| Step | Hyp | Ref
 | Expression | 
| 1 |   | cc2.cc | 
. . 3
⊢ (𝜑 →
CCHOICE) | 
| 2 |   | vex 2766 | 
. . . . . . . 8
⊢ 𝑛 ∈ V | 
| 3 | 2 | snex 4218 | 
. . . . . . 7
⊢ {𝑛} ∈ V | 
| 4 |   | cc2.a | 
. . . . . . . 8
⊢ (𝜑 → 𝐹 Fn ω) | 
| 5 |   | funfvex 5575 | 
. . . . . . . . 9
⊢ ((Fun
𝐹 ∧ 𝑛 ∈ dom 𝐹) → (𝐹‘𝑛) ∈ V) | 
| 6 | 5 | funfni 5358 | 
. . . . . . . 8
⊢ ((𝐹 Fn ω ∧ 𝑛 ∈ ω) → (𝐹‘𝑛) ∈ V) | 
| 7 | 4, 6 | sylan 283 | 
. . . . . . 7
⊢ ((𝜑 ∧ 𝑛 ∈ ω) → (𝐹‘𝑛) ∈ V) | 
| 8 |   | xpexg 4777 | 
. . . . . . 7
⊢ (({𝑛} ∈ V ∧ (𝐹‘𝑛) ∈ V) → ({𝑛} × (𝐹‘𝑛)) ∈ V) | 
| 9 | 3, 7, 8 | sylancr 414 | 
. . . . . 6
⊢ ((𝜑 ∧ 𝑛 ∈ ω) → ({𝑛} × (𝐹‘𝑛)) ∈ V) | 
| 10 |   | cc2lem.a | 
. . . . . 6
⊢ 𝐴 = (𝑛 ∈ ω ↦ ({𝑛} × (𝐹‘𝑛))) | 
| 11 | 9, 10 | fmptd 5716 | 
. . . . 5
⊢ (𝜑 → 𝐴:ω⟶V) | 
| 12 |   | sneq 3633 | 
. . . . . . . . . 10
⊢ (𝑛 = 𝑘 → {𝑛} = {𝑘}) | 
| 13 |   | fveq2 5558 | 
. . . . . . . . . 10
⊢ (𝑛 = 𝑘 → (𝐹‘𝑛) = (𝐹‘𝑘)) | 
| 14 | 12, 13 | xpeq12d 4688 | 
. . . . . . . . 9
⊢ (𝑛 = 𝑘 → ({𝑛} × (𝐹‘𝑛)) = ({𝑘} × (𝐹‘𝑘))) | 
| 15 |   | simprr 531 | 
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑛 ∈ ω ∧ 𝑘 ∈ ω)) → 𝑘 ∈ ω) | 
| 16 |   | vex 2766 | 
. . . . . . . . . . 11
⊢ 𝑘 ∈ V | 
| 17 | 16 | snex 4218 | 
. . . . . . . . . 10
⊢ {𝑘} ∈ V | 
| 18 | 4 | adantr 276 | 
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑛 ∈ ω ∧ 𝑘 ∈ ω)) → 𝐹 Fn ω) | 
| 19 |   | funfvex 5575 | 
. . . . . . . . . . . 12
⊢ ((Fun
𝐹 ∧ 𝑘 ∈ dom 𝐹) → (𝐹‘𝑘) ∈ V) | 
| 20 | 19 | funfni 5358 | 
. . . . . . . . . . 11
⊢ ((𝐹 Fn ω ∧ 𝑘 ∈ ω) → (𝐹‘𝑘) ∈ V) | 
| 21 | 18, 15, 20 | syl2anc 411 | 
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑛 ∈ ω ∧ 𝑘 ∈ ω)) → (𝐹‘𝑘) ∈ V) | 
| 22 |   | xpexg 4777 | 
