsnid 3655 |
. . . . . . . . . . 11
⊢ 𝑛 ∈ {𝑛} |
| 75 | | simpr 110 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑛 ∈ ω) ∧ 𝑎 ∈ (𝐹‘𝑛)) → 𝑎 ∈ (𝐹‘𝑛)) |
| 76 | | opelxpi 4696 |
. . . . . . . . . . 11
⊢ ((𝑛 ∈ {𝑛} ∧ 𝑎 ∈ (𝐹‘𝑛)) → 〈𝑛, 𝑎〉 ∈ ({𝑛} × (𝐹‘𝑛))) |
| 77 | 74, 75, 76 | sylancr 414 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑛 ∈ ω) ∧ 𝑎 ∈ (𝐹‘𝑛)) → 〈𝑛, 𝑎〉 ∈ ({𝑛} × (𝐹‘𝑛))) |
| 78 | | eleq1 2259 |
. . . . . . . . . . 11
⊢ (𝑤 = 〈𝑛, 𝑎〉 → (𝑤 ∈ ({𝑛} × (𝐹‘𝑛)) ↔ 〈𝑛, 𝑎〉 ∈ ({𝑛} × (𝐹‘𝑛)))) |
| 79 | 78 | spcegv 2852 |
. . . . . . . . . 10
⊢
(〈𝑛, 𝑎〉 ∈ ({𝑛} × (𝐹‘𝑛)) → (〈𝑛, 𝑎〉 ∈ ({𝑛} × (𝐹‘𝑛)) → ∃𝑤 𝑤 ∈ ({𝑛} × (𝐹‘𝑛)))) |
| 80 | 77, 77, 79 | sylc 62 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑛 ∈ ω) ∧ 𝑎 ∈ (𝐹‘𝑛)) → ∃𝑤 𝑤 ∈ ({𝑛} × (𝐹‘𝑛))) |
| 81 | 73, 80 | exlimddv 1913 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑛 ∈ ω) → ∃𝑤 𝑤 ∈ ({𝑛} × (𝐹‘𝑛))) |
| 82 | 28 | eleq2d 2266 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑛 ∈ ω) → (𝑤 ∈ (𝐴‘𝑛) ↔ 𝑤 ∈ ({𝑛} × (𝐹‘𝑛)))) |
| 83 | 82 | exbidv 1839 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑛 ∈ ω) → (∃𝑤 𝑤 ∈ (𝐴‘𝑛) ↔ ∃𝑤 𝑤 ∈ ({𝑛} × (𝐹‘𝑛)))) |
| 84 | 81, 83 | mpbird 167 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑛 ∈ ω) → ∃𝑤 𝑤 ∈ (𝐴‘𝑛)) |
| 85 | 64, 68, 84 | syl2anc 411 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑧 ∈ ran 𝐴) ∧ (𝑛 ∈ dom 𝐴 ∧ 𝑧 = (𝐴‘𝑛))) → ∃𝑤 𝑤 ∈ (𝐴‘𝑛)) |
| 86 | | simprr 531 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑧 ∈ ran 𝐴) ∧ (𝑛 ∈ dom 𝐴 ∧ 𝑧 = (𝐴‘𝑛))) → 𝑧 = (𝐴‘𝑛)) |
| 87 | 86 | eleq2d 2266 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑧 ∈ ran 𝐴) ∧ (𝑛 ∈ dom 𝐴 ∧ 𝑧 = (𝐴‘𝑛))) → (𝑤 ∈ 𝑧 ↔ 𝑤 ∈ (𝐴‘𝑛))) |