. . . . . . . . . 10
⊢ (({𝑘} ∈ V ∧ (𝐹‘𝑘) ∈ V) → ({𝑘} × (𝐹‘𝑘)) ∈ V) | 
| 23 | 17, 21, 22 | sylancr 414 | 
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑛 ∈ ω ∧ 𝑘 ∈ ω)) → ({𝑘} × (𝐹‘𝑘)) ∈ V) | 
| 24 | 10, 14, 15, 23 | fvmptd3 5655 | 
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑛 ∈ ω ∧ 𝑘 ∈ ω)) → (𝐴‘𝑘) = ({𝑘} × (𝐹‘𝑘))) | 
| 25 | 24 | eqeq2d 2208 | 
. . . . . . 7
⊢ ((𝜑 ∧ (𝑛 ∈ ω ∧ 𝑘 ∈ ω)) → ((𝐴‘𝑛) = (𝐴‘𝑘) ↔ (𝐴‘𝑛) = ({𝑘} × (𝐹‘𝑘)))) | 
| 26 |   | simpr 110 | 
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑛 ∈ ω) → 𝑛 ∈ ω) | 
| 27 | 10 | fvmpt2 5645 | 
. . . . . . . . . . 11
⊢ ((𝑛 ∈ ω ∧ ({𝑛} × (𝐹‘𝑛)) ∈ V) → (𝐴‘𝑛) = ({𝑛} × (𝐹‘𝑛))) | 
| 28 | 26, 9, 27 | syl2anc 411 | 
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑛 ∈ ω) → (𝐴‘𝑛) = ({𝑛} × (𝐹‘𝑛))) | 
| 29 | 28 | adantrr 479 | 
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑛 ∈ ω ∧ 𝑘 ∈ ω)) → (𝐴‘𝑛) = ({𝑛} × (𝐹‘𝑛))) | 
| 30 | 29 | eqeq1d 2205 | 
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑛 ∈ ω ∧ 𝑘 ∈ ω)) → ((𝐴‘𝑛) = ({𝑘} × (𝐹‘𝑘)) ↔ ({𝑛} × (𝐹‘𝑛)) = ({𝑘} × (𝐹‘𝑘)))) | 
| 31 | 2 | snm 3742 | 
. . . . . . . . . 10
⊢
∃𝑤 𝑤 ∈ {𝑛} | 
| 32 |   | fveq2 5558 | 
. . . . . . . . . . . . 13
⊢ (𝑥 = 𝑛 → (𝐹‘𝑥) = (𝐹‘𝑛)) | 
| 33 | 32 | eleq2d 2266 | 
. . . . . . . . . . . 12
⊢ (𝑥 = 𝑛 → (𝑤 ∈ (𝐹‘𝑥) ↔ 𝑤 ∈ (𝐹‘𝑛))) | 
| 34 | 33 | exbidv 1839 | 
. . . . . . . . . . 11
⊢ (𝑥 = 𝑛 → (∃𝑤 𝑤 ∈ (𝐹‘𝑥) ↔ ∃𝑤 𝑤 ∈ (𝐹‘𝑛))) | 
| 35 |   | cc2.m | 
. . . . . . . . . . . 12
⊢ (𝜑 → ∀𝑥 ∈ ω ∃𝑤 𝑤 ∈ (𝐹‘𝑥)) | 
| 36 | 35 | adantr 276 | 
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑛 ∈ ω ∧ 𝑘 ∈ ω)) → ∀𝑥 ∈ ω ∃𝑤 𝑤 ∈ (𝐹‘𝑥)) | 
| 37 |   | simprl 529 | 
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑛 ∈ ω ∧ 𝑘 ∈ ω)) → 𝑛 ∈ ω) | 
| 38 | 34, 36, 37 | rspcdva 2873 | 
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑛 ∈ ω ∧ 𝑘 ∈ ω)) → ∃𝑤 𝑤 ∈ (𝐹‘𝑛)) | 
| 39 |   | xp11m 5108 | 
. . . . . . . . . 10
⊢
((∃𝑤 𝑤 ∈ {𝑛} ∧ ∃𝑤 𝑤 ∈ (𝐹‘𝑛)) → (({𝑛} × (𝐹‘𝑛)) = ({𝑘} × (𝐹‘𝑘)) ↔ ({𝑛} = {𝑘} ∧ (𝐹‘𝑛) = (𝐹‘𝑘)))) | 
| 40 | 31, 38, 39 | sylancr 414 | 
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑛 ∈ ω ∧ 𝑘 ∈ ω)) → (({𝑛} × (𝐹‘𝑛)) = ({𝑘} × (𝐹‘𝑘)) ↔ ({𝑛} = {𝑘} ∧ (𝐹‘𝑛) = (𝐹‘𝑘)))) | 
| 41 | 2 | sneqr 3790 | 
. . . . . . . . . 10
⊢ ({𝑛} = {𝑘} → 𝑛 = 𝑘) | 
| 42 | 41 | adantr 276 | 
. . . . . . . . 9
⊢ (({𝑛} = {𝑘} ∧ (𝐹‘𝑛) = (𝐹‘𝑘)) → 𝑛 = 𝑘) | 
| 43 | 40, 42 | biimtrdi 163 | 
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑛 ∈ ω ∧ 𝑘 ∈ ω)) → (({𝑛} × (𝐹‘𝑛)) = ({𝑘} × (𝐹‘𝑘)) → 𝑛 = 𝑘)) | 
| 44 | 30, 43 | sylbid 150 | 
. . . . . . 7
⊢ ((𝜑 ∧ (𝑛 ∈ ω ∧ 𝑘 ∈ ω)) → ((𝐴‘𝑛) = ({𝑘} × (𝐹‘𝑘)) → 𝑛 = 𝑘)) | 
| 45 | 25, 44 | sylbid 150 | 
. . . . . 6
⊢ ((𝜑 ∧ (𝑛 ∈ ω ∧ 𝑘 ∈ ω)) → ((𝐴‘𝑛) = (𝐴‘𝑘) → 𝑛 = 𝑘)) | 
| 46 | 45 | ralrimivva 2579 | 
. . . . 5
⊢ (𝜑 → ∀𝑛 ∈ ω ∀𝑘 ∈ ω ((𝐴‘𝑛) = (𝐴‘𝑘) → 𝑛 = 𝑘)) | 
| 47 |   | dff13 5815 | 
. . . . 5
⊢ (𝐴:ω–1-1→V ↔ (𝐴:ω⟶V ∧ ∀𝑛 ∈ ω ∀𝑘 ∈ ω ((𝐴‘𝑛) = (𝐴‘𝑘) → 𝑛 = 𝑘))) | 
| 48 | 11, 46, 47 | sylanbrc 417 | 
. . . 4
⊢ (𝜑 → 𝐴:ω–1-1→V) | 
| 49 |   | f1f1orn 5515 | 
. . . . 5
⊢ (𝐴:ω–1-1→V → 𝐴:ω–1-1-onto→ran
𝐴) | 
| 50 |   | omex 4629 | 
. . . . . 6
⊢ ω
∈ V | 
| 51 | 50 | f1oen 6818 | 
. . . . 5
⊢ (𝐴:ω–1-1-onto→ran
𝐴 → ω ≈
ran 𝐴) | 
| 52 |   | ensym 6840 | 
. . . . 5
⊢ (ω
≈ ran 𝐴 → ran
𝐴 ≈
ω) | 
| 53 | 49, 51, 52 | 3syl 17 | 
. . . 4
⊢ (𝐴:ω–1-1→V → ran 𝐴 ≈ ω) | 
| 54 | 48, 53 | syl 14 | 
. . 3
⊢ (𝜑 → ran 𝐴 ≈ ω) | 