| 88 | 87 | exbidv 1839 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑧 ∈ ran 𝐴) ∧ (𝑛 ∈ dom 𝐴 ∧ 𝑧 = (𝐴‘𝑛))) → (∃𝑤 𝑤 ∈ 𝑧 ↔ ∃𝑤 𝑤 ∈ (𝐴‘𝑛))) |
| 89 | 85, 88 | mpbird 167 |
. . . . 5
⊢ (((𝜑 ∧ 𝑧 ∈ ran 𝐴) ∧ (𝑛 ∈ dom 𝐴 ∧ 𝑧 = (𝐴‘𝑛))) → ∃𝑤 𝑤 ∈ 𝑧) |
| 90 | 63, 89 | rexlimddv 2619 |
. . . 4
⊢ ((𝜑 ∧ 𝑧 ∈ ran 𝐴) → ∃𝑤 𝑤 ∈ 𝑧) |
| 91 | 90 | ralrimiva 2570 |
. . 3
⊢ (𝜑 → ∀𝑧 ∈ ran 𝐴∃𝑤 𝑤 ∈ 𝑧) |
| 92 | 1, 54, 91 | ccfunen 7347 |
. 2
⊢ (𝜑 → ∃𝑓(𝑓 Fn ran 𝐴 ∧ ∀𝑧 ∈ ran 𝐴(𝑓‘𝑧) ∈ 𝑧)) |
| 93 | | vex 2766 |
. . . . . . . 8
⊢ 𝑓 ∈ V |
| 94 | | funfvex 5578 |
. . . . . . . . . 10
⊢ ((Fun
𝐴 ∧ 𝑛 ∈ dom 𝐴) → (𝐴‘𝑛) ∈ V) |
| 95 | 94 | funfni 5361 |
. . . . . . . . 9
⊢ ((𝐴 Fn ω ∧ 𝑛 ∈ ω) → (𝐴‘𝑛) ∈ V) |
| 96 | 57, 95 | sylan 283 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑛 ∈ ω) → (𝐴‘𝑛) ∈ V) |
| 97 | | fvexg 5580 |
. . . . . . . 8
⊢ ((𝑓 ∈ V ∧ (𝐴‘𝑛) ∈ V) → (𝑓‘(𝐴‘𝑛)) ∈ V) |
| 98 | 93, 96, 97 | sylancr 414 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑛 ∈ ω) → (𝑓‘(𝐴‘𝑛)) ∈ V) |
| 99 | | 2ndexg 6235 |
. . . . . . 7
⊢ ((𝑓‘(𝐴‘𝑛)) ∈ V → (2nd
‘(𝑓‘(𝐴‘𝑛))) ∈ V) |
| 100 | 98, 99 | syl 14 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑛 ∈ ω) → (2nd
‘(𝑓‘(𝐴‘𝑛))) ∈ V) |
| 101 | 100 | ralrimiva 2570 |
. . . . 5
⊢ (𝜑 → ∀𝑛 ∈ ω (2nd ‘(𝑓‘(𝐴‘𝑛))) ∈ V) |
| 102 | | cc2lem.g |
. . . . . 6
⊢ 𝐺 = (𝑛 ∈ ω ↦ (2nd
‘(𝑓‘(𝐴‘𝑛)))) |
| 103 | 102 | fnmpt 5387 |
. . . . 5
⊢
(∀𝑛 ∈
ω (2nd ‘(𝑓‘(𝐴‘𝑛))) ∈ V → 𝐺 Fn ω) |
| 104 | 101, 103 | syl 14 |
. . . 4
⊢ (𝜑 → 𝐺 Fn ω) |
| 105 | 104 | adantr 276 |
. . 3
⊢ ((𝜑 ∧ (𝑓 Fn ran 𝐴 ∧ ∀𝑧 ∈ ran 𝐴(𝑓‘𝑧) ∈ 𝑧)) → 𝐺 Fn ω) |
| 106 | | simpr 110 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑓 Fn ran 𝐴 ∧ ∀𝑧 ∈ ran 𝐴(𝑓‘𝑧) ∈ 𝑧)) ∧ 𝑛 ∈ ω) → 𝑛 ∈ ω) |
| 107 | | fveq2 5561 |
. . . . . . . . . 10
⊢ (𝑧 = (𝐴‘𝑛) → (𝑓‘𝑧) = (𝑓‘(𝐴‘𝑛))) |
| 108 | | id 19 |
. . . . . . . . . 10
⊢ (𝑧 = (𝐴‘𝑛) → 𝑧 = (𝐴‘𝑛)) |
| 109 | 107, 108 | eleq12d 2267 |
. . . . . . . . 9
⊢ (𝑧 = (𝐴‘𝑛) → ((𝑓‘𝑧) ∈ 𝑧 ↔ (𝑓‘(𝐴‘𝑛)) ∈ (𝐴‘𝑛))) |
| 110 | | simplrr 536 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑓 Fn ran 𝐴 ∧ ∀𝑧 ∈ ran 𝐴(𝑓‘𝑧) ∈ 𝑧)) ∧ 𝑛 ∈ ω) → ∀𝑧 ∈ ran 𝐴(𝑓‘𝑧) ∈ 𝑧) |
| 111 | | fnfvelrn 5697 |
. . . . . . . . . . 11
⊢ ((𝐴 Fn ω ∧ 𝑛 ∈ ω) → (𝐴‘𝑛) ∈ ran 𝐴) |
| 112 | 57, 111 | sylan 283 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑛 ∈ ω) → (𝐴‘𝑛) ∈ ran 𝐴) |
| 113 | 112 | adantlr 477 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑓 Fn ran 𝐴 ∧ ∀𝑧 ∈ ran 𝐴(𝑓‘𝑧) ∈ 𝑧)) ∧ 𝑛 ∈ ω) → (𝐴‘𝑛) ∈ ran 𝐴) |
| 114 | 109, 110,
113 | rspcdva 2873 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑓 Fn ran 𝐴 ∧ ∀𝑧 ∈ ran 𝐴(𝑓‘𝑧) ∈ 𝑧)) ∧ 𝑛 ∈ ω) → (𝑓‘(𝐴‘𝑛)) ∈ (𝐴‘𝑛)) |
| 115 | 28 | eleq2d 2266 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑛 ∈ ω) → ((𝑓‘(𝐴‘𝑛)) ∈ (𝐴‘𝑛) ↔ (𝑓‘(𝐴‘𝑛)) ∈ ({𝑛} × (𝐹‘𝑛)))) |
| 116 | 115 | adantlr 477 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑓 Fn ran 𝐴 ∧ ∀𝑧 ∈ ran 𝐴(𝑓‘𝑧) ∈ 𝑧)) ∧ 𝑛 ∈ ω) → ((𝑓‘(𝐴‘𝑛)) ∈ (𝐴‘𝑛) ↔ (𝑓‘(𝐴‘𝑛)) ∈ ({𝑛} × (𝐹‘𝑛)))) |
| 117 | 114, 116 | mpbid 147 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑓 Fn ran 𝐴 ∧ ∀𝑧 ∈ ran 𝐴(𝑓‘𝑧) ∈ 𝑧)) ∧ 𝑛 ∈ ω) → (𝑓‘(𝐴‘𝑛)) ∈ ({𝑛} × (𝐹‘𝑛))) |
| 118 | | xp2nd 6233 |
. . . . . . 7
⊢ ((𝑓‘(𝐴‘𝑛)) ∈ ({𝑛} × (𝐹‘𝑛)) → (2nd ‘(𝑓‘(𝐴‘𝑛))) ∈ (𝐹‘𝑛)) |
| 119 | 117, 118 | syl 14 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑓 Fn ran 𝐴 ∧ ∀𝑧 ∈ ran 𝐴(𝑓‘𝑧) ∈ 𝑧)) ∧ 𝑛 ∈ ω) → (2nd
‘(𝑓‘(𝐴‘𝑛))) ∈ (𝐹‘𝑛)) |
| 120 | 102 | fvmpt2 5648 |
. . . . . 6