| 55 | 9 | ralrimiva 2570 | 
. . . . . . . . 9
⊢ (𝜑 → ∀𝑛 ∈ ω ({𝑛} × (𝐹‘𝑛)) ∈ V) | 
| 56 | 10 | fnmpt 5384 | 
. . . . . . . . 9
⊢
(∀𝑛 ∈
ω ({𝑛} × (𝐹‘𝑛)) ∈ V → 𝐴 Fn ω) | 
| 57 | 55, 56 | syl 14 | 
. . . . . . . 8
⊢ (𝜑 → 𝐴 Fn ω) | 
| 58 | 57 | adantr 276 | 
. . . . . . 7
⊢ ((𝜑 ∧ 𝑧 ∈ ran 𝐴) → 𝐴 Fn ω) | 
| 59 |   | fnfun 5355 | 
. . . . . . 7
⊢ (𝐴 Fn ω → Fun 𝐴) | 
| 60 | 58, 59 | syl 14 | 
. . . . . 6
⊢ ((𝜑 ∧ 𝑧 ∈ ran 𝐴) → Fun 𝐴) | 
| 61 |   | simpr 110 | 
. . . . . 6
⊢ ((𝜑 ∧ 𝑧 ∈ ran 𝐴) → 𝑧 ∈ ran 𝐴) | 
| 62 |   | elrnrexdm 5701 | 
. . . . . 6
⊢ (Fun
𝐴 → (𝑧 ∈ ran 𝐴 → ∃𝑛 ∈ dom 𝐴 𝑧 = (𝐴‘𝑛))) | 
| 63 | 60, 61, 62 | sylc 62 | 
. . . . 5
⊢ ((𝜑 ∧ 𝑧 ∈ ran 𝐴) → ∃𝑛 ∈ dom 𝐴 𝑧 = (𝐴‘𝑛)) | 
| 64 |   | simpll 527 | 
. . . . . . 7
⊢ (((𝜑 ∧ 𝑧 ∈ ran 𝐴) ∧ (𝑛 ∈ dom 𝐴 ∧ 𝑧 = (𝐴‘𝑛))) → 𝜑) | 
| 65 |   | simprl 529 | 
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑧 ∈ ran 𝐴) ∧ (𝑛 ∈ dom 𝐴 ∧ 𝑧 = (𝐴‘𝑛))) → 𝑛 ∈ dom 𝐴) | 
| 66 |   | fndm 5357 | 
. . . . . . . . 9
⊢ (𝐴 Fn ω → dom 𝐴 = ω) | 
| 67 | 64, 57, 66 | 3syl 17 | 
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑧 ∈ ran 𝐴) ∧ (𝑛 ∈ dom 𝐴 ∧ 𝑧 = (𝐴‘𝑛))) → dom 𝐴 = ω) | 
| 68 | 65, 67 | eleqtrd 2275 | 
. . . . . . 7
⊢ (((𝜑 ∧ 𝑧 ∈ ran 𝐴) ∧ (𝑛 ∈ dom 𝐴 ∧ 𝑧 = (𝐴‘𝑛))) → 𝑛 ∈ ω) | 
| 69 | 35 | adantr 276 | 
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑛 ∈ ω) → ∀𝑥 ∈ ω ∃𝑤 𝑤 ∈ (𝐹‘𝑥)) | 
| 70 | 34, 69, 26 | rspcdva 2873 | 
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑛 ∈ ω) → ∃𝑤 𝑤 ∈ (𝐹‘𝑛)) | 
| 71 |   | eleq1 2259 | 
. . . . . . . . . . 11
⊢ (𝑤 = 𝑎 → (𝑤 ∈ (𝐹‘𝑛) ↔ 𝑎 ∈ (𝐹‘𝑛))) | 
| 72 | 71 | cbvexv 1933 | 
. . . . . . . . . 10
⊢
(∃𝑤 𝑤 ∈ (𝐹‘𝑛) ↔ ∃𝑎 𝑎 ∈ (𝐹‘𝑛)) | 
| 73 | 70, 72 | sylib 122 | 
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑛 ∈ ω) → ∃𝑎 𝑎 ∈ (𝐹‘𝑛)) | 
| 74 |   | vsnid 3654 | 
. . . . . . . . . . 11
⊢ 𝑛 ∈ {𝑛} | 
| 75 |   | simpr 110 | 
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑛 ∈ ω) ∧ 𝑎 ∈ (𝐹‘𝑛)) → 𝑎 ∈ (𝐹‘𝑛)) | 
| 76 |   | opelxpi 4695 | 
. . . . . . . . . . 11
⊢ ((𝑛 ∈ {𝑛} ∧ 𝑎 ∈ (𝐹‘𝑛)) → 〈𝑛, 𝑎〉 ∈ ({𝑛} × (𝐹‘𝑛))) | 
| 77 | 74, 75, 76 | sylancr 414 | 
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑛 ∈ ω) ∧ 𝑎 ∈ (𝐹‘𝑛)) → 〈𝑛, 𝑎〉 ∈ ({𝑛} × (𝐹‘𝑛))) | 
| 78 |   | eleq1 2259 | 
. . . . . . . . . . 11
⊢ (𝑤 = 〈𝑛, 𝑎〉 → (𝑤 ∈ ({𝑛} × (𝐹‘𝑛)) ↔ 〈𝑛, 𝑎〉 ∈ ({𝑛} × (𝐹‘𝑛)))) | 
| 79 | 78 | spcegv 2852 | 
. . . . . . . . . 10
⊢
(〈𝑛, 𝑎〉 ∈ ({𝑛} × (𝐹‘𝑛)) → (〈𝑛, 𝑎〉 ∈ ({𝑛} × (𝐹‘𝑛)) → ∃𝑤 𝑤 ∈ ({𝑛} × (𝐹‘𝑛)))) | 
| 80 | 77, 77, 79 | sylc 62 | 
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑛 ∈ ω) ∧ 𝑎 ∈ (𝐹‘𝑛)) → ∃𝑤 𝑤 ∈ ({𝑛} × (𝐹‘𝑛))) | 
| 81 | 73, 80 | exlimddv 1913 | 
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑛 ∈ ω) → ∃𝑤 𝑤 ∈ ({𝑛} × (𝐹‘𝑛))) | 
| 82 | 28 | eleq2d 2266 | 
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑛 ∈ ω) → (𝑤 ∈ (𝐴‘𝑛) ↔ 𝑤 ∈ ({𝑛} × (𝐹‘𝑛)))) | 
| 83 | 82 | exbidv 1839 | 
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑛 ∈ ω) → (∃𝑤 𝑤 ∈ (𝐴‘𝑛) ↔ ∃𝑤 𝑤 ∈ ({𝑛} × (𝐹‘𝑛)))) | 
| 84 | 81, 83 | mpbird 167 | 
. . . . . . 7
⊢ ((𝜑 ∧ 𝑛 ∈ ω) → ∃𝑤 𝑤 ∈ (𝐴‘𝑛)) | 
| 85 | 64, 68, 84 | syl2anc 411 | 
. . . . . 6
⊢ (((𝜑 ∧ 𝑧 ∈ ran 𝐴) ∧ (𝑛 ∈ dom 𝐴 ∧ 𝑧 = (𝐴‘𝑛))) → ∃𝑤 𝑤 ∈ (𝐴‘𝑛)) | 
| 86 |   | simprr 531 | 
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑧 ∈ ran 𝐴) ∧ (𝑛 ∈ dom 𝐴 ∧ 𝑧 = (𝐴‘𝑛))) → 𝑧 = (𝐴‘𝑛)) | 
| 87 | 86 | eleq2d 2266 | 
. . . . . . 7
⊢ (((𝜑 ∧ 𝑧 ∈ ran 𝐴) ∧ (𝑛 ∈ dom 𝐴 ∧ 𝑧 = (𝐴‘𝑛))) → (𝑤 ∈ 𝑧 ↔ 𝑤 ∈ (𝐴‘𝑛))) | 