⊢ ((𝑛 ∈ ω ∧
(2nd ‘(𝑓‘(𝐴‘𝑛))) ∈ (𝐹‘𝑛)) → (𝐺‘𝑛) = (2nd ‘(𝑓‘(𝐴‘𝑛)))) |
| 121 | 106, 119,
120 | syl2anc 411 |
. . . . 5
⊢ (((𝜑 ∧ (𝑓 Fn ran 𝐴 ∧ ∀𝑧 ∈ ran 𝐴(𝑓‘𝑧) ∈ 𝑧)) ∧ 𝑛 ∈ ω) → (𝐺‘𝑛) = (2nd ‘(𝑓‘(𝐴‘𝑛)))) |
| 122 | 121, 119 | eqeltrd 2273 |
. . . 4
⊢ (((𝜑 ∧ (𝑓 Fn ran 𝐴 ∧ ∀𝑧 ∈ ran 𝐴(𝑓‘𝑧) ∈ 𝑧)) ∧ 𝑛 ∈ ω) → (𝐺‘𝑛) ∈ (𝐹‘𝑛)) |
| 123 | 122 | ralrimiva 2570 |
. . 3
⊢ ((𝜑 ∧ (𝑓 Fn ran 𝐴 ∧ ∀𝑧 ∈ ran 𝐴(𝑓‘𝑧) ∈ 𝑧)) → ∀𝑛 ∈ ω (𝐺‘𝑛) ∈ (𝐹‘𝑛)) |
| 124 | 50 | a1i 9 |
. . . . . 6
⊢ (𝜑 → ω ∈
V) |
| 125 | | fnex 5787 |
. . . . . 6
⊢ ((𝐺 Fn ω ∧ ω ∈
V) → 𝐺 ∈
V) |
| 126 | 104, 124,
125 | syl2anc 411 |
. . . . 5
⊢ (𝜑 → 𝐺 ∈ V) |
| 127 | | fneq1 5347 |
. . . . . . 7
⊢ (𝑔 = 𝐺 → (𝑔 Fn ω ↔ 𝐺 Fn ω)) |
| 128 | | fveq1 5560 |
. . . . . . . . 9
⊢ (𝑔 = 𝐺 → (𝑔‘𝑛) = (𝐺‘𝑛)) |
| 129 | 128 | eleq1d 2265 |
. . . . . . . 8
⊢ (𝑔 = 𝐺 → ((𝑔‘𝑛) ∈ (𝐹‘𝑛) ↔ (𝐺‘𝑛) ∈ (𝐹‘𝑛))) |
| 130 | 129 | ralbidv 2497 |
. . . . . . 7
⊢ (𝑔 = 𝐺 → (∀𝑛 ∈ ω (𝑔‘𝑛) ∈ (𝐹‘𝑛) ↔ ∀𝑛 ∈ ω (𝐺‘𝑛) ∈ (𝐹‘𝑛))) |
| 131 | 127, 130 | anbi12d 473 |
. . . . . 6
⊢ (𝑔 = 𝐺 → ((𝑔 Fn ω ∧ ∀𝑛 ∈ ω (𝑔‘𝑛) ∈ (𝐹‘𝑛)) ↔ (𝐺 Fn ω ∧ ∀𝑛 ∈ ω (𝐺‘𝑛) ∈ (𝐹‘𝑛)))) |
| 132 | 131 | spcegv 2852 |
. . . . 5
⊢ (𝐺 ∈ V → ((𝐺 Fn ω ∧ ∀𝑛 ∈ ω (𝐺‘𝑛) ∈ (𝐹‘𝑛)) → ∃𝑔(𝑔 Fn ω ∧ ∀𝑛 ∈ ω (𝑔‘𝑛) ∈ (𝐹‘𝑛)))) |
| 133 | 126, 132 | syl 14 |
. . . 4
⊢ (𝜑 → ((𝐺 Fn ω ∧ ∀𝑛 ∈ ω (𝐺‘𝑛) ∈ (𝐹‘𝑛)) → ∃𝑔(𝑔 Fn ω ∧ ∀𝑛 ∈ ω (𝑔‘𝑛) ∈ (𝐹‘𝑛)))) |
| 134 | 133 | adantr 276 |
. . 3
⊢ ((𝜑 ∧ (𝑓 Fn ran 𝐴 ∧ ∀𝑧 ∈ ran 𝐴(𝑓‘𝑧) ∈ 𝑧)) → ((𝐺 Fn ω ∧ ∀𝑛 ∈ ω (𝐺‘𝑛) ∈ (𝐹‘𝑛)) → ∃𝑔(𝑔 Fn ω ∧ ∀𝑛 ∈ ω (𝑔‘𝑛) ∈ (𝐹‘𝑛)))) |
| 135 | 105, 123,
134 | mp2and 433 |
. 2
⊢ ((𝜑 ∧ (𝑓 Fn ran 𝐴 ∧ ∀𝑧 ∈ ran 𝐴(𝑓‘𝑧) ∈ 𝑧)) → ∃𝑔(𝑔 Fn ω ∧ ∀𝑛 ∈ ω (𝑔‘𝑛) ∈ (𝐹‘𝑛))) |
| 136 | 92, 135 | exlimddv 1913 |
1
⊢ (𝜑 → ∃𝑔(𝑔 Fn ω ∧ ∀𝑛 ∈ ω (𝑔‘𝑛) ∈ (𝐹‘𝑛))) |