| 88 | 87 | exbidv 1839 | 
. . . . . 6
⊢ (((𝜑 ∧ 𝑧 ∈ ran 𝐴) ∧ (𝑛 ∈ dom 𝐴 ∧ 𝑧 = (𝐴‘𝑛))) → (∃𝑤 𝑤 ∈ 𝑧 ↔ ∃𝑤 𝑤 ∈ (𝐴‘𝑛))) | 
| 89 | 85, 88 | mpbird 167 | 
. . . . 5
⊢ (((𝜑 ∧ 𝑧 ∈ ran 𝐴) ∧ (𝑛 ∈ dom 𝐴 ∧ 𝑧 = (𝐴‘𝑛))) → ∃𝑤 𝑤 ∈ 𝑧) | 
| 90 | 63, 89 | rexlimddv 2619 | 
. . . 4
⊢ ((𝜑 ∧ 𝑧 ∈ ran 𝐴) → ∃𝑤 𝑤 ∈ 𝑧) | 
| 91 | 90 | ralrimiva 2570 | 
. . 3
⊢ (𝜑 → ∀𝑧 ∈ ran 𝐴∃𝑤 𝑤 ∈ 𝑧) | 
| 92 | 1, 54, 91 | ccfunen 7331 | 
. 2
⊢ (𝜑 → ∃𝑓(𝑓 Fn ran 𝐴 ∧ ∀𝑧 ∈ ran 𝐴(𝑓‘𝑧) ∈ 𝑧)) | 
| 93 |   | vex 2766 | 
. . . . . . . 8
⊢ 𝑓 ∈ V | 
| 94 |   | funfvex 5575 | 
. . . . . . . . . 10
⊢ ((Fun
𝐴 ∧ 𝑛 ∈ dom 𝐴) → (𝐴‘𝑛) ∈ V) | 
| 95 | 94 | funfni 5358 | 
. . . . . . . . 9
⊢ ((𝐴 Fn ω ∧ 𝑛 ∈ ω) → (𝐴‘𝑛) ∈ V) | 
| 96 | 57, 95 | sylan 283 | 
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑛 ∈ ω) → (𝐴‘𝑛) ∈ V) | 
| 97 |   | fvexg 5577 | 
. . . . . . . 8
⊢ ((𝑓 ∈ V ∧ (𝐴‘𝑛) ∈ V) → (𝑓‘(𝐴‘𝑛)) ∈ V) | 
| 98 | 93, 96, 97 | sylancr 414 | 
. . . . . . 7
⊢ ((𝜑 ∧ 𝑛 ∈ ω) → (𝑓‘(𝐴‘𝑛)) ∈ V) | 
| 99 |   | 2ndexg 6226 | 
. . . . . . 7
⊢ ((𝑓‘(𝐴‘𝑛)) ∈ V → (2nd
‘(𝑓‘(𝐴‘𝑛))) ∈ V) | 
| 100 | 98, 99 | syl 14 | 
. . . . . 6
⊢ ((𝜑 ∧ 𝑛 ∈ ω) → (2nd
‘(𝑓‘(𝐴‘𝑛))) ∈ V) | 
| 101 | 100 | ralrimiva 2570 | 
. . . . 5
⊢ (𝜑 → ∀𝑛 ∈ ω (2nd ‘(𝑓‘(𝐴‘𝑛))) ∈ V) | 
| 102 |   | cc2lem.g | 
. . . . . 6
⊢ 𝐺 = (𝑛 ∈ ω ↦ (2nd
‘(𝑓‘(𝐴‘𝑛)))) | 
| 103 | 102 | fnmpt 5384 | 
. . . . 5
⊢
(∀𝑛 ∈
ω (2nd ‘(𝑓‘(𝐴‘𝑛))) ∈ V → 𝐺 Fn ω) | 
| 104 | 101, 103 | syl 14 | 
. . . 4
⊢ (𝜑 → 𝐺 Fn ω) | 
| 105 | 104 | adantr 276 | 
. . 3
⊢ ((𝜑 ∧ (𝑓 Fn ran 𝐴 ∧ ∀𝑧 ∈ ran 𝐴(𝑓‘𝑧) ∈ 𝑧)) → 𝐺 Fn ω) | 
| 106 |   | simpr 110 | 
. . . . . 6
⊢ (((𝜑 ∧ (𝑓 Fn ran 𝐴 ∧ ∀𝑧 ∈ ran 𝐴(𝑓‘𝑧) ∈ 𝑧)) ∧ 𝑛 ∈ ω) → 𝑛 ∈ ω) | 
| 107 |   | fveq2 5558 | 
. . . . . . . . . 10
⊢ (𝑧 = (𝐴‘𝑛) → (𝑓‘𝑧) = (𝑓‘(𝐴‘𝑛))) | 
| 108 |   | id 19 | 
. . . . . . . . . 10
⊢ (𝑧 = (𝐴‘𝑛) → 𝑧 = (𝐴‘𝑛)) | 
| 109 | 107, 108 | eleq12d 2267 | 
. . . . . . . . 9
⊢ (𝑧 = (𝐴‘𝑛) → ((𝑓‘𝑧) ∈ 𝑧 ↔ (𝑓‘(𝐴‘𝑛)) ∈ (𝐴‘𝑛))) | 
| 110 |   | simplrr 536 | 
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑓 Fn ran 𝐴 ∧ ∀𝑧 ∈ ran 𝐴(𝑓‘𝑧) ∈ 𝑧)) ∧ 𝑛 ∈ ω) → ∀𝑧 ∈ ran 𝐴(𝑓‘𝑧) ∈ 𝑧) | 
| 111 |   | fnfvelrn 5694 | 
. . . . . . . . . . 11
⊢ ((𝐴 Fn ω ∧ 𝑛 ∈ ω) → (𝐴‘𝑛) ∈ ran 𝐴) | 
| 112 | 57, 111 | sylan 283 | 
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑛 ∈ ω) → (𝐴‘𝑛) ∈ ran 𝐴) | 
| 113 | 112 | adantlr 477 | 
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑓 Fn ran 𝐴 ∧ ∀𝑧 ∈ ran 𝐴(𝑓‘𝑧) ∈ 𝑧)) ∧ 𝑛 ∈ ω) → (𝐴‘𝑛) ∈ ran 𝐴) | 
| 114 | 109, 110,
113 | rspcdva 2873 | 
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑓 Fn ran 𝐴 ∧ ∀𝑧 ∈ ran 𝐴(𝑓‘𝑧) ∈ 𝑧)) ∧ 𝑛 ∈ ω) → (𝑓‘(𝐴‘𝑛)) ∈ (𝐴‘𝑛)) | 
| 115 | 28 | eleq2d 2266 | 
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑛 ∈ ω) → ((𝑓‘(𝐴‘𝑛)) ∈ (𝐴‘𝑛) ↔ (𝑓‘(𝐴‘𝑛)) ∈ ({𝑛} × (𝐹‘𝑛)))) | 
| 116 | 115 | adantlr 477 | 
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑓 Fn ran 𝐴 ∧ ∀𝑧 ∈ ran 𝐴(𝑓‘𝑧) ∈ 𝑧)) ∧ 𝑛 ∈ ω) → ((𝑓‘(𝐴‘𝑛)) ∈ (𝐴‘𝑛) ↔ (𝑓‘(𝐴‘𝑛)) ∈ ({𝑛} × (𝐹‘𝑛)))) | 
| 117 | 114, 116 | mpbid 147 | 
. . . . . . 7
⊢ (((𝜑 ∧ (𝑓 Fn ran 𝐴 ∧ ∀𝑧 ∈ ran 𝐴(𝑓‘𝑧) ∈ 𝑧)) ∧ 𝑛 ∈ ω) → (𝑓‘(𝐴‘𝑛)) ∈ ({𝑛} × (𝐹‘𝑛))) | 
| 118 |   | xp2nd 6224 | 
. . . . . . 7
⊢ ((𝑓‘(𝐴‘𝑛)) ∈ ({𝑛} × (𝐹‘𝑛)) → (2nd ‘(𝑓‘(𝐴‘𝑛))) ∈ (𝐹‘𝑛)) | 
| 119 | 117, 118 | syl 14 | 
. . . . . 6
⊢ (((𝜑 ∧ (𝑓 Fn ran 𝐴 ∧ ∀𝑧 ∈ ran 𝐴(𝑓‘𝑧) ∈ 𝑧)) ∧ 𝑛 ∈ ω) → (2nd
‘(𝑓‘(𝐴‘𝑛))) ∈ (𝐹‘𝑛)) | 
| 120 | 102 | fvmpt2 5645 | 
. . . . . 6
⊢ ((𝑛 ∈ ω ∧
(2nd ‘(𝑓‘(𝐴‘𝑛))) ∈ (𝐹‘𝑛)) → (𝐺‘𝑛) = (2nd ‘(𝑓‘(𝐴‘𝑛)))) | 
| 121 | 106, 119,
120 | syl2anc 411 | 
. . . . 5
⊢ (((𝜑 ∧ (𝑓 Fn ran 𝐴 ∧ ∀𝑧 ∈ ran 𝐴(𝑓‘𝑧) ∈ 𝑧)) ∧ 𝑛 ∈ ω) → (𝐺‘𝑛) = (2nd ‘(𝑓‘(𝐴‘𝑛)))) | 
| 122 | 121, 119 | eqeltrd 2273 | 
. . . 4
⊢ (((𝜑 ∧ (𝑓 Fn ran 𝐴 ∧ ∀𝑧 ∈ ran 𝐴(𝑓‘𝑧) ∈ 𝑧)) ∧ 𝑛 ∈ ω) → (𝐺‘𝑛) ∈ (𝐹‘𝑛)) | 
| 123 | 122 | ralrimiva 2570 | 
. . 3
⊢ ((𝜑 ∧ (𝑓 Fn ran 𝐴 ∧ ∀𝑧 ∈ ran 𝐴(𝑓‘𝑧) ∈ 𝑧)) → ∀𝑛 ∈ ω (𝐺‘𝑛) ∈ (𝐹‘𝑛)) | 
| 124 | 50 | a1i 9 | 
. . . . . 6
⊢ (𝜑 → ω ∈
V) | 
| 125 |   | fnex 5784 | 
. . . . . 6
⊢ ((𝐺 Fn ω ∧ ω ∈
V) → 𝐺 ∈
V) | 
| 126 | 104, 124,
125 | syl2anc 411 | 
. . . . 5
⊢ (𝜑 → 𝐺 ∈ V) | 
| 127 |   | fneq1 5346 | 
. . . . . . 7
⊢ (𝑔 = 𝐺 → (𝑔 Fn ω ↔ 𝐺 Fn ω)) | 
| 128 |   | fveq1 5557 | 
. . . . . . . . 9
⊢ (𝑔 = 𝐺 → (𝑔‘𝑛) = (𝐺‘𝑛)) | 
| 129 | 128 | eleq1d 2265 | 
. . . . . . . 8
⊢ (𝑔 = 𝐺 → ((𝑔‘𝑛) ∈ (𝐹‘𝑛) ↔ (𝐺‘𝑛) ∈ (𝐹‘𝑛))) | 
| 130 | 129 | ralbidv 2497 | 
. . . . . . 7
⊢ (𝑔 = 𝐺 → (∀𝑛 ∈ ω (𝑔‘𝑛) ∈ (𝐹‘𝑛) ↔ ∀𝑛 ∈ ω (𝐺‘𝑛) ∈ (𝐹‘𝑛))) | 
| 131 | 127, 130 | anbi12d 473 | 
. . . . . 6
⊢ (𝑔 = 𝐺 → ((𝑔 Fn ω ∧ ∀𝑛 ∈ ω (𝑔‘𝑛) ∈ (𝐹‘𝑛)) ↔ (𝐺 Fn ω ∧ ∀𝑛 ∈ ω (𝐺‘𝑛) ∈ (𝐹‘𝑛)))) | 
| 132 | 131 | spcegv 2852 | 
. . . . 5
⊢ (𝐺 ∈ V → ((𝐺 Fn ω ∧ ∀𝑛 ∈ ω (𝐺‘𝑛) ∈ (𝐹‘𝑛)) → ∃𝑔(𝑔 Fn ω ∧ ∀𝑛 ∈ ω (𝑔‘𝑛) ∈ (𝐹‘𝑛)))) | 
| 133 | 126, 132 | syl 14 | 
. . . 4
⊢ (𝜑 → ((𝐺 Fn ω ∧ ∀𝑛 ∈ ω (𝐺‘𝑛) ∈ (𝐹‘𝑛)) → ∃𝑔(𝑔 Fn ω ∧ ∀𝑛 ∈ ω (𝑔‘𝑛) ∈ (𝐹‘𝑛)))) | 
| 134 | 133 | adantr 276 | 
. . 3
⊢ ((𝜑 ∧ (𝑓 Fn ran 𝐴 ∧ ∀𝑧 ∈ ran 𝐴(𝑓‘𝑧) ∈ 𝑧)) → ((𝐺 Fn ω ∧ ∀𝑛 ∈ ω (𝐺‘𝑛) ∈ (𝐹‘𝑛)) → ∃𝑔(𝑔 Fn ω ∧ ∀𝑛 ∈ ω (𝑔‘𝑛) ∈ (𝐹‘𝑛)))) | 
| 135 | 105, 123,
134 | mp2and 433 | 
. 2
⊢ ((𝜑 ∧ (𝑓 Fn ran 𝐴 ∧ ∀𝑧 ∈ ran 𝐴(𝑓‘𝑧) ∈ 𝑧)) → ∃𝑔(𝑔 Fn ω ∧ ∀𝑛 ∈ ω (𝑔‘𝑛) ∈ (𝐹‘𝑛))) | 
| 136 | 92, 135 | exlimddv 1913 | 
1
⊢ (𝜑 → ∃𝑔(𝑔 Fn ω ∧ ∀𝑛 ∈ ω (𝑔‘𝑛) ∈ (𝐹‘𝑛))) |